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Abstract

Cancer develops from the outgrowth of a clonal population of cells with a genetic pathol-
ogy to evade cell death and exponential proliferation. It has become a global burden with
increasing mortality rates. Lung cancer is a major contributor to cancer fatalities. Conven-
tional therapies have shown advances in treating lung cancer, but the successful eradica-
tion of cancer lies in targeting both cancer and cancer stem cells. Cancer stem cells (CSCs)
are a ration of cells found within the tumour bulk, capable of cancer initiation, therapy
resistance, metastasis and cancer relapse. Photodynamic therapy (PDT) has proven effec-
tive in treating lung cancer. PDT exerts selective cell death mechanisms toward cancerous
cells. With the use of a photosensitizer (PS) which becomes excited upon irradiation with
laser light at a specific wavelength, the PS forms reactive oxygen species (ROS) in turn
killing neoplastic cells. Leading therapeutic sequel can be obtained by transcending PDT
though combination therapies such as immunotherapy and nanotechnology which will
enable PDT to target lung CSCs preventing lung cancer recurrence.

Keywords: lung cancer, lung cancer stem cells, PDT, targeted PDT

1. Introduction

Cancer is a global burden affecting millions of people. The yearly death toll for cancer sur-

passes AIDS, tuberculosis and malaria combined [1]. Cancer is characterised by mutational

development of cells that lead to uncontrolled cell proliferation and tumour formation [2].

Tumours are classified according to tissue type and origin [3]. Lung cancer is one of the most

frequently diagnosed diseases, having the highest fatality rate amongst all cancers [1]. Carci-

noma of the lung arises due to risk factors; such as smoking, corrosive chemical inhalation and

air pollution; leading to accumulated mutations of normal lung tissue. These mutations cause
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genetic modifications that can alter cell cycle regulation, leading to increased cell proliferation,

tissue invasion, tumour formation and metastasis [4]. Lung cancer treatment options are:

chemotherapy, radiation, surgery, targeted and immunotherapy [5].

It has been hypothesised that a small group of cells residing within a tumour are responsible

for tumour initiation and development. These cells; called cancer stem cells (CSCs); arise from

normal stem cells (SCs) that have acquired several mutations, due to their extended life span as

compared to differentiated cells [6]. Dysregulation of pathways controlling SCs are seen in

CSCs, which lead to exponential cell proliferation, evasion of apoptosis, infinite replication

capacity, angiogenesis, metastasis and immune response evasion [7]. CSCs have been identi-

fied and characterised using various biochemical assays and techniques. Lung CSCs with

tumorigenic potential have been identified [8]. They can be characterised and isolated using

CSC identification methods [9, 10]. Due to the identification of CSCs in lung cancer it has

become apparent to re-evaluate and develop target specific therapies for lung cancer. Evidence

suggests that conventional therapies fail in complete cancer eradication due to lung CSCs and

their abilities of drug efflux, treatment resistance and metastasis.

Photodynamic therapy (PDT) is a low cost, minimally invasive therapeutic model that has

previously been used for lung cancer treatment. PDT uses a non-toxic photochemical dye/

photosensitizer (PS) that is administered orally or intravenously and absorbed by the cancer.

The dye localises in the cellular organelles, whereby upon activation by light at a specific

wavelength causes cell death [11, 12]. Even though PDT has shown many successes treating

lung cancer [12], there are still some complications that need to be addressed such as photo-

sensitivity and low tumour selectivity [13]. New advancements addressing the complications

seen in PDT have been made by developing a PS that is cell specific which can target CSCs in

particular by using immunoconjugates and carrier molecules in the form of antibodies (Abs)

and nanoparticles (NPs), respectively.

