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Abstract

Mesenchymal stem cells, also known as mesenchymal stromal cells (MSCs), are a safe 
and promising biologic therapeutic for inducing tissue repair and regeneration in a 
broad array of chronic diseases. The mechanisms underlying the beneficial effects of 
MSCs include immunomodulation, reduction in inflammation and fibrosis, and stimula-
tion of neovascularization and endogenous regeneration. Accumulating evidence from a 
multitude of clinical trials support the notion that both autologous and allogeneic MSCs 
are not only safe but also possess the capacity for repair of diverse organ systems and 
amelioration of multiple chronic disease processes. However, there are many questions 
regarding the underlying mechanisms of action, the most efficacious cell characteristics, 
tissue source, dose/concentration, route of delivery, and timing of administration, inter-
actions with concurrent therapies, sustainability of effect, donor and patient characteris-
tics, and adverse effects, including infections and malignancy, that remain to be resolved. 
Answering these questions will require well-designed and rigorously conducted multi-
center clinical trials with well-established and defined clinical endpoints and appropri-
ately defined patient populations, number of patients, and duration of follow-up. This 
chapter will review the current state of knowledge in the use of MSCs as a therapeutic 
strategy for organ structural and functional repair in chronic diseases.

Keywords: cell transplantation, mesenchymal stem cells, regenerative medicine

1. Introduction

Mesenchymal stem cells (a.k.a. mesenchymal stromal cells, MSCs) hold enormous promise as 

a durable, sustainable, and novel cell-based biologic therapeutic for a diverse range of clinical 

applications aimed at preventing or reversing organ injury and promoting tissue regeneration. 

© 2019 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Substantial data have accumulated regarding the safety of administering both autologous 

and allogeneic MSCs to patients with a broad array of diseases. In addition, it is increasingly 

clear that MSCs exert anti-fibrotic, pro-angiogenic, regenerative, and immunomodulatory 
effects, and therefore, offering therapeutic potential in a wide range of presently untreat-
able conditions. The growing evidence supporting the use of MSCs as therapeutic strategy 

includes their relative ease of isolation and expansion in culture, multilineage differentiation 
capacity, immunomodulatory, anti-inflammatory, anti-microbial, and regenerative effects, 
homing and migratory capacity to injury sites, safety profile in allogeneic transplantation, 
and few ethical considerations [1, 2]. The use of large animal models in preclinical studies 

has been instrumental in deciphering the underlying mechanisms of action of MSC therapy 

[3]. Moreover, substantial human phenotypic data has demonstrated that MSC therapy is 

safe [4–10] and holds the potential for repair and regeneration of diverse organ systems and 

amelioration of multiple chronic illnesses for which there is currently no cure [4, 6, 7, 9–24]. 

There are currently various MSC sources under investigation in preclinical and clinical stud-

ies, namely bone marrow, adipose tissue, umbilical cord blood, umbilical cord, and amniotic 

membranes/placenta (Figure 1). Multiple mechanisms of action underlie successful MSC 

therapy, including MSC engraftment and differentiation, and more importantly, the secretion 
of bioactive paracrine molecules that inhibit apoptosis, fibrosis, and inflammation and pro-

mote neovascularization/neo-angiogenesis and endogenous stem cell recruitment, prolifera-

tion, and differentiation [25–27] (Figure 2). In particular, cell-cell interactions between MSCs 

Figure 1. Mesenchymal stem cell tissue sources, ex vivo expansion, and role in stem cell niche. Initially identified in 
bone marrow, MSCs can be isolated from various tissues in the body. To isolate MSCs from a bone marrow biopsy, first 
the mononuclear cells are isolated from red blood cells by Ficoll density centrifugation, and subsequently, the MSCs 

are separated from the mononuclear cells by plastic adherence in culture. Inset: the constituents of a stem cell niche are 

depicted in this schematic. ECM extracellular matrix. Adapted from Wagers AJ et al., Cell Stem Cell, 2012.
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and endogenous host cells within stem cell niches provide structural support and produce 

the soluble signals that regulate stem cell function in tissues[1, 28–30] (Figure 1 inset). An in-

depth molecular understanding of how MSCs produce the therapeutic benefits demonstrated 
in numerous clinical trials is critical for the development and design of new clinical trials as 

well as for the development of newer generations of MSC products that have greater efficacy 
and sustainability. This chapter will review the current state of knowledge in the use of MSCs 

as a therapeutic strategy for organ structural and functional repair.

