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Abstract

Several environmental contaminants including toxic trace metals are being discharged 
into the coastal environment causing serious threat to marine organisms and posing 
public health risk. Marine bivalves (mussel, oyster, and clam) have been successfully 
used as sentinel organisms for monitoring contaminant levels, including trace metals, in 
coastal waters around the globe. Chemical analyses measure the contaminants present 
in the biota but do not necessarily reveal potential biological effects. Therefore, the need 
to detect and assess the effects of contaminants, especially at low concentrations, has 
led to the development of molecular markers of contaminant effects called biomarkers. 
Owing to their short time of response, biomarkers in marine bivalves are used as early 
warning signals of biological effects caused by environmental pollutants. Research into 
the development and application of accurate biomarker-based monitoring tools for the 
environmental contaminants has been intensified in several developed countries.

Keywords: bivalves, bioaccumulation, biomarkers, trace metals, mussel watch

1. Introduction

Marine pollution is a major problem that has negative effects on the ocean’s ecosystems. 
Economic developments and urbanization are taking place at an accelerated rate in the coastal 

zones across the world, putting enormous pressures on coastal waters and marine habitats. 
Incidents of coastal and marine water pollution have increased throughout the world, mainly 

due to discharges from rivers, increased surface run-off, drainage from expanding port areas, 
oil spills, discharges from shipping activities, and domestic and industrial effluent discharges. 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Most of the world’s wastes around 20 billion tons per year end up in the sea, often without 
any preliminary processing.

Trace metals are introduced into the coastal waters through natural process and anthropogenic 
activities. The natural process includes river discharge, rock weathering, wind-generated dust 
from arid and semi-arid regions of the continents, and hydrothermal circulation at mid-ocean 

ridges. The anthropogenic sources of metals include agriculture, fossil fuel extraction, refining 
and burning, chemical production, and intentional and accidental discharges. Trace levels of 
trace metals naturally occur in the marine environment, and many of them at low concentra-

tions are essential for marine life. However, if their concentrations exceed the natural levels, it 

will cause a serious threat to marine life. Monitoring and assessment programs are routinely 

conducted in the coastal waters for planning and implementing mitigation measures to control 

trace metal pollution. Historically as one of the simple and widely used monitoring techniques, 

sampling, and analysis of seawater and sediment are being employed for estimating the levels 

of contaminants including trace metals in coastal waters. Instead of using water or sediment 

samples, tissue concentrations of contaminants in marine organisms, especially bivalves, are 

being used as a reliable method for assessing the coastal water quality since 1960s [1–4].

Most of the marine bivalves such as mussels, oysters, and clams are commercially important 

groups, and several of them are being used for coastal farming around the globe and as popu-

lar seafood. Since late 1960s and early 1970s, bivalves such as mussels were used for biomoni-
toring trace metals in coastal waters [3, 5]. In biomonitoring, tissue burden of trace metals in 

marine organisms are analyzed, and the biological responses of organisms are measured to 

assess changes in the environmental quality caused by toxic contaminants [6–8]. This chapter 
will attempt to provide an overview of the basic concept, methods and the present status of 
the biomonitoring of trace metals in the coastal waters using bivalve molluscs.

2. Why bivalves

Generally, bivalves are suspension feeders or deposit feeders, or even utilize both feeding 

methods. They feed on microscopic algae, bacteria, and detritus through filter feeding pro-

cess. They draw water from the posterior ventral side through the inhalant siphon, and the 
water passes through the gills and gets expelled through the exhalent siphon. In this process, 

they filter large quantities of seawater, and the water filtering capacity of typical natural mus-

sel beds has been calculated as 7–12 m3, m−1, h−1 [9, 10]. One single adult blue mussel pumps 

around 50 ml of seawater per minute during active feeding [11]. As bivalves filter large quan-

tiles of seawater, their tissues absorb some of the contaminants present in water and food 

particles. Bivalves accumulate trace metals from the surrounding aquatic medium across the 

cellular membrane (dissolved source) and from the food materials (dietary source) [12].

Historically, bivalve molluscs are considered as valuable marine organisms for environmental 

monitoring and used as biomonitors of chemical pollution of coastal waters [3, 5, 13]. Bivalves 

are widely distributed from the North Pole to the South Pole, sessile in nature, and easy to sam-

ple and available in a suitable size for chemical analysis. Bivalves are also resistant to a wide 
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range of contaminants and may thrive even in highly polluted environments [3, 14]. These 
qualities make them a group of candidate species for biomonitoring programs across the globe. 