2. Cancer

2.1. Cancer

Malignancy or cancer is a term used for diseased cells. These cells characteristically evade cell

death through rapid proliferation and can metastasize by travelling through the blood and

lymphatic systems invading distant tissues [14]. Collectively, cancer has more yearly fatalities

than diseases such as AIDS, tuberculosis and malaria. According to the International Agency

for Research on Cancer the most frequently diagnosed cancers were lung (1.8 million, 13.0% of

the total), breast (1.7 million, 11.9%), and colorectal (1.4 million, 9.7%). The most prevalent

cancer-related fatalities included lung (1.6 million, 19.4% of the total), liver (0.8 million, 9.1%),

and stomach (0.7 million, 8.8%) malignancies. Population growth and ageing affects the cancer

related outcome. By 2030, it could be expected that there would be 27 million cases of cancer,

17 million cancer deaths annually and 75 million persons living with cancer within 5 years of

diagnosis [1]. Cancer arises from progressive transformation of normal cells that encounter
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genomic damages leading to mutations in their DNA sequence. Corruption of the DNA can be

endogenous caused by errors in replication of DNA, the intrinsic chemical instability of certain

DNA bases or from attack by free radicals generated during metabolism. Exogenous DNA

damage can be caused by ionising radiation, UV radiation and chemical carcinogens.

Although cells have the ability to repair unwanted changes in the genome, errors may occur

leading to permanent mutations. Errors such as inactivation of regulatory genes maintaining

genomic integrity facilitate additional mutations [15].

Tumorous cells can overpower their normal functioning neighbouring cells eventually forming

a tumour as it overcomes normal regulation of cell growth leading to clonal evolution [2].

Neoplastic cells are self-sustainable, making them able to relocate to any space of the body and

multiply. This is due to activation of certain enzymes, specifically telomerase, which is nor-

mally active only in SCs. Telomeres control cell death by shrinking during every mitoses until

the cells eventually die. Therefore cancer cells are able to evade cell death through up regula-

tion of telomerase as it avoids telomere shrinkage, preventing it from shortening leading to

elongated telomeres. In addition, telomerase can prevent cell senescence and apoptosis [16].

Cancer classification is based on their tissue type and origin. Carcinomas encompass more

than 80% of all cancer cases. These are cells that are epithelial in origin, and usually include

breast, colon, prostate and lung. Carcinomas are subdivided into adenocarcinoma and squa-

mous carcinoma [3].

2.2. Lung cancer

Lung carcinomas are neoplastic cells showing unrestrained development of mutated lung cells

that are formed in the lung tissue lining the air passages. The mutated cells divide rapidly

leading to tumour formation. As tumour formation progress, the numerous abnormal cells

start undermining the lungs primary function preventing the lungs from providing the blood-

stream with oxygen. Lung cancer can be categorised into two broad groups namely: Small cell

lung cancer (SCLC), which is characterised by its neuroendocrine appearance. It encompasses

15% of lung cancer cases. Non-small cell lung cancer (NSCLC), accounts for the remaining 85%

of cases. It is classified into subtypes including: adenocarcinoma (38.5%), squamous cell carci-

noma (20%), and large cell carcinoma (2.9%). 52% of Patients have a 5 year expectancy when

diagnosed with localised disease. Over 52% of patients with distant metastasis at diagnosis

have a 5-year survival rate of 3.6% [17].

Regulatory circuits maintaining normal cell proliferation and homeostasis have defects in lung

carcinoma. A multistep transformation is followed from a normal lung cell to malignant lung

cancer phenotype, altered by a series of genetic and epigenetic modifications, leading to

aggressive cancerous expansion. Subsequent to the primary cancer development, constant

addition of genetic and epigenetic abnormalities follow during cancer proliferation, leading to

tissue invasion, metastasis, and resistance to conventional therapies. Cancer prevention, early

detection and treatment rely on the identification and characterisation of these molecular

changes. Information on tumour characteristics and genetics will significantly advance prog-

nosis and ideal treatment selection [18].
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Contributing carcinogenic risk factors for lung cancer include: smoking, passive smoking and

radon; occupational exposures such as asbestos; inhalation of corrosive chemicals like cad-

mium, silica and vinyl chloride; and long-term and accumulated exposure to air pollution.

Lung cancer can also be congenital, where family history of lung cancer increases the risk of

development [4].

Therapeutic modalities for NSCLC include: surgery, radiofrequency ablation (RFA), radiation

therapy, chemotherapy, targeted therapies and immunotherapy. Therapeutic options depend

on the cancer stage, patient’s health and lung function and cancer characteristics. Treatments

used for SCLC include: chemotherapy, radiation, surgery and palliative care. Surgery is less

likely to be a primary treatment for SCLC as by the time diagnoses are made it would have

metastasised [5].