2. Biology of mesenchymal stem cells

MSCs are non-hematopoietic stem cells with multilineage potential that originate from the 

mesodermal germ layer. The pioneering studies conducted by Friedenstein et al. provided 

the first evidence that these fibroblast-like cells, described as spindle-shaped and clonogenic 
in culture conditions could be isolated from bone marrow via their inherent adherence to 

plastic in culture [31, 32]. MSCs are an integral part of the stromal microenvironment and 

support hematopoietic stem cells and regulate hematopoiesis, although they comprise only 

~0.01–0.001% of the total nucleated cells in the bone marrow [33, 34]. Moreover, MSCs have 

been isolated from virtually every tissue type, including adipose tissue, liver, lung, skeletal 

and heart muscle, synovial membrane, amniotic fluid, placenta, umbilical cord blood, and 
dental pulp, suggesting that they reside in all organs [35–37].

Figure 2. Mechanism of action of mesenchymal stem cell therapy.
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MSCs are readily expanded in vitro and have the capacity, as classically defined, to differenti-
ate into osteoblasts, chondrocytes, and adipocytes [38, 39]. Studies also strongly support a 

role for MSCs in neovascularization, with the capacity for differentiation into both endothelial 
[40, 41] and vascular smooth muscle cells [40]. Finally, MSCs can differentiate into myocytes: 
skeletal myocyte differentiation is widely accepted, whereas there is ongoing controversy as 
to whether MSCs have a robust ability to form cardiomyocytes [40, 42–45].

No single cell surface marker specifically identifies MSCs. The International Society for 
Cellular Therapy has provided minimum criteria for defining multipotent human MSCs 
including (1) plastic-adherence under standard culture conditions; (2) expression of CD105, 

CD73, and CD90 and absence of hematopoietic cell surface markers, CD34, CD45, CD11a, 

CD19, and HLA-DR; and (3) in vitro differentiation into osteocytes, adipocytes, and chondro-

cytes under specific culture conditions [46]. However, MSCs can lose/acquire surface markers 

as they are isolated and expanded [47]. Furthermore, MSCs isolated from different tissues 
may exhibit a molecular fingerprint specific for their tissue of origin and thus vary in their 
differentiation capacity [48–50].

Bone marrow-derived MSC precursors (MPCs) have also been identified based upon specific 
cell surface marker expression, the most important being stromal precursor antigens (STRO-1, 

STRO-3) and CD271 [51–56]. In vitro studies suggest that the STRO-1 and STRO-3-enriched MPC 

populations have superior proliferative ability, multilineage regenerative capacity, and para-

crine activity compared to MSCs [51, 54, 55], whereas CD271+ selection significantly increases 
clonogenic outgrowth of MPCs [52]. Preclinical studies using large animals have shown the effi-

cacy of MPCs in acute MI and chronic ischemic and non-ischemic models of cardiomyopathy. 

Intracoronary injection of allogeneic MPCs in sheep after acute MI produced a 40% decrease 

in scar size and a 50% increase in vascular density [57]. Similarly, using echocardiography to 

guide the catheter-based endomyocardial injection of allogeneic MPCs into sheep 4 weeks 

post-MI resulted in an increase in left ventricular ejection fraction (LVEF), wall thickness, and 

vascular density. In a model of non-ischemic cardiomyopathy, transendocardial administration 

of ovine allogeneic cells produced decreased left ventricular end-systolic volume, stabilization 

of LVEF, decreased myocardial fibrosis and increased myocardial regeneration [53].

2.1. Osteogenic, chondrogenic, and adipogenic differentiation

As mentioned above, MSCs can be readily expanded in vitro and can differentiate into osteo-

blasts, chondrocytes, and adipocytes [38, 39]. Various growth factors and molecules promote 

MSC differentiation. For instance, global gene expression profiling arrays were utilized to 
identify RNA transcripts, which led to the identification that TGF-β, platelet-derived growth 
factor (PDGF), and fibroblast growth factor (FGF) signaling pathways regulate MSC differen-

tiation into adipogenic, osteogenic, and chondrogenic lineages [58, 59]. Adipogenic and osteo-

genic differentiation of MSCs were enhanced in vitro upon inhibition of TGF-β signaling but 
prevented chondrogenic differentiation. In contrast, inhibition of PDGF signaling decreased 
osteogenic differentiation, whereas inhibition of FGF receptor signaling completely blocked 
osteogenic differentiation and reduced chondrogenic differentiation. Moreover, inhibition of 
any one of these pathways decreased MSC proliferation. Differentiation thus depends sub-

stantially on the microenvironment [60].
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A key question regarding postnatal MSC function is the degree to which they participate in 

tissue homeostasis. For example, in the case of an osteogenic lineage, multiple investigators 

[61–63] have shown that exposure of MSCs to dexamethasone, β-glycerol phosphate, and 
ascorbic acid can lead to expression of alkaline phosphatase by the differentiated osteogenic 
cells with subsequent formation of a mineralized extracellular matrix [61]. Importantly, MSCs 

do retain the capacity for bone differentiation in vivo [38, 64]. For example, we have shown that 

subcutaneously implanting MSCs leads to osteoblast differentiation [38]. On the other hand, 

chondrogenic differentiation of MSCs can be achieved by treating MSCs with dexamethasone 
and TGF-β3 [58]. Similarly, dexamethasone together with insulin, indomethacin, and 1-methyl-

3-isobutylxanthine can stimulate MSC differentiation into adipocytes, which express adipo-

cyte-specific markers including peroxisome proliferator-activated receptor (PPAR)-γ [65].

