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Abstract

Herbicides resistance has challenged sustainable rice productivity. Consequently, inter-
est in chemical-free weed management has increased to overcome this constraint. This 
chapter has demonstrated the effect of pre-sowing microwave soil heating as a new alter-
native to chemicals for confirmed herbicide resistant weeds of the Australian rice produc-
tion system. Microwave can superheat weed plants, creating micro-steam explosions in 
the plant structures to kill weeds. This requires the least amount of energy to achieve 
weed control and can be likened to a ‘knock down’ herbicide treatment. Considerably, 
more microwave energy can be applied to the soil to achieve weed seed bank deactiva-
tion; however, there is growing evidence that this strategy also changes the soil biota and 
nutrient profile in favour of substantial increases in crop yield, when crops are planted 
into this microwave-treated soil. An energy application of approximately 400–500 J cm−2 
gave approximately 70–80% reduction in weed establishment in three field trials con-
ducted at two agro-ecological zones of the Australia. In addition, there was a 10 times 
higher nitrogen use efficiency, and a 37% higher water use efficiency was achieved 
through this aspect of the microwave technology. There is also evidence that the soil 
treatment strategy provides persistent effects, beyond a single season; therefore, the rice 
production is better than when using conventional weed control methods.

Keywords: weeds, herbicide resistance, microwave, soil health, crop health

1. Introduction

Rice (Oryza sativa L.) is the staple food of 60% of the world’s population [1], performs a sig-

nificant role in the socio-economic constancy of the world, and is grown in a vast range of 
agro-ecological conditions. In Australia, rice farming is done in the Murray-Darling Basin, on 
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an area of 70,000 ha, with an annual grain production capacity of 0.69 M t [2]. Direct seeding is 
a common sowing strategy of rice in Australia due to high labour costs associated with trans-

planted rice systems. Weeds are one of the major biological constraints to increasing rice yield. 

Oerke [3] estimated that globally 34% crop productivity losses are due to weeds. However, 
the global decline in the production of rice, due to weeds, is estimated to be 10.2% [4]. Yield 

loss in a direct seeded rice crops is high, compared to transplanted rice [5]. Productivity losses 

of rice crops generally depend on climatic conditions, weed types, weed population density, 

rice variety, sowing methods and weed management practices.

The troublesome weeds of the Australian rice growing belt are barnyard grass (Echinochloa 

crus-galli), dirty dora (Cyperus difformis), arrowhead (Sagittaria montevidensis), and starfruit 

(Damasonium minus). Among all the weeds, Barnyard grass (Echinochloa crus-galli L.) is the 

major problematic bio-agent of rice [6] and is also considered to be the main weed of sev-

eral semi-aquatic cropping systems [7]. It follows the C4 photosynthetic pathway [5] and has 

indistinguishable morphology to rice at seedling stage, which makes it extremely competitive 

with the rice crop. A 57% reduction in rice yield was documented, with a barnyard grass 
population density of 9 plants m−2 [8]. Additionally, higher densities of barnyard grass may 
remove up to 80% of the soil nitrogen, especially during its vegetative growth stages [7]. Seed 

production is the key element of long-standing weed population dynamics [9]. The average 

seed production capacity of barnyard grass ranged from 20,000 to 73,000 seeds per plant [10] 

and 60% of these seed could become part of the weed seed bank. Therefore, effective weed 
management depends on reducing the soil weed seed bank [11].

1.1. Herbicide resistance

Globally, there are 400 weed species that have developed resistance to herbicides and annu-

ally nine new weed biotypes are reported as being herbicide resistant [12]. The overall number 

of herbicide resistant weed species in various crops is illustrated in Figure 1. Cross-resistance 

in weed flora is described as resistant to two or more weedicides of the same or different 
chemistry because of one resistant mechanism (RM) [13]. However, multiple resistances in 

individual weed species are generally characterized by the presence of two or more RMs. 

These mechanisms might be the mutation at the site of action (SOA) of herbicides (target site) 
or change in metabolism and translocation (nontarget site), which reduces the phytotoxic 

effect of herbicides on their SOA [14]. Of particular concern, the numbers of weed species, 

which have become resistance to glyphosate in Australian agricultural systems are shown in 
Figures 2 and 3. Metabolic resistance is more commonly found in monocot (grasses) than in 

dicot (broadleaf) weeds [14]. Herbicide resistance in weeds is the greatest threat to sustain-

able productivity of agricultural commodities in industrialized countries. Therefore, there is a 

present need of an alternative weed management strategy in exiting cropping system. A series 
of experiments have been conducted, at Dookie Campus of the University of Melbourne, to 
assess the effects of microwave energy as an alternative of chemical weed control.

1.2. Water use efficiency

Higher grain production per unit application of water is needed to enhance sustainable rice 

production for future demands. Australia is the driest inhabited continent on the planet 
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and the Australian Academy of Technology and Engineering (ATSE) reported that 62% of 
Australia’s water was consumed by the agriculture sector in 2013–2014. Effective water use, 
to improve crop yield, can save the sector’s water for future generation. The cost of water 

in Australia is about AU$ 200–300 per Ml, which is consequently increasing the cost of rice 
production in Australia, independent of direct-drill farming, which postpones permanent 
flooding of the crop for almost 35 days.

Figure 1. The overall herbicides resistant scenario of weed species in crops. Source: [12].