As filter feeders, they bioaccumulate various contaminants and their tissue concentrations pro-

vide a time-integrated picture of contaminants in the environment [15, 16]. It has been reported 

that bivalves accumulate trace metals in their tissues at levels up to 100–100,000 times higher 
than the concentrations observed in the seawater in which they live [5, 17]. Therefore, several 
chemical contaminants, including trace metals, present at undetectable levels in seawater can 

be detected in bivalve tissues. Different species of clams, mussels, and oysters have widespread 
distribution across the continents (Figure 1), and many of those species have been successfully 

used for monitoring the concentrations of contaminants in the marine environment [5].

3. Metal bioaccumulation in bivalves

Cobalt, copper, chromium, iron, magnesium, manganese, molybdenum, nickel, selenium, and 

zinc are essential metals that are required for various biochemical and physiological functions of 

animals [18] while other metals such as aluminum, antinomy, arsenic, barium, cadmium, gold, 

lead, lithium, mercury, nickel, platinum, silver, strontium, tin, titanium, and vanadium have no 

Figure 1. Common marine bivalves and their habitats from the Indian coast. (A) Intertidal rocky area showing green 

mussel beds from the south west coast of India; (B) green mussel Perna viridis; (C) enlarged view of green mussels; (D) 

oyster bed consisting of Crassostrea madrasensis and Saccostrea cucullata exposed during low tide; and (E) enlarged view of 

C. madrasensis and S. cucullata; (E) clam bed consisting of Meretrix casta and (F) enlarged view of the clam Paphia malabarica.

Biomonitoring of Trace Metals in the Coastal Waters Using Bivalve Molluscs
http://dx.doi.org/10.5772/intechopen.76938

155



established biological functions and are considered as non-essential metals [19]. However, the 

essential metals will be harmful to the organisms if their concentrations exceed the natural levels. 

The expert’s group of International Council for the Exploration of the Sea (ICES) and Oslo and Paris 

Conventions (OSPAR) highlighted the trace metals such as arsenic, cadmium, chromium, copper, 
mercury, nickel, lead, and zinc in the marine environment as key substances of concern [20].

Bivalves accumulate both essential and non-essential metals in their soft tissues above 

the background levels in seawater or sediments, and this process is called bioaccumula-

tion. Bioaccumulation is a good integrative indicator of the chemical exposures of marine 

organisms such as bivalves in polluted waters [21]. Trace metals cannot be metabolized by 
organisms, and hence bioaccumulation of trace metals is of particular value as an exposure 

indicator. However, metal bioaccumulation can be complex. The bioaccumulation levels in 
mollusks differ among metals in the same bivalve species and among species [13, 21–23] due 

to the biological role of different metals and to specific strategies of accumulation [23]. In 

addition, the metal bioaccumulation in bivalves depends on the marine environmental factors 

(temperature, pH, salinity, co-occurrence of metals, etc.) and the biological conditions (age, 

sex, sexual maturity stage, etc.) of the species [24, 25].

The gill tissue of bivalves constitutes a key interface for the uptake of dissolved metal ions 
from water followed by the mantle tissue, and the uptake of metals bound to particulate mate-

rial is achieved via the digestive tract, in particular, via the digestive gland [23]. Generally, in 

bivalves, maximum concentrations of metals have been reported in the digestive gland and/or 

gill tissue followed by mantle and muscle tissue [26, 27]. The bioaccumulation of trace metals 
in bivalve tissues is dependent on different metabolic processes occurring within specific cell 
types in target tissues. Metallothioneins (MTs), the low-molecular-weight proteins present in 
organisms including bivalves are involved in the intracellular regulation of metals such as Cu, 

Zn, and Cd [28]. Epithelial cells of gill and mantle can synthesize MT and sequester metals 
into the lysosomes for further transport in circulating hemocytes [29].

4. Bivalves as sentinel organisms

Sentinel organisms accumulate contaminants in their tissues without any harmful effects and 
can be measured in a sensitive manner the amount of contaminants that are biologically avail-

able [30]. Several comprehensive reviews have been published on the use of bivalve molluscs 

as sentinel organisms and as biomonitors of metal pollution [5, 12, 20, 31–35]. These reviews 
and studies provide an in-depth discussion on metal bioaccumulation and metal bioavail-

ability, highlighting the historical usage of bivalves in environmental studies.