3. Cancer stem cells

3.1. The CSC hypothesis

It is hypothesised that tumour development and progression is maintained by a small subset of

cancer cells having SC characteristics. These CSCs are capable of self-renewal and differentiation,

playing a significant role in malignant proliferation, invasion, metastasis, and tumour recur-

rence. Cancer cells have accumulated several mutations during their cell cycle, acquiring signif-

icant characteristics called the hallmarks of cancer. These specific traits include evasion of growth

signalling pathways impeding proliferation, anti-apoptotic functions, infinite replication capac-

ity, angiogenesis and metastasis with distant organ invasion, as well as immune response

evasion. In order for a cell to acquire these mutations, its cell cycle needs to be longer than that

of somatic cells. Cells that are maintained throughout an organism’s lifespan are adult SCs,

making them susceptible to neoplastic conversion [19]. SCs divide either symmetrically produc-

ing two daughter SCs, or asymmetrically producing one progenitor and one SC, having the

ability to differentiate into multiple cell types while self-renewing and overcome senescence [6].

Dysregulation of the pathways maintaining SC function can lead to uncontrolled cell division

and differentiation leading to CSC formation and tumour progenitors [7]. A major pathway

involved in cell cycle proliferation and arrest is Wnt-β-catenin, which promotes SC renewal by

signalling transcription genes. [20]. SC self-renewal is regulated by Notch signalling [21]. The

Sonic Hedgehog (Shh) pathway promotes SC proliferation, activating various SCs [7]. Studies

have found that these signalling pathways are not always activated in normal SCs but rather in

CSCs where the genetic programs governing self-renewal are stimulated in SCs when the need

for rejuvenation and repair arises where as in CSCs it is differentially active [22].

3.2. CSC identification and characterisation

Improved identification and isolation of CSCs will lead to enhanced studies on CSCs and

targeted therapies. To date, various methods have been implicated in this regard, having

different levels of success in common malignancies [23].
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First identification of CSCs where made by Bonnet and Dick in 1997, who identified an

arrangement of stem like cells that simulated the normal hierarchy of haematopoietic SCs.

They identified rare carcinogenic cells in human acute myeloid leukaemia (AML) that was able

to repopulate the entire original disease over serial transplantations. The subpopulation

characterised by CD34 +ve and CD38 �ve had the capacity to self-renew and differentiate

[24]. This study formed the basis for CSC research in both hematologic malignancies and solid

tumours. Breast CSCs from a solid tumour was first identified by Al-Hajj et al., using CD44

and CD24 markers [25]. Since then, CSCs have been identified in a variety of solid tumours,

including lung cancer [26, 27]. Common characteristics from these different tumour types are

shared between the isolated CSCs. Characteristics include drug resistance, propagation of

tumours, and asymmetric division. CSCs can be isolated and characterised by means of the

following methodologies: isolation using CSC-specific cell surface markers by flow cytometry

[28]; detection of side-population (SP) phenotypes by Hoechst 33,342 exclusion [29]; assess-

ment of aldehyde dehydrogenase (ALDH) activity [30]; characterisation by tumourigenicity

evaluation [31] and stem-ness gene expression and transcriptional factors [32].

3.3. Lung CSCs

Lung cancer’s ability to recur, regardless of putative treatment, proposes that a small popula-

tion of the disease contain the capacity for self-renewal and regeneration. This sub/side popu-

lation (SP) of CSCs portray tumorigenic potential. With therapeutic targeting, treatments may

have the potential to eliminate tumour recurrence [8].