Figure 2. Confirmed glyphosate resistance summer weeds of Australian crop production systems. Source: [15].
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Rice production in Australia consumes approximately 2.5–3 Ml ha−1 with an average grain 

harvest of about 1.4 t Ml−1; however, microwave soil treatment increases the production to 

about 1.92 t Ml−1 [16], which is around 37% higher water use efficiency compared to untreated 
control plots. Globally, an average of 0.003–0.005 Ml of water is required to produce 1 kg of 
rice (i.e. , a yield of between 0.2 and 0.3 t Ml−1), which is about 2–3 times higher than the water 
consumption of other cereal crops [17, 18]. Considering this, numerous studies have reported 

the effects of irrigation water volume on crop yield [19–21]. Interestingly, with a single crop 
management strategy, it is hard to harvest multiple benefits, including water use efficiency. 
In the following field studies, we achieved about 37% greater irrigation water use efficiency, 
where we treated the soil with microwave energy for weed seed bank depletion under field 
conditions. Therefore, microwave soil heating may also promote effective and efficient water 
use in Australian rice production systems, in addition to weed management. This assumption 
needs further research for validation under field conditions.

1.3. Organic rice production

Soil health is the key element in organic farming and as per worldwide agreement; soil fertility 

in organic farming system should be maintained on a long-term basis. Intensified rice farm-

ing has been deteriorating the soil quality [22] in Asian rice growing regions. However, in 
Australia, limited studies have reported that intensive organic farming enhanced soil fertility 
as compared to conventional agriculture practices [23]. It has been reported that microwave 
treatment of soil enhances the humification of soil organic matter [24] and has some positive 

effects on soil nitrogen availability for crop plants. In a pot trial, Khan et al. [25] reported 

a persistent effect of microwave soil heating on the second season wheat crop with better 
grain production benefits than in the first season after a once off microwave treatment, which 
suggests that there is a persistent effect of this technology on soil health. In addition, the 

Figure 3. Confirmed glyphosate resistance winter weeds of Australian crop production systems. Source: [15].
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population of ammonia oxidizer bacteria and archaea, studied during this pot trial, showed 

no significant response to the heating effect of microwave treatment time. The abundance of 
beneficial microbes is a direct indicator of soil fertility, suggesting that microwave technology 
can sustain soil health over a long period.

In Australia, weed management in organically produced rice offers extra challenges for the 
farmer. Sod seeding, where rice is directly sown into a pasture or legume stand, is a common 

establishment practices in southern New South Wales. The preexisting pasture of legume crop 

somehow suppresses aquatic weeds like dirty dora, starfruit, arrowhead and water plantain, 

but has little to no effect on barnyard grass. Another nonchemical weed control strategy is 

propane gas flame weeder; however, it costs about AU$ 12,000–15,000 ha−1, along with careful 

water management and post-emergent harrowing [26]. Considering this, organic rice produc-

ers are still looking for a nonchemical weed control approach, which could control barnyard 

grass and sustain organic production.

2. Microwave energy

Microwave frequencies occupy the portion of the electromagnetic spectrum (300 MHz to 
300 GHz) that lies between VHF radiowaves and thermal infrared. Their application falls 
into two categories, depending on whether the wave is used to transmit information or 

energy. The first category includes terrestrial and satellite communication links, radar, radio-
astronomy, microwave thermography, material permittivity measurements, and so on [27]. 

The second category of applications is associated with microwave heating and wireless power 

transmission. In case of microwave heating, there is usually no signal modulation and the 
electromagnetic wave interacts directly with solid or liquid materials.

2.1. Essentials of microwave heating

“It has long been known that an insulating material can be heated by applying energy to it in the form 
of high frequency electromagnetic waves”([28], pp. 5). Industrial microwave heating has been 
used since the 1940s ([28], pp. 5). The initial experiments with microwave heating were con-

ducted by Dr. Percy Spencer in 1946, following a serendipitous discovery while he was testing 
a magnetron [29]. Although Spencer was not the first to observe that microwave energy could 
impart heat to materials, he was the first to systematically study it. Since then, many heating, 
drying, thawing [30] and medical applications [31] have been developed.

One key benefit of microwave heating, over conventional convective heating, is speed. The 
origin of this speed is the volumetric interactions between the microwave’s electric field and 
the material. In contrast, convective heat transfer propagates from the surface into the mate-

rial, with the final temperature profile depending on the material’s thermal diffusion proper-

ties [32] and the influence of moisture transport, which often hinders the convective heating 
process [33].

The factors that contribute to microwave heating include: the physical and chemical structure 

of the heated material; the frequency of the microwaves [34]; in some cases, such as wood, 

the orientation of the electrical field relative to the structure of the dielectric material is also 
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important ([35], pp. 13-17); reflections from the interfacial surface of the heated material [27]; 

electric field strength [34]; the geometry of the microwave applicator [28]; the geometry, size, 

electrical and thermal properties of the dielectric material [36–38]; the exposure time; and the 

moisture content of the dielectric material [33, 35].

2.2. ISM band applications

Because microwaves are also used in the communication, navigation and defence industries, 
and their use in thermal heating is restricted to a small subset of the available frequency 

bands. A small number of frequencies have been set aside for Industrial, Scientific and 
Medical (ISM) applications [39]. The main frequencies of interest for industrial applications 

are 915 ± 13 MHz and 2450 ± 50 MHz [39].

3. Microwave weed treatment

In Australian agricultural industries, the total estimated cost of weed management and loss in 
crop productivity due to weeds is about AU$4 billion annually [40]. Microwave weed man-

agement is an alternative method of weed control in modern agriculture systems. The history 

of microwave-based weed management is given in Table 1. The efficacious application of 
microwave heating in agricultural systems can substitute for the sometimes hazardous, toxic 

and environmentally unsafe chemicals that are used to kill weeds [60]. Interest in the use 
of microwave energy as a tool to weeds control is mainly because of herbicide resistance 

of various weed species [61] and their long-lasting persistence in the environment [54, 62]. 

Microwave heating is not influenced by wind direction and speed, therefore prolonging the 
application periods compared to traditional methods of herbicides spraying [51].