Most of the bivalves such as clams, mussels, and oysters, fulfill the criteria required for a typi-
cal sentinel organisms and being successfully used as spatial and temporal trend indicators of 

contaminants in monitoring program from several parts of the world [3, 7, 12, 14–16, 36–39]. 

The tissue concentrations of various toxic trace metals in wild mussel species from various 
regions worldwide are summarized in Table 1. The tissue concentrations ranged from low to 
high values depending upon the environmental status of the study area.
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Country Mussel 

Species

Ag Al As Cd Cr Co Cu Fe Hg Ni Pb Zn Ti Se V Sr Ba Mn Ref.

San 

Francisco 

Bay, USA

Mytilus edulis 

mg/kg dry wt

6.9 4.05 92 4.6 [97, 

98]

Claisebrook 

Cove, 

Western 

Australia

Xenostrobus  

sp. mg/kg wet 

wt

12–61 0.46–
0.75

0.21–
0.27

0.05–
0.17

0.06–
0.16

1.7–
2.2

<0.01 0.22–
85

0.08–
0.52

6–9.6 0.34–
0.57

3.3–

28
[99]

South 

Island New 

Zealand

Perna 

canaliculatus 

mg/kg dry  

wt

5.35–

27.48
0.14–
1.67

2.19–
18.25

0.08–
5.83

0.13–
1.53

45.31–

147.18
[100]

Offshore 
South China 

Sea

Bathymodiolus 

platifrons mg/

kg dry wt

2.6–
25.13

2.16–
6.73

5.89–

10.03
0.78–
4.35

0.81–
1.72

0.1–
0.45

5.53–

42.31
14.28–
56.07

0.42–
1.25

4.41–

4.8

33.76–
79.04

17.98–
45.78

2.69–
4.06

4.5–

8.01
[101]

East coast of 

China

Perna viridis 

mg/kg dry wt

0.01–
0.14

12.64–
20.95

0.48–
5.31

1.51–

10.93
1.45–

28.55
96.62–
1002

1.3–

4.78
0.44–
2.93

66.05–
231

[102]

East Adriatic 

Sea, Croatia

Mytilus 

galloprov­

incialis mg/kg 

dry wt

4–30 1–2.9 3.7–
11.1

53.4–

719
0.8–5 2–7 59.1–

273
2–13 [103]

Adriatic Sea 

(Montenegro 

coasts)

Mytilus 

gallopro­

vincialis  

mg/kg dry wt

4.6–

17.2
128–
603

132–
345

7.3–
85.0

[104]

Tyrrhenian 
Sea (Gulf of 

Gaeta)

Mytilus 

galloprov­

incialis mg/kg 

dry wt

5.5–

11.5

123–
180

[105]

Marmara 

Sea (NW 

coasts)

Mytilus 

galloprovin­

cialis mg/kg 

dry wt

6.7–
9.5

120–
415

208–
320

4.5–

11.7
[106]
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Country Mussel 

Species

Ag Al As Cd Cr Co Cu Fe Hg Ni Pb Zn Ti Se V Sr Ba Mn Ref.

Aegean Sea Mytilus 

galloprovincialis 

mg/kg dry wt

3.5–

5.3

48.6–

49.9

17.8–
28.5

2.6–
4.7

[107]

N Atlantic 

(Spanish 

Gallician 

coasts)

Mytilus 

galloprovincialis 

mg/kg dry wt

3.9–

9.7
159–

351

[108]

Island of 

Gossa (W 

coast of 

Norway)

Mytilus 

galloprovincialis 

mg/kg dry wt

1.3–

1.8

11.0–
11.7

13.3–

15.2
[109]

Spain 

Cantabrian 

Coast

Mytilus 

galloprovincialis 

mg/kg dry 

weight

14.6–

31.5

0.4–
2.3

2.6–
5.7

0.4–
69.3

9.1–

34.8

1.5–

15.4

1.1–

13.3

202.7–
300.8

5.8–

8.7
1.7–
7.1

5.6–

55.3

[110]

N Aegean 

Sea (Strait of 

Canakkale)

