
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



Chapter 2

Biochemical, Cellular, and Immunologic Aspects during
Early Interaction between Trypanosoma cruzi and Host
Cell

Rosa Lidia Solís-Oviedo, Víctor Monteon,
Ruth López and Ángel de la Cruz Pech-Canul

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.77236

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

Rosa Lidia Solís-Oviedo, Víctor Monteon, 
Ruth López and Ángel de la Cruz Pech-Canul

Additional information is available at the end of the chapter

Abstract

The close parasite-host relationship involves different aspects such as the biochemical, 
physiological, morphological, and immunological adaptations. Studies on parasite-host 
interaction have provided a myriad of information about its biology and have estab-
lished the building blocks for the development of new drug therapies to control the 
parasite. Several mechanisms for the parasite invasion have been proposed through in 

vivo or in vitro experimental data. Since the first histological studies until the studies 
on the function/structure of the involved molecules, this complex interaction has been 
roughly depicted. However, new recent strategies as genetic and proteomic approaches 
have tuned knowledge on how the host reacts to the parasite and how the parasite avoids 
these host’s reactions in order to survive.

Keywords: Trypanosoma cruzi, immune system, parasite interactions, animal model 
studies, in vitro models, phagocytic, non-phagocytic

1. Introduction

The life cycle of Trypanosoma cruzi comprises several morphological transformations involv-

ing both mammalian and vector hosts, where three different major developmental stages are 
identified: epimastigotes, trypomastigotes, and amastigotes (Figure 1). The developmental 
stages of T. cruzi alternate between non-infective and infective forms. Epimastigote and amas-

tigote are non-infective but replicative stages in the gut of the triatomine vector and inside the 
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mammalian cell, respectively. Trypomastigote stage is infective but non-replicative and can 
also be considered as two different developmental stages: the bloodstream trypomastigotes, 
found in the blood of the mammalian host, and the metacyclic trypomastigotes, found in the 
rectum of the triatomine vector .

T. cruzi is internalized by phagocytic and non-phagocytic nucleated host cells via multiple 
pathways. The first general steps through the interaction process of the T. cruzi and its mam-

malian host cell can be divided into three stages: (1) adhesion/recognition, (2) signalling, 
and (3) invasion [2, 3]. During the adhesion/recognition stage, diverse molecules with cell-
adhesion properties are expressed on the membrane surface of the metacyclic trypomas-

tigotes from of the parasite ; these molecules bind to receptors of the target host cells and 
are able to trigger signals pathway, toward the parasite invasion [4]. That invasive process 
allows T. cruzi internalization and involves the engulfment of the parasite, the formation of 
a T. cruzi parasitophorous vacuole (TcPV) [5], as well as the late disruption and the disper-

sion of the TcPV, thereby the parasite is released to the host cytoplasm where its replication 
and differentiation starts until the infective stage [6, 7]. The aim of this chapter is to discuss 
and to outline the interaction models during the early interaction between T. cruzi and its 

mammalian host cells.

Figure 1. The different stages of Trypanosoma cruzi. The image depicted the amastigote, epimastigote, and trypomastigote 
stages from T. cruzi and their membrane domains: Nucleus (N), Kinetoplast (K), Flagellum (F), Flagellar Pocket (FP), and 
Cell Body (CB). Reprinted with permission from Ángel de la Cruz Pech-Canul et al. [1], Copyright © 2017.
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2. An overview of parasite interaction

One of the first barriers faced by T. cruzi during host cell invasion is the complexity of the 
host defence system. The skin and mucous membranes act as physical barriers which prevent 
penetration by microbes. Undoubtedly, they are the site for multiple and diverse types of 
chemical, physical, and biological contacts. Lipids and proteins are among the main com-

ponents of the innate immune system in these tissues. Lipids comprise linoleic acid, oleic 
acid, squalene, ceramides, and sphingolipids, whereas proteins are more diverse, such as 
keratin on the surface of the skin or the cationic peptides alpha- and beta-defensins produced 
by neutrophils and mucosa tissue, respectively [8]. Furthermore, saliva produced by salivary 
glands of the vector contains a sort of proline-rich proteins and histidine-rich proteins both 
with antibiotic properties, lysozyme, peroxidase, lactoferrin, cystatins, and mucins [9]. Due 
to the rich protein content, both pH and salt concentration play a significant role as inhibitory 
factors during the parasite/host interaction.