Ayappa et al. [63] reported that the most important features of microwave heating are its 

accurate control, diminutive start-up time and volumetric heating. Microwave energy den-

sity is the most important factor in plant mortality rather than exposure time; therefore, two 

options for weed management, using microwave energy, become evident: long exposure to 

diffuse microwave energy; or deliberate application of a strongly focused microwave pulse to 
quickly debilitate the plants [58].

Microwave radiation, which triggers dielectric heating in plant tissues, is induced by the micro-

wave’s electric field. This internal heating ultimately kills or debilitates the plant [54]. Bigu-Del-
Blanco et al. [49] treated 2-day-old seedling of maize with microwave energy at a frequency of 
9 GHz for 22–24 h. The authors revealed that more exposure time to microwaves even at very 
low energy densities significantly dehydrated the maize plants and retarded their growth.

In contrast, the recent research on fleabane and paddy melon [58] has concluded that a short 

exposure (≤ 5 s) of high-intensity microwave heating was enough to hinder plant growth. The 
plant tissues, which were subjected to microwaves, rapidly dehydrated. Whatley et al. [64] 

stated that low moisture levels in soil attenuated the microwave transmission less than high 
moisture content. The authors suggested that pre-emergence microwave treatment for weed 

control should be worked out when the top soil layer (1–2 cm) contains relatively low moisture.
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Microwave 

frequency

Energy level Irradiation 

duration (s)

Treatment 

scenario

Target species Percent weed-

seed destruction

Reference

39 MHz — 4–37 s Pre-emergence Hard red winter 

wheat

50% seed 
mortality

Nelson and 

Walker [41]

2.45 GHz 600 W 60 s Pre-emergence

(Dry, 4 h 
soaked 

and 46 h 
germinated 

seeds)

Zea mays, Arachis 
hypogaea, Prosopis 
juliflora, Cucumis 
sativus, Brassica 
sp., Rumex crispus, 
Echinochloa 

colonum, 
Amaranthus 
sp., Gossypium 
hirsutum, Glycine 
max, Sorghum 
vulgare and 

Triticum vulgare

17% reduction 
in germination 

in dry seeds but 

100% in case of 
moist seeds at 

10 s of exposure

Davis et al. 

[42]

2.45 GHz 600 W 8 s Post 

emergence 

(Aquatic 
weed)

Duckweed 
(Wolffia punctata)

50% Champ et al. 

[43]

2.45 GHz 2000 & 4000 W Varying 
exposure time 

(not mention 

properly)

Pre and post 

emergences

Johnsongrass 
Morningglory

Redroot Pigweed

Texas panicum 

Barnyardgrass

Sunflower

London rocket

Rigseed 

euphorbia

For post-
emergence MW 

treatment 309 J/
cm2 energy was 

required for 

100% control 
(field conditions) 
while for pre-

emergence MW 

weed control 

73 J/cm2 gave 

85–100% control 
(glass house 

conditions)

Wayland et 

al. [44]

2.45 GHz 45–720 J cm−2 No 

information

Pre-emergence London rocket 

(13 cm deep in 
soil profile) and 
Sunflower (2.5 cm 
seeded depth)

87% for London 
rocket and 93% 
for sunflower

Menges and 

Wayland, 

[45]

2.45 GHz 100–750 W 120–1200 s Pre-emergence Clover and Turnip 60–78% 
reduction 

in seeds 

germination

Hightower et 

al. [46]

2.45 GHz 0.1–1.5 kW Varying 
exposure time

Pre-

emergence of 

seeds in soil

Black medic, 
Barnyard grass, 
Foxtail purslane, 
redroot pigweed, 

large crabgrass,

50% Rice and 

Putnam [47]

2.45 GHz — 360 s Pre-emergence Brassica 
napus, Linum 
usitatissimum, 
Avena fatua

85–95% Bhartia et al. 

[48]
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Van Wambeke et al. [65] and Benz et al. [66] reported that seeds, fungi and nematodes could 

be effectively controlled with a short exposure to microwave treatment; however, the efficacy 
of this short exposure was highly influenced by soil texture, exposure time (sec), soil depth 
and soil moisture content. Davis et al. [42] conducted an experiment to evaluate the effects 
of microwave on the seedling survival percentage of twelve species. They described that the 

seedling (48 h germination) exhibited no survival after short exposure of microwave energy 

Microwave 

frequency

Energy level Irradiation 

duration (s)

Treatment 

scenario

Target species Percent weed-

seed destruction

Reference

9 GHz 10–30 mW/cm2 22–24 h Post 

emergence

Zea mays 100% growth 
inhibitions

Bigu-del-
Blanco et al. 

[49]

2.45 GHz 1.2 kW 5–45 s Pre-emergence Trifolium and 
Medicago

85% reduction in 
germination

Crawford 

[50]

2.45 GHz 500 W 30 s Pre-emergence Avena fatua 60% (based on 
seed moisture)

Diprose et al. 

[51]

2.45 GHz 1.5 kW 0, 10, 20 and 30 Pre-emergence Wild oat & wheat 90–100% Lal and 

Reed, [52]

2.45 GHz 120 s Pre-emergence Avena sativa and 
native weed seeds

Reduced weed 

seeds emergence

Barker and 
Craker, [53]

2.45 GHz 900 W 4, 8, 16, 32, 64, 
128 and 256 s

Post 

emergence

Abutilon 
theophrasti, 

Panicum 

miliaceum, 

Lucerne and 

Rapeseed

Complete 

dehydrating of 

plants

Sartorato et 

al. [54]

2.45 GHz 800 W 120, 240, 420 
and 960 s

Pre-emergence Rubber vine, 

Parthenium and 

Bellyache bush

88% (Rubber 
vine), 67% 
(Parthenium) 

and 94% 
(Bellyache bush) 
mortality at 960 s 
irradiation

Bebawi et al. 