The lung being highly compartmentalised, have led to various epithelial cell types being labelled

as presumed lung precursors due to their stem/progenitor cell-like responses to injury. The

behaviours and characteristics of these cells also include repopulation of injured tissue. Cell type

AEC2 have been characterised as a limited, epithelial progenitor for the alveolus, as they are said

to be the progenitor of AEC1, which is involved in gas exchange in the alveolus. Studies have

indicated that the bronchio-alveolar stem cell (BASC) a less differentiated cell located in the

bronchio-alveolar duct junction act as an injury-responsive, limited progenitor for the distal

airway-alveolar epithelium. BASCs have been implicated in lung cancer tumour genesis due to

their overexpression of oncogenic K-ras and rapid proliferation by K-ras signalling. Clara cell

and AEC2 markers are found in tumour formation of BASCs that have been expressing long

term activation of K-ras, both Clara cell secretory protein (CCSP) and surfactant protein C (SP-C)

have been identified respectively. Studies have indicated that cancer cells portraying a distinctive

combination of the clara cell and AEC2 markers present in BASCs can be isolated from lung

tumours. Supporting evidence shows that BASCs constituting of these double positive tumori-

genic cells may be responsible for adenocarcinoma development. Along with BASCs and AEC2

being exceedingly receptive to proliferative stimuli, they show resistance to cell damage and

injury by expanding within the epithelium following lung tissue damage and repair. These

characteristics are critical for both normal tissue and CSCs. As injury resistance of these cells in

lung cancer, could serve as a stem cell-like reservoir for generating additional tumours [19].

Lung CSCs can phenotypically be identified and characterised using CSC identification

methods. One such method includes the SP phenotyping where efflux of Hoechst 33,342 dye
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is measured due to the differential ability of the cancer cells imparted by the ATP-binding

cassette family of transporter proteins present on the cellular membrane [9]. Increased ALDH

activity is connected to cellular drug resistance, through detoxification of cytotoxic agents and

oxidation of retinol to retinoic acid. It is also involved in early SC development and can be

used as a reliable CSC marker [8].

Lung CSCs can also be tested for up regulation of SC genes. In a study conducted by Zakaria

et al. they investigated CSCs isolated from lung cancer cell lines expressing SC transcription

factors Sox2, Oct 3/4, Nanog, c-Myc, and Klf4. Gene expression in the lung CSCs were com-

pared to the expression levels in normal SCs (PHBEC). Sox2, Oct4, c-Myc, and Klf4 were all

detected and up-regulated in the CSCs. Currently, specific cell surface markers derived from

the surface markers known to be present on normal haematopoietic or embryonic SCs are used

to identify and isolate CSCs. For lung CSCs, CD133, CD166, EpCAM, CD90, and CD44 have

been used as markers [10].

4. Photodynamic therapy

4.1. Fundamentals of PDT

PDT is a low cost, clinically approved, minimally invasive therapeutic procedure that can exert

selective cytotoxic activity toward malignant cells. The procedure involves administration of a

photosensitizing agent followed by irradiation at a wavelength corresponding to an absor-

bance band of the PS. In the presence of oxygen, a series of events lead to direct tumour cell

death, damage to the microvasculature and induction of a local inflammatory reaction [11].

Molecular oxygen (O2) is the terminal electron acceptor of the mitochondrial electron transport

chain performing aerobic respiration. In the mitochondrion oxygen serves as an electron accep-

tor [33]. During PDT a photochemical reaction uses the free O2, generating a highly reactive

product termed singlet oxygen (1O2) and reactive oxygen species (ROS) which can rapidly cause

significant toxicity leading to cell death via apoptosis or necrosis. Ground state/molecular oxy-

gen has two unpaired electrons residing separately in the outermost antibonding orbitals.

Depending on the electron configuration there are three possible states for O2, the ground state

of oxygen is called a triplet state 3O2. Singlet oxygen is produced when undergoing photo-

oxygenation, by inverting the spin of one of the outermost electrons (Figure 1). This type of

oxygen is highly reactive and is the predominant cytotoxic agent produced during PDT [34].

A PS or photosensitizing agent is a chemical compound that can be excited by monochromatic

light having a specific wavelength matched to an absorption peak of the administered com-

pound. The excited PS subsequently transfers energy to a chosen reactant. This is commonly

molecular oxygen [35, 36]. PSs commonly used in cancer are based on the tetra-pyrrole

backbone simulating protoporphyrin found in haemoglobin. Naturally occurring tetra-pyrrol

structures are found in haem (porphyrins), chlorophyll and bacteriochlorophyll. Synthetically

synthesised tetra-pyrroles include phthalocyanines. As pyrrole-ring double bonds are succes-

sively reduced starting in porphyrins and going to chlorins and bacteriochlorins, the Q-band
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moves to longer wavelengths and increases in size as seen in Figure 2 [37]. Indicating that the

structure of the PS has an influence on absorbance bands.