Mytilus 

galloprovincialis 

mg/kg dry wt

0.7–
12.9

24.3–
82.0

43.8–

133.5

0.4–
4.8

[111]

Trinidad Perna viridis 

mg/kg wet 

weight

0.01–
0.61

0.06–
0.2

1.02–
1.98

0.03–
0.07

0.3–
0.75

11.3–

40.37
[112]

Venezuela Perna viridis 

mg/kg wet 

weight

0.02–
0.05

0.12–
0.16

1.42–
3.43

0.02–
0.08

0.22–
1.3

8.75–
16.38

[112]

Italy 

Tyrrhenian 
coastal areas

Mytilus 

galloprovincialis 

mg/kg dry 

weight

0.33–
0.49

0.46–
1.31

5.51–

11.5

1.67–
2.49

123–
180

[105]

Black Sea 

(Turkish 
coasts)

Mytilus 

galloprovincialis 

mg/kg dry wt

11.7–
23.3

312–
396

46.9–

73.0
[113]
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Country Mussel 

Species

Ag Al As Cd Cr Co Cu Fe Hg Ni Pb Zn Ti Se V Sr Ba Mn Ref.

Turkey 
Eastern 

Aegean Sea

Mytilus 
galloprovincialis 
mg/kg dry 
weight

0.24–
0.49

0.32–
7.27

2.44–
5.49

0.11–
0.15

0.84–
2.41

75.9–
201

[114]

Italy Venice 

Lagoon

Mytilus 

galloprovincialis 

mg/kg dry 

weight

1.16–

6.59

0.16–
2.75

3.55–

10.8
1.08–
4.27

135–

400
[115]

Brazil Mytella 

guyanensis  

mg/kg dry 

weight

778–
2458

1.44–

23.1
Bdl–

1.42
Bdl–

3.13

Bdl–

611

6.03–
102

Bdl–

1820
Bdl–

0.35
Bdl–

19.4

50.8–
141

Bdl–

49.6

Bdl–

6.93

35.5–

95.8

Bdl–

88.7
30.7–
3520

[116]

India Perna viridis 

mg/kg wet 

weight

0.24–
3.49

Bdl–

0.46
Bdl–

1.84

Bdl–

235.6
Bdl–

2.89
Bdl–

1.95

Bdl–

17.36
1.91–

8.77
[15]

Table 1. Selected trace metal concentrations in the soft tissue of wild mussel species from various regions worldwide.
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4.1. Mussel watch programs

Mussels and other marine bivalves are widely used as sentinel organisms in “mussel watch” 

programs for indicating levels of pollutants in the coastal marine environment due to their abil-

ity to bioaccumulate organic or toxic elements [40]. Under mussel watch program, environmen-

tal contaminants (trace metals, hydrocarbons, pesticides, etc.) accumulated in the soft tissue 

of natural, cultured, or deployed bivalves (clams, mussels, and oysters) collected from a set of 

defined geographical locations over a time-span of several years are systematically and repeat-
edly measured for assessing and comparing the coastal water quality [5, 40–42]. A prominent 

example is the US Mussel Watch Program originally started in 1976 [3, 43] and established as 

the Mussel Watch component of National Oceanic and Atmospheric Administration’s (NOAA) 
National Status and Trends (NST) program during 1986–2012 [44, 45, 46]. In spite of the criti-

cisms and limitations [47], the US mussel watch results made valuable contributions to our 

understanding of trace metal contamination and its biogeochemistry in coastal ecosystems [5].

Project phase and year Study areas Bivalve species List of contaminants References

IMW Phase I (Initial 

Implementation): 

1991–1993

South America, 

Central America, 

Mexico and 

Caribbean

Blue mussels (Mytilus 

sp.) 134 stations

Oysters (Crassostrea 

sp.)–18 stations

Other bivalves–24 
stations

Total Polychlorinated biphenyls 
(PCBs), total Chlordane (CHLs), 

and total HCHs

[5, 117]

IMW Phase II

1997–1999

Asia Pacific 
Region (Japan, 
South Korea, 

Russia, China, 
the Philippines, 

Vietnam, 

Malaysia, 

Cambodia, 

Thailand, 
Indonesia and 

India)

Blue mussel,

(M. edulis), and the 

green mussel (Perna 

viridis).