[55]

2.45 GHz 0.10–1.24 kWh 
m−2

30–300 s Pre and post 

emergence

Malva parviflora 
and Triticum 
astevium

100% destruction 
of tested specie 

at 0.65 kWh m−2

Brodie et al. 

[56]

2.45 GHz 700 W 120, 240, 320 
and 720 s

Pre-

emergence 

treatment of 

soil

Lolium perenne and 
Lolium rigidum

100% seed 
mortality was 

achieved at 

240 s of MW 
irradiation

Brodie et al. 

[57]

2.45 GHz 750 W 5, 15, 30 and 
60 s

Pre and post 

emergence

Prickly paddy 

melon

100% debilitation 
of plants

Brodie et al. 

[58]

2.45 GHz 2 kW 5, 10, 15, 30, 
60 s

Post 

emergence

Ryegrass and wild 

radish

100% mortality Brodie and 
Hollins [59]

Table 1. History of microwave weed management in different scenarios.
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and concluded that susceptibility of young seedlings to microwave heating was highly cor-

related with moisture content and absorption of energy. Davis et al. [67] proposed that the 

specific mass and volume of crop seeds were positively correlated to seed mortality during 
microwave heating. This might be due to the “radar cross-section” [68] attainable by seeds 
to transmitting microwave. More radar cross-section enables the seed to interrupt, and thus 
absorbs more microwave energy. This seems to be the cause of death [69].

The use of electromagnetic radiations for post-emergence control of broad leaves and grasses 

is the least energy-consuming process available for microwave weed control [70]. Brodie et al. 
[57] stated that, based on microwave energy calculation for seeds and plants on the sandy 

soil surface, far more energy was required to kill dry seeds as compared to the previously 

emerged plants. The actual energy requirement on a large scale would depend on plant den-

sity and three-dimensional microwave distribution. Hence, the total energy required for weed 

management might be significantly reduced if weed seeker systems [71] are employed to 

control the activation of the microwave unit.

Thermal runway, due to the resonance of electromagnetic field inside the structure of dielec-

tric material, is common in dielectric heating [72, 73]. Total energy and time exposure could 

be dramatically reduced if thermal runway can be induced in weed plants throughout micro-

wave irradiation treatment; therefore, analogous energy requirements to those related with 

traditional chemical weed control method could be achieved. This temperature-time exposure 

scenario can only be discovered and understood through more research into the microwave 

heating of biological materials.

Based on previous findings and the results of recent studies reported by Khan et al. and 
Brodie et al. [16, 25]; pre-sowing microwave irradiation of soil for 120 s in first field trial 
and 60 s in two other field trials, in rice crops, gave significant reduction in weed emergence 
(Table 2). It is possible to reduce weed pressure in direct-seeded rice systems through micro-

wave irradiation of soil in Australia; however, more consolidated research efforts are needed 
to understand the long-term effects of microwave irradiation and weed control in rice.

3.1. Killing emerged plants

It has been confirmed that microwave energy can debilitate emerged weed plants with a 
very short exposure time [25, 56, 58, 59]. Some specific microwave energy dose responses are 
shown in Figure 4.

3.2. Soil treatment

Soil is a complex three-dimensional living substance. The propagation of microwave energy 

through soil depends upon the gravimetric (θ
g
) and volumetric (θ

v
) moisture content [74], 

bulk density, organic matter content [75], soil texture [57] and specific heat of soil. Among 
them, the soil moisture content has three major impacts on microwave heating: (1) moisture 
increases the soil surface reflectivity [76], which ultimately reduced the microwave penetra-

tion into the soil [28]; (2) moist soil readily absorbs the microwave energy to generate heat [28] 

thus less total microwave energy propagated into the soil; and (3) moisture is also responsible 
for heat-diffusing phenomena in the soil profile [77].
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It has been reported that the dielectric constant (ε’) of known soil at known θ
g
 is propor-

tional to the bulk density of soil. The dependence of soil dielectric constant on bulk density 

is described by the direct dependence of bulk density on fraction of soil moisture volume 

[78]. The textural composition of soil (particles sizes distribution) affects the dielectric con-

stant (ε’). The higher percentage of clay particles (with bulk density range of 1.0–1.6 g cm−3) 

increases the dielectric constant of soil [79]. This might be due to higher water holding capac-

ity of clay particles. Therefore, this will increase the absorption of microwave energy by soil 

for its synchronized functions.

The temperature profile is dependent on the microwave electric field strength (E) within the 
soil. Brodie [56] has extensively studied the temperature distribution in soil due to microwave 

energy application through a horn antenna. The temperature profile can be described by Eq. 
(1). The Nomenclature of Eq. (1) is presented in Table 3.

  

  (1)

Figure 5 compares measured temperature distributions with those predicted by Eq. (1). 
The highest temperature in the microwave-treated soil was along the centre line of horn 

antenna and between the 0.02 and 0.05 m below the soil surface. Figure 6 illustrates the 

effects of microwave soil treatment using a different system configuration and treatment 
scenario.