Cao et al. [38] studied the regulation of MSC differentiation into adipocytes and osteoblasts 
with relation to PPAR-γ, an essential checkpoint regulator of the “adipogenesis-osteogenesis 
balance.” The study showed that S-nitrosoglutathione reductase (GSNOR)-deficient mice 
have reduced adipogenesis and increased osteoblastogenesis compared to normal mice 

(Figure 3). Notably, GSNOR MSCs had improved differentiation capacity for bone and 
reduced propensity for adipocytes. This is due to higher levels of S-nitrosylated PPAR-γ pro-

tein with subsequent inhibition of its transcriptional activity, suggesting a negative feedback 

regulation by NO-mediated S-nitrosylation. In addition, S-nitrosylation of PPAR-y inhibits 

binding affinity to its downstream target fatty acid-binding protein 4 (FABP4) promoters 
(Figure 4). Importantly, the MSC differentiation affected the phenotype on the whole animal 
level. GSNOR deficient mice have lower body weight and fat mass, accompanied by elevated 
bone formation. In another study regarding osteogenic regulation, investigators found that 

modulation of specific microRNAs (-148b, -27a, and -489) plays a crucial role in MSC early 
osteogenic differentiation [66]. This has a tremendous corollary in bone diseases such as 

osteoporosis by providing both pathophysiological and therapeutic insights. Indeed, MSC 

differentiation into other cell lines of mesenchymal origin can offer further understanding 
into many other human disease processes, in support of future treatment strategies.

Figure 3. GSNOR deficient mice have reduced weight and body mass with increased bone formation.
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2.2. Cardiac differentiation

Cardiomyogenic differentiation of MSCs is of key interest for cardiac regenerative medicine, 
particularly ischemic and non-ischemic cardiomyopathy [40, 67, 68]. Treating MSCs with 

5-azacytidine produces spontaneous, synchronous beating cells in culture with ventricular 

myocyte-like potentials, suggesting that MSCs are able to transdifferentiate into cardiomyo-

cytes [43]. Alternative and potentially safer factors that induce differentiation into a cardio-

myocyte phenotype include conditioned media containing bone morphogenetic protein-2 

(BMP-2) and FGF-4 [69] as well as insulin, dexamethasone, and ascorbic acid [70]. The combi-

nation of these factors induces overexpression of cardiomyocyte-specific proteins, leading to 
cardiomyogenic differentiation for possible use in disease processes of injured myocardium 
[69–72]. Indeed, expression of myotubules, α-actinin, SERCA2 and other cardiac-related pro-

teins in transdifferentiated cells may serve to attenuate cardiac infarct size and enhance perfu-

sion, and regional function as suggested by early in vivo studies [73, 74]. Co-culture of mouse 

or rat MSCs with rat neonatal ventricular myocytes also stimulates MSC transdifferentiation 
into cardiomyocytes [75, 76]. The necessity of cell-to-cell contact [1, 75] versus secreted factors 

within the cardiac microenvironment [76] as a requirement for cardiomyogenic differentia-

tion remains unclear.

MSC therapy promotes cardiomyogenesis not only by direct cardiomyocyte differentiation, 
but also by stimulating endogenous c-kit+ cardiac progenitors (CPCs) to proliferate, undergo 

lineage commitment, and form transient amplifying cells [1, 28, 29, 77–79]. We demonstrated 

Figure 4. Regulation of adipogenesis-osteogenesis by MSCs. GSNOR deficiency with ensuing elevated levels of 
S-nitrosylated PPAR-γ leads to a decrease in PPAR- γ transcriptional activity and binding affinity to FABP4 promoter. 
This results in increased osteogenesis and decreased adipogenesis, which has strong implications in bone disease. 

Reproduced from Cao Y et al., JCI, 2015.
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that transendocardial injections of allogeneic MSCs in swine following myocardial infarction 

(MI) results in cardiogenic differentiation of MSCs accompanied by increased proliferation 
and enhanced lineage commitment of endogenous CPCs, and reconstitution of niche-like 

structures [1]. This stimulation of endogenous CPCs by MSCs requires a complex molecular 

interaction and is a crucial component of the beneficial cell therapeutic effects [1, 28, 29, 77–79]. 