Total PCBs, dichloro diphenyl 
trichloroethane and its 

metabolites (DDTs), CHLs, 
hexachlorocyclohexane isomers 

(HCHs) and hexachlorobenzene 

(HCB), polychlorinated 

dibenzo-p-dioxins and furans 

(PCDDs/Fs), coplanar PCBs 

(Co-PCBs), Butyltins (BTs) and 
some heavy metals

[38, 

118–121]

IMW Pilot Study—

Black Sea. 1996–1997
Six Black Sea 

Countries 

(Bulgaria, 

Georgia, Romania, 
Russia, Turkey 
and Ukraine).

Blue mussels (M. 

galloprovincialis)- 5–13 

sites

PAHs, PCBs, DDTs [122]

Western 

Mediterranean Basin 

and the International 

Mediterranean 

Commission (CISEM)

Mussel Watch 

program. 2002–2006

The coasts of 
the Western 

Mediterranean 

Basin (Spain, 

France, Italy, 

North Tunisia, 
Algeria and 

Morocco)

Caged mussels (Mytilus 

sp.) deployed at 122 
sites

Heavy metals, chlorinated 

pesticides and PCBs and PAHs

[123–125]

Table 2. Details of the International Mussel Watch (IMW) program conducted from various parts of the globe [5].
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Later, the contaminant monitoring programs similar to mussel watch were implemented 

throughout the world either for monitoring long-term spatial and temporal pollution trends 

covering large marine region containing multiple monitoring stations and several anthro-

pogenic contamination sources [36–38, 48–51] or for monitoring and solving local pollution 

problems covering a small geographical areas [7, 8, 15, 32, 52–58].

The mussel watch program initiated in USA has led to the formation of the International 
Mussel Watch (IMW) Projects [5]. It was initiated by the International Oceanographic 

Commission (IOC) in collaboration with the United Nations Environment Program (UNEP) 

and the US NOAA. Table 2 summarizes the details of the international mussel watch program 

conducted from different geographical locations. Recently, the advantages and limitations of 
the mussel watch concept were discussed 40 years after its inception [5].

5. Biomarkers of exposure in bivalves

Chemical analyses of bivalve tissue samples measure the contaminants present but do not 

necessarily reveal potential biological effects on bivalves. Therefore, biomarkers were devel-
oped to assess the health status of the marine organisms, especially bivalves. Biomarkers are 

the early warning signals about the health status of bivalves exposed to toxic contaminants, 

because a toxic effect or response will be apparent at the molecular or cellular level before it 
is noticeable at higher biological levels. The concept of biomarker is borrowed from medical 
science, which describes a measurable indicator such as blood cholesterol profile connected 
to relevant clinical endpoints like atherosclerosis and heart attack. The biochemical biomark-

ers (acetylcholinesterase inhibition for exposure to neurotoxic compounds, cytochrome P450 
for detoxification of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls 
(PCBs), and the different methods to detect genotoxicity), which are used in marine environ-

mental monitoring are still used in humans [59–61].

During the last decade, several biomarkers sensitive to contaminant exposure and/or impact 

have been developed as tools for use in marine environmental monitoring and impact assess-

ment [7, 8, 62]. During the same time, various monitoring agencies began to focus on locat-

ing the source of contamination and fates as well as the impact as contaminants are usually 

discharged into the coastal waters, especially estuaries, where effects have been most signifi-

cantly detected. The European Union’s Water Framework Directive (WFD) also stressed the 
requirement of monitoring programs to assess the achievement of good chemical and eco-

logical status for all water bodies by 2015 [63]. In the past 30–40 years, numerous biomarkers 
have been developed on bivalve mollusks, especially mussels (see Table 3) with the objective 

to apply them for environmental biomonitoring. Biomarkers based on responses at physi-

ological level, cellular/tissue level, and molecular level of bivalve molluscs are developed 

and recommended as tools for studying the effects of contaminants on field and laboratory 
exposed bivalves, especially mussels [6, 64–66]. Research into the development and applica-

tion of accurate biomarker-based monitoring tools for the environmental contaminants has 

been intensified in several developed countries, and they are using several biomarkers based 
in marine bivalves to monitor the environmental quality of coastal and estuarine waters [20].
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5.1. Physiological biomarkers