3.3. Effect on soil

3.3.1. Effect of microwave energy on nutritional dynamic of soil

The dynamic of soil key nutrients (Carbon, Nitrogen, Phosphorus, Potassium and Sulphur) 

is explained by the knowledge of size and turnover rate of plant biopolymers such as C-N 

compounds, cellulose and hemicellulose and lignin [81]. The soil-microwave interaction is 

the function of various soil properties such as texture, moisture, salinity, bulk density and 

temperature [58, 78, 79]. Cooper and Brodie [82] investigated the effect of different durations 

Weed parameters Treatments LSD

(p = 0.05)

Percentage change from 

control
microwave 

treatment

Untreated control

Weed density (plants plot−1) 17.6a 94.8b 37.7 −80%

Weed fresh weight (g plot−1) 156.4a 612.8b 426.6 −74.6%

Weed dr. Weight (g plot−1) 21.6a 122.6b 69.6 −82%

Table 2. Effect of microwave energy application for weed seedbank depletion in direct seeded-rice crop under filed 
conditions in Australia (adapted from [16]).
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of microwave treatment and soil depth on soil nutrient status and pH. They found that 

microwave treatment of soil had no significant effect on nitrogen, phosphorus, potassium 
and sulphate concentrations in all the treatment combination, but they reported an increase 

in nitrite concentration after 120 s of microwave treatment of soil. The nitrate reduction in the 
irradiated soil could be the principle cause of nitrite formation [83], in their study.

Speir et al. [84] examined the effect of microwave energy on low fertility soil (100 randomly 
selected cores at depth of 50 mm), microbial biomass, N, phosphorus and phosphatase activity. 
They reported that an increase in microwave treatment duration (90 s) dramatically increased 
the N level (106 μg N g−1 soils) but the phosphorus concentration declined as treatment time 

increased. The higher flush in soil N is of microbial origin as microwave has a biocidal effect 
[85, 86]. The fixation of NH4

+ or K+ in soil by inorganic colloids has been well documented 

[87]. Kittrick [88] hypothesized that the ion fixation in the clay lattice could be described by 
the expanding and contracting forces in the interlayer position. The contraction is due to elec-

trostatic force of attraction between negatively charged clay mineral and positively charged 
ions and ion hydration causes the expansion. Fixation occurred when the force of attraction 

Figure 4. Dose-response curves for microwave treatment of four herbicides resistance weed species using a horn 
antenna. Source: Khan et al. [25].
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dominated the cations’ hydration energy. Zagal [89] pointed out that the mechanical effect 
induced by microwave irradiation can stimulate the dispersion of inorganic colloids. This 

stimulation can increase the decomposition of non-biomass organic matter in soil and release 
the fixed NH4+. Yang et al. [90] tested the nutrient extractability effect of microwave energy 
on soil. When fresh soil was exposed to microwave energy, a dramatic increase in the NH4

+-N 

concentration was observed for an extended treatment of 120 s. They concluded that this 
effect was partially from nonmicrobial processes, either from site exchange or from fixed posi-
tion in inorganic collides (clay minerals).

Alphei and Scheu [91] evaluated the effects of various biocidal treatments on mull-structured 
soil biota and nutritional dynamics. They reported the survival of soil microorganisms; in 

particular, higher concentration of ammonium nitrogen and phosphorus was observed when 

soil was subjected to microwave treatment at high power. The increase in soil C and N min-

eralization [89] and NH4
+-N and sulphur oxidation was reported by Wainwright et al. [92]. 

In contrast, numerous studies documented that the effect of ionizing irradiation (γ-rays) on 
soil effectively increased the mineralization of NH4

+-N [93, 94]. They proposed three possible 

pathways which may be responsible for the release of NH4
+-N from soil through irradiation: 

(1) ammonia could be produced by the chemical action of ionizing radiation through a variety 
of biochemical processes from nitrogenous organic compounds, particularly deamination of 

amino acid [95] and proteins, (2) several enzymes were functional in irradiated soil including 
urease, which is active during decomposition and produces ammonia and (3) release of N 
from dead organisms due to subsequent cell lysis by irradiation [96].

Parameter Meaning

n Scaling factor for simultaneous heat and moisture movement [80]

ω Angular frequency of electromagnetic wave

(rad s−1)

ε
o

Permittivity of free space

κ” Dielectric loss factor

τ Transmission coefficient of the soil surface

E Electric field strength (V m−1)

γ Combined diffusivity for simultaneous heat and moisture transfer

α Field attenuation factor in the soil (m−1)

t Time (s)

Α Width of antenna aperture (m)

Β Height of antenna aperture (m)

Ro Length of antenna (m)

k Thermal conductivity of the composite material

(W m−1 °C−1)

x, y, z Cartesian coordinates of a point in front of the horn antenna (m)

x’, y’ Cartesian coordinates of a point in the aperture of the antenna (m)

Table 3. Nomenclature of mathematical terms.
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Soil organic matter (SOM) is an aggregate of organic residues in soil at different degrees of 
humification [97]. Various biopolymers are serially transferred to humus (fulvic acid, humic 
acid and humin) in soil through geological SOM development processes such as humification 
[98]. Protein is the basic structural component of cell and cellular enzymes [99]. Approximately 
5–25% of organic inputs are expected to accumulate in soil as proteins, peptides and free 
amino acids [100]. Amino acids typically incorporate about 10–20% of soil organic carbon 
and 30–40% of soil org-N [100]. Thermal denaturation of biopolymers induced by microwave 

irradiation could increase the concentrations of free amino acids for succeeding turnover to 

CO2 and ammonia pool NH4
+. Hur et al. [101] demonstrated that microwave irradiation of soil 

can enhance the binding efficiency of hydrophobic organic containments with SOM. They 
irradiated 5 g samples of soil in plastic tubes in aerobic and anaerobic conditions with acti-
vated C for 600 s in a lab-scale microwave oven (2.45 GHz) operated at 700 W. They pointed 
out that MW irradiation significantly alters the physical and chemical properties of SOM and 
increased its humification. Kim and Kim [24] studied the influences of microwave irradiation 

Figure 5. Comparison of expected soil temperature profile with measured soil temperature profile (left) and for the 
750 W prototype microwave unit after 150 s of heating. Adapted from [56].