The cellular composition of skin and mucous membranes is a fundamental barrier for permis-

sive or refractory colonization/infection. In the skin, the epidermis is composed by 95% of 
keratinocytes and other cells present at low concentration, such as melanocytes, Langerhans 
cells, intra-epithelial lymphocyte, and Merkel cells. Keratinocytes express Toll-like receptors 
(TLRs) 1–6, 9, and 10 which are able to recognize basically all pathogen-associated molecular 
patterns (PAMPs) with exception of flagenin; as a consequence, they can secrete an array of 
mediators such as nitric oxide, leukotrienes, cyclooxygenase, metalloprotease 1 and 9, classi-
cal cytokines IL-1, IL-6, IL-8, TNF-alpha, and chemokines CXCL1 and CXCL8. Keratinocytes 
also express receptors for different cytokines (IL-1, IL-3, TNF-alpha, IL-17, IL-21, IL-22) and 
chemokines (CXCL9, CXCL10, CXCL11, and CCL20). Other skin cells present at low concen-

tration have also a broad array of receptors that are able to respond to physical and chemical 
stimulus. In addition, a dense protein layer is found between epidermis and dermis which is 
composed by collagen type IV, laminin fibronectin, iodogen, and heparan sulfate; together, 
they structure the basement membrane [10]. The cellular composition of dermis is more com-

plex and diverse. Fibroblast, myofibroblasts, macrophages, adipocytes, dendritic cells, mast 
cells, and mesenchymal stem cells are found among resident cells in the dermis (Figure 2), 
whereas transitory cells include lymphocytes, polymorphonuclear cells and monocytes. 
In addition, dermis presents an intricate network of nerves, lymph, and blood system. As 
skin, mucosal tissue has the property to react with a complex array of mediators required for 
immune surveillance and inflammatory response to tissue injury and infection. A remarkable 
differential feature between skin and mucosa tissue is the bias to immune tolerance and anti-
inflammatory response in mucosal compartments [11, 12].

In natural conditions, T. cruzi infection is established when metacyclic trypomastigotes are 
deposited on injured skin or mucosa host tissue by blood feeding triatomine. Thus, metacyclic 
trypomastigotes has to face the above innate immune responses at the portal entry in order 
to survive (Figure 2). Since the pioneer work published by Romaña [13], where a histology 
description was done, limited information on this area of concern exists. It is very critical to take 
into account different factors in the relationship between parasite and host. For example, factors 

Biochemical, Cellular, and Immunologic Aspects during Early Interaction between Trypanosoma cruzi and Host Cell
http://dx.doi.org/10.5772/intechopen.77236

11



as specie of vector are involved in the transmission, inoculum size, T. cruzi phase, portal of entry, 
T. cruzi strain, host immune responses, and microbiota presented in the vector.

3. Specie of vector and Trypanosoma cruzi

Firstly, there are many triatomine vector species that transmit the Chagas disease. Some of 
them have a wide geographical distribution and others are confined to restricted geographical 
areas. However, all of them can transmit T. cruzi infection with different efficacy, a feature that 
relies on biological behaviour and physiological condition itself. For example, metacyclogenesis 
involves the process of parasite transformation into the vector; this step is fundamental in order 
to accomplish the life cycle. The basic transformation that takes place inside the vector is from 
bloodstream trypomastigote phase to epimastigote and to metacyclic trypomastigotes. This last 
phase is essential for mammalian infection in as much as epimastigotes are vulnerable to innate 
immune mechanism. Thus, the metacyclogenesis that takes place into the vector is fundamental 
in order to switch to mammalian host. Perlowagora-Szumlewicks and Carvalhio-Moreira [14] 

described triatomine vector species influencing metacyclogenesis with remarkable observation. 