The biological indicators of health in bivalves such as Body Condition Index (BCI), stress on 
stress response (SOS), and scope for growth (SCF) have been recommended as broad markers 

of stress caused by either environmental changes or contaminants [59, 64, 67–70]. The stress on 
stress response is a simple test, which measures the mortality rate (time to kill 50% of the sam-

ple) of bivalves when exposed to air [70, 71]. The SOS test examines whether stress caused by 
environmental changes or contaminants have altered the capacity of bivalves to survive under 

adverse conditions such as aerial exposure. The body condition index (ratio between soft tissue 
dry/wet weights to its overall size) is a general indicator of favorable growth conditions as well 

as the overall biological status. The body condition index is routinely used in aquaculture and 
environmental monitoring studies to assess the health condition of mussels [7, 25, 72].

The growth, reproduction, and survival of bivalves depend on the availability of sufficient 
energy reserve in their body. Exposure to contaminants negatively affects the energy balance of 
bivalves due to the high-energy demand for maintaining homeostasis at the expense of growth, 

storage, defense, and reproduction [73]. Fitness of an individual organism can be measured in 

terms of Scope for Growth (SfG), which is the measurement of physiological energy balance 

and it ranges from optimal (positive values) to stressed conditions (negative values) when the 

organism is exposed to contaminants or unfavorable environmental conditions [74, 75]. The 
SFG has been widely used in field monitoring studies [76, 77]. The SFG and the growth rates of 
mussels were drastically reduced when mussels from uncontaminated sites were transplanted 

along known pollution gradients or placed in the most contaminated areas [78, 79].

Group Biomarker name Description References

Bivalve Physiology Body Condition Index (BCI) Assessment of tissue weight in 

comparison with shell cavity volume or 

shell length

[7, 59, 126]

Stress on stress response (SOS) Assessment of survival rate during aerial 

exposure

[71]

Scope for growth (SFG) Measurement of physiological energy 

balance

[59, 76]

Metal-binding 

cysteine-rich 

proteins

Metallothioneins (MTs) Measurement of metal binding proteins 

in tissue samples. Compensatory 

mechanism during exposure to heavy 

metals (Cd, Fe, Hg, Zn, As)

[28]

Cellular Responses Lysosomal membrane stability 

(LMS); lipofuscin and neutral 

lipids accumulation

Assessment of the condition of lysosomes 

and the related cell injury

[7, 8, 61]

DNA integrity 

markers

Micronuclei Assessment of toxic impact on 

chromosomes

[91, 92, 127]

DNA adducts DNA damage assessment [91, 92, 128]

Comet assay Single cell DNA damage assessment [91, 92, 128]

Table 3. List of biomarkers routinely used for monitoring the coastal waters quality using marine bivalves.
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5.2. Cellular biomarkers

The digestive gland cells in bivalves play a key role in digestive and absorptive processes and 
also in the detoxification and excretion of contaminants [80]. The lysosomal system in the diges-

tive cells was identified as the main target site for the toxic effects of most of the environmental 
contaminants including trace metals [81]. Lysosomal responses to cell injury due to contaminant 

exposure or stress caused by environmental changes fall into three categories: (1) changes in 

lysosomal contents, (2) changes in fusion events, and (3) changes in membrane permeability [81].

Changes in lysosomal membrane permeability of bivalves can be measured using the lyso-

somal membrane stability (LMS) test [82–84]. The LMS test can be conducted by using two 
different methodologies: (i) a cytochemical method using cryostat sections of digestive gland 
tissue and (ii) an in vivo cytochemical method using hemolymph cells. Biomarkers such as 

LMS, accumulation of lipofuscin and neutral lipids in bivalves were successfully used for 

coastal pollution monitoring studies [7, 8, 69, 70, 82–84]. Subsequently, different regional 
conventions have recommended the use of LMS as a general stress biomarker of chemical 

pollution within the framework of the pollution biomonitoring programs [67, 68, 85]. The 
proposed integrated assessment approach of contaminants and their effects in the NE Atlantic 
Baltic Sea Action Plan and in the Mediterranean Ecosystem Approach (EcAp) have included 

the LMS in mussels as one of the core biomarkers [86–88].

It has been demonstrated that metallothioneins (inducible low molecular, sulfhydryl proteins) 
levels in the digestive cells of bivalves will be induced after exposure to trace metals such as 

Cd, Cu, and Zn [89]. The induction of metallothioneins (MT) in bivalves has been proposed 
as biomarkers of trace metal stress, and it has been recommended to use in coastal pollution 

monitoring studies [67, 68, 85, 90].