Figure 6. Estimated change in soil temperature treated from the 2 kW microwave system after 30 s with horn antenna at 
2 cm above the soil. Adapted from [56].
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on the SOM properties. They reported that thermal cracking induced by irradiation scenario 

potentially alters the molecular composition (C, H, O and N), chemical structure and humifi-

cation of SOM. The results of these studies suggest that microwave soil heating has potential 

to maximize the crop yield.

3.3.2. Enzyme activity as a function of microwave soil heating

Enzymes are essential to ecosystem processes because they arbitrate innumerable reactions that 
have biogeochemical importance in soil [102]. It has been demonstrated that in vitro exposure 

of microbial cells to microwave energy increased cell membrane permeability [103], released 

DNA and protein [104], soluble carbohydrate concentration [105] and inhibited growth of 

cells [106]. The enzymatic activity, selectivity and stability could be improved through high-

frequency electromagnetic energy in an aqueous medium [107]. d’Ambrosio et al. [108] found 

that acid phosphatase was highly stable to the microwave deactivation energy of 280 mW g−1. 

The hydration state and polarity of the reaction medium directly influenced the enzyme 
functionality under microwave irradiation. Notably, Carrillo-Munoz et al. [109] performed 

two lipases esterification reactions in a mono-mode microwave system at temperature of 
100°C. They found that a 2–9% higher yield and 2.1–2.5-fold increment increase in protease 
activity [110] were obtained in microwave conditions compared to conventional heating in 

the hydration state. Furthermore, Yadav and Lahi [111] investigated the influence of micro-

wave on lipase activity in a highly polar solvent and concluded that microwave noticeably 

accelerated the enzymatic reaction with an increase in hydrophobicity. Pirogova et al. [112] 

tested the effect of low frequency microwave energy, in the range of 500–900 MHz and at 
various power levels (1, 0.1 and 0.01 μW) on the activity of l-lactate dehydrogenase in solution 
for 300 s. They found a 73% increase in the bioactivity of the studied enzyme in microwave-
irradiated samples compared to nonirradiated samples. Asadi et al. [113] tested the physiol-

ogy of cyanobacterium (Schizothrix mexicana) against low power microwave modulation of 

various frequencies; they found that 9.685 GHz significantly increased growth metabolisms. 
Dreyfuss and Chipley [114] documented that metabolic enzyme activity of S. aureus increased 

after microwave irradiation. The cell biopolymer excitation induced by MW exposure was 

suggested to alter the enzymes’ functionality.

Kothari et al. [115] studied the effect of low-power microwave on protease and urease activity 
of nine microorganisms (Bacteria, yeast and fungi). They treated enzyme cultures for differ-

ent durations (0, 120, 240 and 360 s) in a microwave oven and concluded that the significant 
increase in the enzymes’ activity was an athermal effect of microwave energy on the metabo-

lism of the organisms. Numerous previous studies have shown higher enzymatic activity of 

industrial importance as a function of microwave in various reaction media at a temperature 

range of 70–110°C [107] and soil enzymes that are resistant to denaturation stress by heat 

[116, 117]. In contrast, Yeargers et al. [118] investigated the effect of microwave and conven-

tional heating methods on the sensitivity of two enzyme (lysozyme and trypsin) solutions 

and found no discernible difference in enzyme activity, but the lysozyme was slightly more 
heat resistant than trypsin. Elzobair et al. [119] reported that microwave energy of 800 J g−1 of 

soil decreased (˂10 nmolg−1 h−1) dehydrogenase enzyme activity but 3200 J g−1 increased (˃20 
nmolg−1 h−1) its functionality.
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3.3.3. Influence of microwave soil heating on soil microbes

Soil biota is known to survive under severe physio-chemical environmental changes [120–
122]. Microwave heating of soil can eradicate soil-borne fungi with minimal reduction of 

prokaryotic organisms [123]. Microbial cell response to microwave irradiation depends on 

the location, power density, time, frequency, pulses and physiology of cells. The nitrogen 

fixing bacteria persist, even after relatively high energy dosages. Vela and Wyss conducted a 
microwave heating experiment on soil Azotobacter and found that they survived microwave 

exposure of 480 s in very moist soil while, they were inactivated after only 20 s of treatment in 
laboratory culture conditions. Vela et al. [124] found that soil-nitrifying bacteria were highly 

resistant to microwave energy applied at the rate 40,000 J cm−2 to the soil surface. However, 

nitrifiers (mesophilic) are much more sensitive to high temperature than ammonifying (ther-

mophilic) bacteria. This implies that native habitat and intrinsic environment are the most 

important factors in resistance of soil organisms to microwave irradiation [125]. Soil bacte-

rial communities are resistant to microwave energy; some scientists concluded that the soil 

shelters microflora, while others discovered that the rate of proliferation causes resistance. 
This rate of proliferation is determined by nutrient concentrations. The heat-shock activation 

of the soil bacterial community was reported by Vela et al. [124]. Bacteria can form various 
thermal-resistance structure (i.e., spore and cysts), which keep them resistant against harmful 

effects of physical environments [126]. Based on work done by Hollins [127], she reported 

that a sharp reduction in colony forming unit of E. colie with 10 s of treatment of 2.3 kg soil 
(Figure 7), treated through 2 kW microwave system under horn antenna and complete soil 
sterilization was achieved through 120 s of irradiation.