Figure 2. Skin cells of mouse and metacyclic trypomastigote parasite. Host cells were stained with hematoxylin-eosin. 
A T. cruzi trypomastigote is depicted inside the image. Common types of skin cells and some of the mediators for 
the inflammatory response are listed inside the image: pathogen-associated molecular patterns (PAMPs), natural killer 
(NK), polymorphonuclear (PMN), mononuclear (MN), and Toll-like receptors (TLRs).
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They pointed out higher metacyclogenesis rates in Rhodnius neglectus and R. prolixus (50 and 37%, 
respectively), whereas in some Triatoma species, metacyclogenesis rates were dramatically lower 
in comparison (5% in Triatoma sordida, 7% in T. brasiliensis, and 1% in T. pseudomaculata). However  
T. infestans can reach up to 42%, in T. rubrovaria 27%, in T. dimidiata 26%, and Panstrongylus megistus  

metacyclogenesis rates can reach 27%. Other remarkable observation is that metacyclic trypo-

mastigotes rate is not continuous along vector life span. In some cases, it can reach a plateau, but 
in other cases, it can reach several peaks before metacyclogenesis drops. In natural conditions,  
T. barberi can reach up 76%, in T. pallidipennis 15%, whereas in T. dimidiata 26% [15].

The metacyclogenesis of T. dimidiata in laboratory conditions is similar to natural conditions; 
in addition, metacyclogenesis is also influenced by the T. cruzi strain and the rate of metacy-

clic parasites change along the age of triatomine vectors [16]. Furthermore, T. cruzi strains can 

moderately influence the rate of metacyclogenesis that take place inside the same triatomine 
specie but have less impact when compared across triatomine specie [16, 17]. Altogether, the 
above data highlight the importance of triatomine species and T. cruzi strains in the develop-

ment of metacyclic trypomastigotes: the natural parasite phase that will face mammalian host 
to complete its life cycle. Due to its importance, this variable should be taken into account for 
experimental design. Besides, the parasite strains show different virulence relying on virulence 
factors such as trans-sialidase activity, complement resistance, and cysteine protease cruzipain 
(TCC) [18]. Trans-sialidase removes and transfers sialic acid from host cells to parasite mucin-
like glycoprotein. It is known that trans-sialidase activity is a virulence factor which allows 
parasite to invade and to escape from parasitophorous vacuole. This enzyme is more expressed 
in bloodstream and tissue-culture trypomastigotes than in metacyclic trypomastigotes. Trans-
sialidase activity also depends on T. cruzi lineage and consequently its virulence [19].

Once metacyclic trypomastigotes have overcome the first nonspecific immune mechanical bar-

rier (skin/mucosal tissues), they need to swing into the extracellular matrix proteins in order to 
find cells to invade for replication and then accomplish their life cycle. GP82, a surface glyco-

protein found in both bloodstream and tissue-culture trypomastigotes, has the ability to bind to 
matrix extracellular proteins such as fibronectin, heparan sulfate, and laminin, serving as bridges 
for parasite-target cell association and leading to enhanced infection. However, this interaction 
inhibits cell invasion. The presence of the major cysteine proteinase cruzipain (TCC) helps to 
degrade these extracellular matrix proteins enabling cell invasion [20]. These surface glycopro-

teins are very polymorphic among T. cruzi strains resulting in different grades of virulence .