Efficient PSs should have a strong absorbance peak ranging from 600 to 800 nm in the deep-red

to near-infrared (NIR) spectral region, which will allow for tissue penetration, as penetration

tend to increase with wavelength. However, wavelengths longer than NIR are avoided, due to

having a lower frequency and delivering too little energy for sufficient oxygen excitation.

Ideally a PS should have suitable photo-physical characteristics. It should have a high-

quantum yield of triplet formation (ΦT ≥ 0.5), a high singlet oxygen quantum yield (ΦΔ ≥ 0.5),

a relatively long triplet state lifetime (τT, μs range), and a high triplet-state energy

(≥94 kJ mol�1). Low dark toxicity and negligible cytotoxicity in the absence of light. Preferen-

tial accumulation in diseased/target tissue over healthy tissue. Rapid clearance from the body

Figure 2. Tetrapyrrole absorption spectra showing porphyrins, chlorins, bacteriochlorins, and phthalocyanines [37].

Figure 1. Molecular orbital diagrams showing the electron distribution in triplet and singlet oxygen [34].
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post-procedure, to decrease side effects. High chemical stability: single, well-characterised

compounds, with a known and constant composition. Soluble in biological media as effective

PSs tend to be relatively hydrophobic compounds that rapidly diffuse into tumour cells and

localise in intracellular membrane structures such as mitochondria and endoplasmic reticulum

(ER). It should produce a marked inflammatory response via apoptosis, causing an immuno-

genic effect against cancerous cells [36, 38].

Light source and light delivery are fundamental aspects in PDT. The light source depends on

tumour location and the PS used. To date visible light ranging from 400 to 900 nm has been

used in PDT. It has been noted that longer wavelengths in the visible red spectrum ranging

between 600 and 810 nm are preferred due to optimum tissue penetration as well as PS

structure mediating the use of red-shifted light. Historically PDT depended on low intensity

lasers for a light source due to their valuable characteristics of monochromaticity, coherence,

directionality and low power output (<100 mW), which removes the variable of heat that

might have an influence on PDT. Lasers emit narrow beams of intense electromagnetic radia-

tion that is monochromatic giving access to the wavelength region for excitation of PSs [37].

Coherence and directionality is correlated to the laser beams’ divergence property. This is a

qualitative measure of the laser irradiation to remain concentrated over a distance. Another

important factor in choosing the light source is the fact that tissues have various optical

properties depending on their bio-components. Tissue can both absorb and scatter visible

light, this tend to decrease as the wavelength used increases [39].

4.2. Mechanisms of PDT

Three fundamental components act simultaneously in PDT (Figure 3): molecular oxygen, a

light source and a PS. None of these is individually toxic.

During PDT, when a PS is absorbed it is still in its ground singlet state. A PS reaches its first

excited singlet state through wavelength specific light activation. This first excited singlet state

is unstable and can either deteriorate through energy loss by emitting fluorescence or, it can

reach its excited triplet state accomplished through intersystem crossing of molecular oxygen,

which is long lived and more stable [40] (Figure 4). In solution, intersystem crossing is

increased by the probability of the presence of paramagnetic species such as molecular oxygen.

When the PS reaches its excited triplet state it can follow two pathways. These pathways are

named Type I and Type II reactions.

Figure 3. Fundamental components of PDT.
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Type I reactions generate ROS, whereby adjacent biomolecules (i.e. lipids, proteins, and nucleic

acids) and the PS in its excited triplet state undergoes an acid-base reaction transferring

hydrogen ions. Depending on the target molecule, i.e. lipids, proteins, or nucleic acids, free

radicals and radical ions are generated that then react with oxygen forming ROS [41] (Figure 5).

Type II reactions are based on a phenomenon called triplet–triplet annihilation. This involves

the production of highly reactive singlet oxygen which is also extremely cytotoxic. Singlet

oxygen is generated through the PS in its excited triplet state reacting with ground state

molecular oxygen [41] (Figure 6).