3.4. Effect on crop growth

Rice productivity is strongly influenced through weed management strategies. Recently, a 
field experiment was conducted to evaluate the effect of pre-cropping microwave soil heat-
ing for weed seedbank depletion in direct-seeded rice crop based on the above soil heating 

methodology [16]. In addition to weed suppression (Table 1), the application of microwave 

energy (2.45 GHz; 120 s; 560 J cm−2) into soil significantly (P = 0.05; Table 4) increased the tiller 

density (419 m−2), dry biomass yield (27.8 t ha−1) and grain yield (9.0 t ha−1) of rice, compared 

to the untreated control scenario 292 m−2, 22.8 t ha−1 and 6.7 t ha−1, respectively. These results 

are strongly supported with findings of Brodie [128], who found that in pot trial maximum 

rice grain yield was attained with energy application of 600 J cm−2 to soil before crop sow-

ing. The higher crop productivity could be attributed to 70–80% reduction in weed estab-

lishment achieved through microwave irradiation of soil, ultimately leaving more room for 

crop growth. Thermal devitalisation of weed seedbanks in the vertical soil profile may be 
the possible cause of minimum weed interference with the rice crop. This was evidenced by 

Vidotto et al. [129] who explored the effectiveness of high temperature on seed viability of six 
weed species including Echinochloa crus-galli: the problematic weed of rice growing regions 

globally. They stated that 80–100% germination reduction was achieved through raising the 
soil temperature to 79.6°C. The same temperature regime (70–80°C) that was acquired by 
microwave irradiation of the soil in the present study. This effectively induced an inhibitory 
effect on the weed population and therefore increased the rice crop yield.
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For further validation of this yield changing effect with microwave soil heating, two field trials 
were conducted during October, 2016 to April, 2017 in a randomized complete block design with 
five replications at two different locations. The first location Dookie Campus of the University of 
Melbourne (36.395°S, 145.703°E) is a central grain growing region of the Goulburn Valley, which 
is in north of the state of Victoria, Australia; part of this region grows temperate rice. This region 
has a temperate climate with an average annual rainfall of 575 mm and an average monthly 
temperature range of 9.4–20.9°C (Australian Bureau of Meteorology). Soil at this experimental 
site is medium clay and classified as an Upotipotpon Clay [130] or an Orthic Basic Rudosol 
[131]. Historically, the same paddock has since been used for sheep grazing and highly invaded 

with a numerous grass species. The second location Old Coree, Jerilderie, New South Vales 
(35.210 °S, 145.440 °E) is the rice research farm a totally owned property of the Rice Research 
Australia Pty. Ltd. – SunRice™. Soil was treated using a prototype 2 kW microwave system, 
it has four independently controlled, 2 kW microwave generators operating at 2.45 GHz. The 
trailer is powered from two on-board 7 kVA, three-phase electrical generators [25]. Treatment 

was applied for 60 s and the temperature achieved through microwave energy application into 
soil was about 70–75°C in top soil layer (0–5 cm) at both study locations. Brodie reported that 
the microwave energy application to soil of about 400–500 J cm−2 gave 1.2–1.5 t extra grain yield 
compared to untreated control soil (Figure 8). The same range of microwave energy has used 

to treat the soil in the above field experiments. Therefore, the microwave soil treatment for pre-
emergence weed suppression gave substantial increase in rice crop yield at both study location 

(Table 4; Figures 9 and 10). This is an additional benefit of soil heating through MW energy; 
we assumed that temperature has influenced on the soil nutrient profile particularly nitrogen.

3.5. Evaluation of rice crop production potential

Sustainable production of rice crop is the present need of the agriculture sector to ful-

fil increasing demand. In general, herbicide resistance, lower water use efficiency and 

Figure 7. Assessment of E. coli survival in top 2 cm of soil as a function of applied microwave energy (Source: [127]).
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Rice parameters Dookie location 1 Jerilderie location 2

Treatments LSD 
(p = 0.05)

P-value Percentage 

change

Treatments LSD 
(p = 0.05)

P-Value Percentage 

changeMicrowave 

treated

Untreated 

control

Microwave 

treated

Untreated 

control

Number of tillers (m−2) 387 a 268 b 62.0 44.4% 480 a 418 a 145.2 0.29 44.4%

Dry biomass weight (t ha−1) 16.90 a 14.0 a 4.2 0.14 20.7% 19.80 a 17.05 b 0.57 ˂0.001 16.1%

Grain yield (t ha−1) 3.88 a 2.56 a 1.76 0.12 51.5% 9.21 a 7.63 b 0.65 ˂0.001 20.7%

Harvest Index 22.3 a 17.4 a 8.08 0.19 6.1% 46.77 a 44.59 a 4.29 0.26 6.1%

¥Water use efficiency (t Ml−1) 1.3 0.85 — — — 3.07 2.54 — — —

ᴪPartial factor productivity of 

nitrogen (kg rice grain per kg 

application of N)

31.04 20.42 — — — 73.68 61.04 — — —

Note: different letters in a row reflecting a significant difference at 5% probability level.Note: different letters in a row reflecting a significant difference at 5% probability level.

ᴪPartial factor productivity of nitrogen (PFP) , change in crop yield with nitrogen application was calculated based on work done by [132]. Note: Applied 

nitrogen during cropping period was 125 kg N ha−1 at both study locations.
¥Water use efficiency was calculated based on the change in grain yield per unit application of water. Note: Irrigation water volume was about 3 Ml ha−1 as per 

recommendation of Ricegrowers Association of Australia.

Table 4. Influence of pre-sowing microwave soil heating for weed seedbank depletion on rice productivity at two different agro-ecological zones of the Australia.
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nitrogen use efficiency are key sustainability limiting factors, globally. For herbicide 
resistant weed suppression, Khan et al. [16] compared a microwave energy cost in 

rice crop with pre-sowing soil fumigation [133, 134] and reported that in terms of fuel 

Figure 8. Infrared thermal images of microwave treated plot for weed seedbank depletion in rice crop under field 
conditions.