5.3. Biomarkers of genotoxicity

A wide variety of chemical contaminants capable of directly or indirectly damaging the DNA 

of marine organisms are being discharged into the marine environment. These genotoxic 
chemicals are capable of inducing some changes in the molecular and cellular levels of marine 

bivalves [91, 92]. Two well-known tests, micronucleus assay and comet assay, are being 
widely used to assess the genotoxic effects of environmental contaminants on marine bivalves 
[91, 92]. The micronucleus assay is used to detect the structural and numerical chromosomal 
changes while the comet assay (single-cell gel electrophoresis) is used to detect DNA strand 

breaks in marine bivalves.

6. Coastal pollution monitoring using biomarkers a case study

The biomarkers in marine bivalves based on sub-lethal effects of contaminants are ecologically 
relevant and can be used to give subtle signals of response to contaminants before damage 

becomes irreversible. The water quality in European coastal sites was classified ranging from 
class 1 (clean areas) to class 5 (highly polluted areas), based on global biomarker index for 
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Baltic mussels [93]. The Marine Strategy Framework Directive (Directive 2008/56/EC) since 
2008 emphasized on the importance of assessing key biological responses for evaluating the 
health of organisms and linking the observed changes to potential contaminant effects [94].

The studies conducted prior to 1990s from Puget Sound, Washington, reported high concen-

trations of toxic metals, polycyclic aromatic hydrocarbons (PAHs) and PCBs in sediments and 

toxicant-induced, adverse effects in benthic fish samples collected from the urban associated 
sites [95]. As an example of how biomarker-based indices can be integrated into environmen-

tal monitoring of Puget Sound, biomonitoring study using mussels was conducted in 1992 [7]. 

Blue mussels (Mytilus edulis) were collected from their natural beds from nine sites in Puget 

Sound (Figure 2). Sites included the minimally contaminated reference areas of Oak Bay, 

Coupeville, and Double Bluff, in central and north Puget Sound, and Saltwater Park of south 
Puget Sound. Urban sites that were sampled for mussels included Eagle Harbor, Seacrest and 

Four Mile Rock in Elliott Bay, City Waterway in Commencement Bay, and Sinclair Inlet.

Relatively high tissue concentrations of contaminants including toxic trace metals were 
observed in mussels tissue samples from the urban-associated sites compared to the minimally 

Figure 2. Map showing the mussel sampling sites in Puget Sound, Washington [7].
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contaminated (reference) sites (Figure 3). Mussels from contaminated sites showed low LMS, 

enhanced lipofuscin deposition, and increased accumulation of lysosomal and cytoplasmic 

unsaturated neutral lipids (Figure 3). Mussels from the contaminated sites were smaller in 

size together with lower somatic tissue weight relative to shell length [7]. Highly significant 
correlations were observed between tissue concentrations of selected toxic elements (mea-

sures of anthropogenic exposure) and LMS [7]. The study showed that biomarkers in mussels 
have the potential to be used as sensitive, accurate, and rapid techniques for assessing the bio-

logical impact of environmental contaminants in the coastal waters. The study results were in 
agreement with the previous study results, which showed an association between metabolites 

of aromatic compounds in bile and the occurrence of hepatic lesions in English sole (Parophrys 

vetulus) from Puget Sound [96].

7. Conclusion

Commercially and ecologically important marine bivalves (clams, mussels, and oysters) are 

widely used for monitoring levels of trace metals in the marine environment from several parts 

of the world. Trace metal monitoring using bivalves has several advantages compared to using 
seawater or sediment samples for the same purpose. Bivalves such as mussels are having global 

distribution from the polar to the tropical region and being successfully used for temporal and 

spatial trend monitoring of trace metals in the coastal waters across the globe. Recently several 
biomarkers, the biological responses of bivalves to contaminants including trace metals, are being 

developed and tested to assess the coastal water quality. The biomarkers of stress in bivalves 
give early warning signal about the presence of toxic trace metals in the marine environment.

Figure 3. Relationship between lysosomal membrane stability (LMS) and tissue concentration of heavy metals (mercury 

and lead) of mussels from urban-associated and reference sites in Puget Sound [7].
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