Type I and II reactions happen simultaneously. The oxygen species generated between the

two reactions depend on the components, i.e., the PS and amount of oxygen available to

react with as well as PS localization in the biomolecules. Type II is considered the primary

mechanism of cell death due to singlet oxygen generation. ROS and singlet oxygen have a

high reactivity and short half-life, affecting only the biomolecules the PS had localised in or

are close to the region where these species are generated, usually within a 20 nm radius. PS

localization promotes selective sensitization and is therefore a primary factor in drug release

studies to target tissues [41].

Figure 4. Activation of a PS in its ground singlet state to its excited triplet state via light activation and intersystem

crossing with molecular oxygen.

Figure 5. Type I reaction in PDT.
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4.3. PDT and lung cancer

Currently PDT, alone or as an adjunct therapy is increasingly being used to treat thoracic

malignancies. Effects exerted include both apoptosis and necrosis, damage to tumour vascula-

ture as well as inducing an inflammatory reaction. It does not lose efficacy with repeated

treatments and allow for combination treatment [42].

Porfimer sodium is the PS most commonly used to treat lung and other thoracic malignancies.

It has been approved by the US Food and Drug Administration (FDA) for cases of NSCLC

where standard therapies are not appropriate and to palliate symptoms from airway obstruc-

tion [43]. It is also reported to be a safe and effective neoadjuvant treatment, where it has been

reported to significantly decrease tumour size, convert tumour operability and improve com-

plete surgical resection [12]. Over the past decade, prospective clinical studies evaluated a

variety of PSs, in treating early and advanced stage NSCLC. Early-stage disease had a com-

plete response range from 72% to an impressive 94 and 100%. Advanced disease, local control

and partial response ranged from 78 to 100%, respectively [12]. Key indications for the use of

PDT to treat lung cancer include: Intraoperative PDT by transthoracic or thoracoscopic irradi-

ation after tumour resection and complete removal of the macroscopic disease, where the

margins in the surgical bed are illuminated before wound closure to treat undetected viable

cancer cells, which could lead to a reduction in local recurrence [44]. Interstitial PDT, where

intra-tumor light delivery is required to activate the PS, using image guidance and treatment

planning, when the tumour is deep-seated and larger than 1 cm [45]. Definitive PDT treatment

where indication includes early stage, superficial, and centrally located endobronchial NSCLC

tumours, where the treatment option used is admittance of the PS and activation through

bronchoscopic irradiation [12].

PDT has shown to be a safe and minimally invasive therapy designed as an anti-cancer drug,

but still have room for improvement. Current PSs lack sufficient tumour selectivity which may

result in uptake of the PS in non-cancerous tissue that can lead to adverse effects [46]. Another

major trial in medicine today is drug delivery, this includes PDT. When administering a PS it is

taken up by the blood and lymphatic systems, which can lead to photosensitivity [13].

Figure 6. Type II reaction in PDT.
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5. Targeted PDT

5.1. Immunotherapy and PDT

Photoimmunotherapy (PIT) actively and specifically targets antigens via monoclonal anti-

bodies (MAb) or antibody fragments (AbFs) used for drug delivery. PIT uses a PS conjugated

to an Ab against a tumour, tumour associated (e.g. CSC) or tumour vasculature antigen [47].

Some of the advantages seen in PIT, compared to conventional cancer treatment such as

chemotherapy/chemo-immunotherapy, is that during laser activation of the Ab-PS conjugate

there is cell specific cytotoxicity of cancerous cells sparing the surrounding healthy tissue.

Additionally PIT is neither immunosuppressive nor does it have an affinity for rapidly divid-

ing cells, making it less likely to develop treatment induced resistance due to neoplastic cells

up regulating alternative or circumventive pathways commonly seen in chemotherapy [48].

PIT has shown to be effective in various studies conducted on cancer using a variety of MAbs.