Figure 9. Comparison of early growth establishment of rice crop. Plants on left collected from microwave treated plot 

and plants on right collected from untreated control plot. (Left image taken from Dookie Trial Site and right image taken 
from Old Coree, Jerilderie site).
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consumption, the microwave system used in their study was quite comparable or better 

than soil fumigation and soil steaming treatment done by Samtani et al. [135]. Higher rice 

crop productivity without soil nutrient depletion has been confirmed with microwave 

soil heating methodology with an average of 20–50% increase under field conditions 
(Table 4). The microwave soil heating did not significantly alter the grain mineral concen-

tration of rice (Figure 11), which suggests that higher yield producing crops effectively 

utilize the yield-changing nutrients from the soil. Based on this estimate, the profitability 
of rice production through this technology is better than conventional weed control tech-

nology. In other domain, however, soil health and persistence effects of the treatment 
for up to two growing seasons give an additional productivity advantage to rice farming 

community.

Figure 10. Relative increase in rice grain yield as a function of applied microwave energy. Source: [128].

Figure 11. Effect of microwave soil heating on quality related parameter of rice grain. Adapted from [16].
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4. Discussion

Weed seedbank is a resting place of dormant seeds in the top soil horizon. Various biotic and 
abiotic factors have a tremendous effect on seed viability. Among the many abiotic factors, 
however, soil temperature has an ability to debilitate weed seeds in situ [136, 137]. Therefore, 

it was hypothesized that the projection of non-ionizing energy into a top soil layer through a 

horn antenna may cause thermal devitalisation of weed seeds. The results of field studies have 
strongly supported our hypothesis and achieved about 70–80% reduction in rice weeds estab-

lishment. Overall, energy of a microwave system for weed management program has a direct 

relationship with application duration. Therefore, for a pre-emergence weed control under field 
conditions, Wayland et al. [44] reported an energy level of 80 ˂ J cm−2 ˂ 160, which is quite low 
compared to the present investigation. In contrast, for a post-emergence weed control Sartorato 
et al. [54] tested the efficacy of microwave energy on seedling of Abutilon theophrasti and Panicum 
miliaceum. They reported that an energy range of 101.5 ˂ J cm−2 ˂ 343.3 gave significant reduc-

tion in dry weight of about 90%. However, it is highly unlikely that certain set of MW energy 
may give a same control spectrum, because soil moisture [74] and seed geometry [38, 67] have 

a considerable influence on microwave absorption. These vary according to cropping system.

Independent of soil heating methodology for weed control; various studies also reported the 
profound effect of high temperature on weed establishment. Gay et al. [133] reported on a 

soil steaming experiment with various duration (0, 6, 8 and 10 min) in a soil, to depths of 
about 1.5–16.5 cm, giving a temperature gradient of 100–37°C (decreasing with depth), in a 
lettuce crop for weed control. They found an average weed density of less than 50 plants m−2 

in the case of soil steam treated plots compared to untreated control plots (400 plants m−2). 

Vidotto et al. [129] found that exposure of a soil-seed mixture to high temperature gradually 

decreased seed germination. Almost all the tested weed species seeds were completely devi-
talized through soil thermal treatment at a temperature between 70°C and 80°C.

The same temperature distribution was achieved through microwave application in the pres-

ent study, which might have a degrading effect on the weed seedbank and ultimately led to a 
significant weed reduction. Therefore, based on previous findings and the results of this study, 
it may be possible to minimize the weed pressure through microwave irradiation of soil in 

no-till wheat production systems of Australia. However, a further research effort is needed 
to understand the long-term effects of microwave soil irradiation for weed control in crops. 
Furthermore, the fuel cost associated with a pre-sowing microwave weed management has 
been previously estimated by Khan et al. [16], therefore, about 0.98 L diesel m−2 were consumed 

in their experiment. Samtani et al. [135] calculated the fuel cost for pre-sowing steam treatment 

for weed control and reported a diesel consumption of between 0.81 and 2.16 L m−2. Considering 

the fuel consumption, the MW system used in the present investigation for soil heating was 

comparable or even better than soil steaming used by Gay et al. [133] and Samtani et al. [135].

In addition to weed suppression, a few previous studies have reported the supplementary effect 
of microwave energy on soil nutrient dynamics; Yang et al. [90] tested the nutrient extractabil-

ity effect of microwave on soil. When fresh soil was exposed to microwave energy a dramatic 
increase in the NH4

+-N concentration was observed for an extended treatment of 120 s. They 
concluded that this effect was partially from nonmicrobial processes, either from site exchange 
or from fixed position in inorganic collides (clay minerals). Hur et al. [101] demonstrated that 
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microwave irradiation of soil can enhance the binding efficiency of hydrophobic organic con-

tainments with soil organic matter. They irradiated 5 g samples of soil in plastic tubes in aerobic 
and anaerobic conditions with activated C for 600 s in a lab-scale microwave oven (2.45 GHz) 
operated at 700 W. They pointed out that MW irradiation significantly alters the physical and 
chemical properties of soil organic matter and increased its humification. In another study, 
Kim and Kim [24] studied the influences of microwave irradiation on the soil organic matter 
properties. They reported that thermal cracking induced by irradiation potentially alters the 

molecular composition (C, H, O and N), chemical structure and humification of soil organic 
matter. Based on these previous findings, we assumed that thermal denaturation of recalcitrant 
humic substance induced by microwave irradiation may increase the concentrations of free 

amino acids for succeeding turnover to CO2 and ammonia pool NH4
+, which might have sub-

stantially increased wheat productivity in the present investigation. Moreover, microwave soil 

heating gave 10 times higher nitrogen use efficiency and about 20–50% higher irrigation water 
use efficiency in those field experiment conducted to manage the herbicides resistance weeds.

5. Conclusion

Based on these experiments, we conclude that microwave weed and soil treatment can be 
implemented as an alternative method of weed control in direct-seeded rice crop. Additional 
benefit of this technology has prompted a motivation for further research in this area to 
enhance sustainability in agricultural industry.
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