The complement system, another unspecific immune mechanism that is essential for inflam-

mation and cellular lysis, can be activated by three pathways. The lectin triggered by man-

nose-binding lectins (mannose-binding proteins, ficolins, and CL-K1 proteins) that binds to 
pathogen-associated molecular pattern (PAMPs) rich in D-mannose, L-fucose, glucose, and 
N-acetyl-glucosamine, O-acetylated, and glycan compounds containing sialic acid which 
activate MASP-1 and MASP-2. The alternative pathway is triggered when the complex C3 
(H2O)-B factor is stabilized on a surface allowing the formation of C3 convertase (C3 (H2O)

Bb). Whereas the classical pathway activation depends on C1 complex interaction with anti-
bodies or LPS and porins present in Gram-negative bacteria, but also with phosphatidylserine 
on apoptotic cells or via C-reactive proteins synthetized in liver as stress proteins [21].
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The four phases of T. cruzi (amastigote, epimastigote, metacyclic, and bloodstream trypomas-

tigote) can activate the complement system, but only epimastigotes are susceptible to lysis. 
However, some strains on metacyclic trypomastigote phase are more vulnerable [22, 23].  
Some T. cruzi surface molecules enable parasite to evade innate and adaptive immune 
responses. There are other mechanisms to circumvent the action of complement system such 
as the presence of calreticulin (TcCRT), the complement regulatory protein (Gp160/TcCRP), 
the complement C2 receptor inhibitor trispanning (TcCRIT), and the presence of GP58/68 pro-

tein and T-DAF. For a comprehensive review, see [21].

Finally, it has been observed that in animal models, metacyclic trypomastigotes induce an 
inflammatory response at the site of inoculation, as early as 1 h, and it is composed basically 
of neutrophils while mononuclear infiltrate begins at 24 h with a maximum infiltration at 
day 15. Nonetheless, poor cytokine expression such as IL-2, Il-4, IL-10, IL-12, and IFN-gamma 

persists over a 2-week post-inoculation, whereas at the regional lymph node to the site of 
inoculation, it was evident as early as 1 h. The induced pattern of cytokine at the inoculation 
site is permissive to establishing infection, despite the appropriate immune response in other 
lymph secondary organs [24–26]. Our group recently reported that pre-exposure to faeces of 
triatomine decreases parasitemia in mice challenged with metacyclic trypomastigotes. This 
finding suggests that inflammatory reaction to bacteria faeces in immune individuals helps to 
control parasite load in vivo [27].

4. In vitro models

Diverse in vitro studies on the T. cruzi /host cell interaction process have been described 
through the years [28]. These studies have included a wide variety of eukaryotic cell lines 
and parasite strains, as well as the different parasite phases able to infect cells: amastigotes, 
metacyclic trypomastigotes, or both, bloodstream and tissue-culture trypomastigotes [2, 29]. 
T. cruzi is capable to invade phagocytic or non-phagocytic cells via endocytic mechanisms. 
Currently, three models for T. cruzi invasion have been proposed: lysosomal-dependent, 
lysosomal-independent, and actin-dependent [3, 6, 30].

Cortez and co-workers [30] recently showed that the participation of lysosomes in the parasite 
entry site depends on the source of the trypomastigote. They found that the metacyclic trypo-

mastigotes invasion occurs mainly by the lysosome-dependent mechanism, whereas the tissue-
culture trypomastigote invasion takes place mostly by the lysosome-independent mechanism. 
Interestingly, it has been reported that amastigotes are capable of invading host cells by the 
actin-dependent phagocytic mechanism probably due to their motionless nature [29, 31].

4.1. Lysosomal-dependent

The lysosomal-dependent model is also known as the lysosome exocytosis pathway. Tardieux 
et al. visualized the recruitment of lysosomes at the parasite entry site during the early event 
of internalization of tissue-culture trypomastigotes into their mammalian host cells, and they 
proposed that this process is required for parasite internalization [32]. PGTF is a soluble factor 
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proteolytically generated from trypomastigote which is capable to induce Ca2+ signaling in 

mammalian cells. The addition of PGTF during the host cell invasion of tissue-culture try-

pomastigotes showed that Ca2+ signalling plays a role in the parasite invasion through the 
reorganization of host cell microfilaments as well as in the migration and fusion of lysosomes 
[15, 33]. In addition, the increase of Ca2+ is required to trigger a form of endocytosis to repair 
the mechanically injured host cell membrane due to T. cruzi invasion [17]. The elevation of 
intracellular Ca2+ concentration triggers the exocytosis of lysosomes. The lysosomal enzyme 
acid sphingomyelinase (ASM) is released to the host plasma membrane where ASM converts 
sphingomyelin into ceramide: a lipid capable of forming ceramide-enriched endosomes 
[34, 35]. Ceramides are also capable to coalesce and to accumulate into the parasitophorous 
vacuoles, which suggest that this lipid plays an important role in the membrane deformation 
process required to allow the large trypomastigotes entry into the host cells [32, 36].