This includes a study conducted by Savellano et al., where they conjugated a clinically

approved benzoporphyrin derivative (verteporfin) to the anti-EGFR MAb cetuximab. Results

showed that conjugated verteporfin had an affinity for EGFR-overexpressing A431 epidermal

carcinoma and ovarian cancer cells, killing them via PDT mediated mechanisms, whereas free

verteporfin exhibited no specificity [49]. In another PIT study they explored the effectiveness of

PIT on metastatic lung carcinoma in vitro and in vivo using a mouse model. IRDye700DX is a

silica-phthalocyanine dye that is extremely hydrophilic. It has an excitation wavelength of

690 nm which is NIR, allowing for enhanced tumour penetration of light. IR700 conjugated to

MAbs showed in vitro results of target cell specificity with little to no toxic effects on non-target

adjacent tissue. Targeted cells demonstrated cell membrane rupture within minutes of expo-

sure to NIR-light activating the Ab-PS conjugate [50, 51]. In vivo experiments using

trastuzumab-IR700 was used to treat early-stage lung metastases in a murine model. Results

indicated specific binding, rapid induction of necrotic cell death, target specific cell death and

prevented metastasis by target-specificity [52].

5.2. Nanomedicine and PDT

NPs are biomolecules synthesised for drug delivery and is used in nanomedicine today.

Incorporating nanostructured drug delivery systems of PSs conjugated to NPs may have

advantages that include improvement of transcytosis across epithelial and endothelial barriers,

optimise delivery of low water soluble PSs and co-delivery of PSs into cells [41]. Other advan-

tages of using PS-NP conjugates are defence against enzymatic degradation, controlled PS

release into cancer cells, its small size allow for cellular penetration, NPs are biocompatible

and photos table [53]. NPs can be classified according to their composition, morphology or

structure [54]. Covalently binding the PS to the NP can enhance delivery of the PS to cancerous

cells, as well as increase singlet oxygen production [37].

NPs are susceptible to engulfing by macrophages after intravenous administration. This can be

overcome by polyethylene glycol (PEG) coating, enhancing bloodstream circulation time and
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allowing for tumour accumulation. Studies have showed encouraging results for the use of PS-

NP conjugates, whereby different compositions of NPs have been proposed [55]. One such

study indicated that the use of dendrimer phthalocyanine (DPc)-encapsulated non active

polymeric micelles have been successfully used both in vivo and in vitro treating human and

subcutaneous mouse lung adenocarcinoma A549. Both experimental systems had a significant

increase in PS-NP conjugate PDT efficiency as compared to PDT alone, where mitochondrial

localization was observed [56]. Another method of enhancing PDT is by improving on the

conjugation methods for PSs and NPs. Instead of using PS-NP encapsulation, PS-NP conjuga-

tion can be achieved through covalent binding [57]. One NP in particular that can be applied

by covalent bonding of PSs to its surface is gold-NPs (Au-NPs). Au-NPs has enhanced surface-

plasmon resonance (SPR) effects due to the non-linear optical fields found in metal NPs being

very close [58]. Au-NPs have good biocompatibility, versatile surfaces, and unique optical

properties [59], whereby their optical field can be enhanced by the SPR by changing the shape

of the NP specifically to a ring [60]. Studies have conjugated Au-NPs to Abs, for specific cell

surface receptor targeting, in anti-cancer treatments whereby the use of NIR-light produced

photo-thermal heat destruction. Results showed a significant increase in apoptosis induction

as compared to unconjugated NPs [61]. A drawback in using Ab-NP conjugates alone for

cancer treatment was that to induce photo-thermal heat destruction a high power density laser

had to be used. This led to unselective damage of normal tissue in the laser path surrounding

the target of interest [62]. However, cancer cell death induction using TPDT requires low

power lasers that are efficient in activating the PS avoiding destruction of normal tissue.

Coating the NP with polyethylene glycol (PEG) have also enhanced conventional methods of

Ab conjugation to NPs that led to poor orientation of the functional group of the Ab. NP

PEGylation allows for covalent attachment of an Ab to the outer end of the PEG chain, thus

maintaining availability of Ab binding sites to cell surface receptors. Studies using this method

of Ab conjugation showed efficient internalisation into cancerous cells [63, 64]. TPDT involves

Figure 7. TPDT using a PS-Ab-Au-NP (PEG) conjugate.
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the use of either/both an Ab or NP conjugated to a PS. The mechanisms still follow Type I and

Type II reactions (Figure 7).

6. Conclusion

Despite intensive research and development of therapies, lung cancer still remains a primary

contributor to cancer related deaths, with survival rates of patients diagnosed being dismal.

Prompt diagnosis and effective treatment will radically improve patient outcome. Due to late

diagnoses of lung cancer, conventional therapies show to be ineffective [18]. Lung cancer

initiation and progression mechanisms have been identified that will be able to drive future

research on molecular and biological targets. Conventional therapies are limited by drug

resistance. Characterising and evaluating the mechanisms as well as lung CSCs leading to the

acquisition of drug evasion, can aid in the development of therapies that will combat thera-

peutic resistance [65].

According to the CSC hypothesis, these cells are involved in tumorigenesis. This is because of

their stem-cell like abilities that include indefinite self-renewal, slow replication, intrinsic

resistance to chemotherapy and radiotherapy, and an ability to give rise to differentiated

progeny. Studies have been able to identify CSCs in various cancers, including lung. Lung

CSCs have been phenotypically identified using bio-markers typically expressed by normal

SCs. Some of the markers include CD133, CD166, CD44 and ALDH1. Molecular pathways

regulating SC proliferation, differentiation, and apoptosis are found to be active in CSCs as

well, all giving rise to CSCs unique capability of drug evasion and metastasis or cancer relapse

[66]. Due to conventional therapeutic strategies only targeting rapidly dividing cells

destroying the bulk of the tumour, complete eradication of rare CSCs also need to be

addressed. Therapies that aim to identify CSCs and overcome drug resistance due to CSCs

having increased levels of efflux pumps need to be developed [27].

A potential therapy that can be advanced to treat CSCs is PDT. PDT involves the use of a

nontoxic PS that localises in cellular organelles and when activated using light of a specific

wavelength, reacts with oxygen to form free radicals leading to cell death. PSs have an affinity

for malignant cells, inducing apoptosis via caspase reactions, mitochondrial damage and

cytochrome c release. Unlike chemo and radiation inducing cell death via DNA damage.

Another advantage of PDT is that cells that become resistant to chemo and radiation does not

cause cross-resistance to PDT and there is no toxic accumulation [67]. Several modes of clinical

PDT application has been defined, pertaining to localization and tumour density, as these

factors play a role in PDT efficacy. One mode of concern is interstitial PDT, which is used on

tumours larger than 1 cm in size [45]. This mode of PDT which is indicated for multicellular

tumours has been explored previously in vitro. The efficacy of PDT concerning a monolayer as

compared to multicellular spheroids indicated that spheroids are more resistant to PDT,

however this can be overcome using a dose dependent manner of inducing cell death [68].

Although PDT has successfully been used to treat lung cancer a major pitfall still include low

tumour selectivity, especially in a scenario where the lung cancer’s genomics are predisposed

to malignant metastatic tumours [42].
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PIT uses a PS conjugated to and Ab allowing for cell specific cytotoxicity and does not

develop treatment induced resistance. Interest has grown in the biomedical field for the use

of NPs as a drug delivery vehicle specifically Au-NPs, due to their biocompatibility, high

surface area and functionalized facile surface supporting self-assembly of thiolates [69].

Au-NPs can be synthesised to a structure supporting absorption in the far red to NIR

wavelength. The combination of using an Ab-NP conjugate allows for all the significant

contributions and advantages to be applied in one treatment, TPDT, having improved cell

specific targeting as well as allowing significant accumulation of PS in the tumour site by

using Abs to direct the PS to CSC specific markers for example, and NPs enhancing PS

uptake that can increase singlet oxygen yield and effective cancer/ CSC death. Results indi-

cate that TPDT might prove to be a promising treatment modality for lung cancer and

targeting lung CSCs. As TPDT can be used as a primary or adjuvant therapy for lung cancer

depending on the morphological state and tumour localization. Targeted PDT can lead to

complete cancer eradication and prevent cancer relapse by destroying the bulk of the tumour

as well as targeting the underlying CSCs. Improving the overall survival rate of patients

diagnosed with lung cancer as well as increase quality of life through minimal side effects

when receiving treatment.
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