4.2. Lysosomal-independent

The lysosomal-independent mechanism depends on phosphatidylinositol-3 (PI 3)-kinase 
(PI3K) which is activated in the presence of T. cruzi bloodstream trypomastigotes. This mecha-

nism is correlated to an efficient parasite invasion of non-phagocytes and phagocytic cells.  
In vitro analysis during T. cruzi infection of phagocytic cells has shown the presence of vacuoles  
enriched with lipids derived from the PI 3-kinase activities: phosphatidylinositol 3-phosphate (PI3P), 
phosphatidylinositol 3,4-bisphosphate (PI(3,4)P2), and phosphatidylinositol PI 3,4,5-triphosphate 
(PI(3,4,5)P3) [37–39].

The inhibition of the class I and III PI 3-kinase activities abolishes the parasite entry into mac-

rophages which suggests a prominent role of the host PI 3-kinase activities during the T. cruzi 

infection process [37]. A class III PI 3-kinase located in T. cruzi (TcVps34) is able to produce phos-

phatidylinositol 3-phosphate, and it has been shown that it plays an important role in vital pro-

cesses for the parasite survival such as osmoregulation, acidification, and vesicular trafficking [40].

4.3. Actin-dependent

Amastigotes are also capable to penetrate host cell through its plasma membrane via the actin-
dependent mechanism. This mechanism contrasts notably from the two models described 
previously in which trypomastigotes are involved [41, 42]. The invasion capability of amasti-
gotes depends on the T. cruzi linage. Amastigotes from the T. cruzi I lineage (G strain) have a 
remarkable ability to invade non-phagocytic cells [29, 43], while the less-infective amastigotes 
belonging to T. cruzi II linage (such as the Y strain) are largely engulfed by phagocytic cells 
(macrophages) and occasionally by other cell types [43, 44].

Once inside the host cell, amastigotes show the same ability as trypomastigotes to disrupt 
the parasitophorous vacuole, to replicate in the cytosol, and to differentiate into the infective 
trypomastigote form. There is also evidence that trypomastigotes are able to differentiate into 
amastigotes extracellularly while circulating in the bloodstream [45]. This remarkable obser-

vation has unravelled an additional mechanism through which the parasite can move among 
intracellular compartments, elude the host immune system, and sustain the infection.
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5. Conclusions

Chagas disease is a potentially life-threatening illness caused by T. cruzi. Currently, there are 
no vaccines which prevent the parasite infection; hence, vector control is still the most useful 
method to prevent such illness. Although the mammalian host has developed a fine battery of 
physical and biochemical defences, the parasite has adapted its metabolism to overcome the 
host defences. T. cruzi exhibits multiple strategies to evade the host defenses in order to sur-

vive, as summarized here; diverse studies have been conducted trying to unravel the basics 
of T. cruzi infection during the early interaction with its mammalian host. The different in vivo 

and in vitro experimental approaches showed a complex interaction depending on both, the 
parasite and the host characteristics. For example, the amastigote form was relatively recently 
described as a potentially infective form for host cells. Despite the fact that amastigote form is 
generally known as a replicative form in the mammalian host, it is capable to infect host cells 
within the host system in a completely different manner than the one described for the typical 
infective trypomastigote form. Despite the amount of studies on this topic, the comprehensive 
understanding of the parasite invasion mechanisms is still incomplete. More efforts should be 
followed for the elucidation of the early steps of parasite–host interaction as they are crucial 
for the development of future drugs to prevent the Chagas disease.
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