Histologic examination revealed chimeric clusters (niches) comprised of adult cardiomyo-

cytes, transplanted MSCs and CPCs expressing connexin-43 gap junctions, and N-cadherin 

mechanical connections between cells. These findings support the notion that MSCs act both 
as progenitors for certain cell lineages and through their participation in niches, as supporting 

cells for other lineages [80].

Stimulation of endogenous precursors may be a general mechanism underlying MSC bioac-

tivity. We recently showed that in humans with endothelial dysfunction MSCs can trigger 

endogenous EPC activation increasing their number and functional quality [81]. Thus MSCs 

can serve as a powerful therapeutic tool by reconstituting endogenous stem cell niches as well 

as enabling and augmenting the reparative abilities of endogenous stem cells.

2.3. Anti-fibrotic and proangiogenic effects

The hypothesis that exogenously delivered stem cells would promote organ regeneration 

through transdifferentiation into tissue-specific cells sparked interest in stem cell research 
and cell-based therapy and was originally supported by studies in the heart [82] where MSCs 

become cardiomyocyte-like cells and endothelial cells [40, 41, 43]. However, subsequent stud-

ies have revealed that the MSC-mediated regenerative process is more complex than was ini-

tially envisioned, and that several mechanisms underlie the ability of MSCs to reduce scar size 

and improve left ventricular structure and function after myocardial injury [33, 83, 84]. MSCs 

engraft and persist for several months in myocardium when delivered by transendocardial 

injection [1, 33, 40] and they reduce cardiac fibrosis and promote neovascularization and 
cardiomyogenesis [40, 77, 85, 86]. Importantly, cardiac magnetic resonance imaging (MRI) 

documented a reduction of infarct size, improvement in left ventricular shape (measured as 

sphericity index of the left ventricle), and improvement in tissue perfusion and regional con-

tractility [87]. Together, these preclinical studies support the anti-fibrotic and proangiogenic 
role of MSCs in the repair of the injured myocardium.

2.4. Immunomodulatory, anti-inflammatory, and anti-microbial effects

Preclinical studies have demonstrated that MSCs can differentiate into cardiomyocytes and/or  
vascular structures in both allogeneic [1, 40, 87] and xenotransplantation [88] models, con-

tributing to cardiac functional improvement and reduction of infarct size. Remarkably, 

there has been no evidence of rejection in animals subjected to allogeneic transplantation 

of MSCs [1, 29, 40, 87]. These studies reveal that allogeneic MSCs represent a unique cell 

population for cellular therapy due to their anti-proliferative, immunomodulatory, and 

anti-inflammatory effects [2, 33, 89]. The absence of major histocompatibility class (MHC) 

II antigens [90–92] and the secretion of T helper type 2 cytokines characterize MSCs as both 

immunoprivileged and immunosuppressive [2, 92–94]. MSCs fail to induce proliferation 
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of allogeneic lymphocytes in vitro [90, 92], and suppress proliferation of T cells activated 

by allogeneic cells or mitogens [91]. This immunomodulatory capacity supports the fea-

sibility of using allogeneic MSCs for cardiovascular regeneration as well as other clinical 

applications [2, 95]. Furthermore, MSCs have been used to treat severe graft-vs-host disease 

(GVHD) [13, 96], decreasing the potential of graft rejection and/or GVHD, and supporting 
the concept that MSCs are a unique cell population for regenerative medicine with minimal 

immune reactivity. Allogeneic MSCs have proven both safe and effective [5, 7, 11, 29, 89], 

highlighting that MSCs engrafted in the cardiac tissue despite potential HLA mismatching. 

An advantage of allogeneic MSCs is their potential use as an “off-the-shelf” therapeutic 
agent, precluding the need to obtain and expand bone marrow or another tissue source from 

the patient, and providing consistency to the cell product [97]. In addition, autologous cells 

may have functional deficiencies due to the underlying diseases, co-morbidities, lifestyle, 
concomitant medications, or age [98–105]. Although allogeneic MSCs may be cleared more 

rapidly than autologous cells after differentiation [106], immunologic clearance might also 

offer the advantage of reducing any long-term risks of cell implantation [8, 94, 107].

An important concern, and common exclusion criteria for participation in clinical trials is that 

the potential immunosuppressive effect of MSCs may lead to an increased risk of infection in 
patients who are already immunosuppressed due to medical therapy or concurrent chronic 

disease. In this regard, recent data has shown that MSCs exert significant anti-microbial 
effects through both direct and indirect mechanisms [108]. Indirect mechanisms include regu-

lation of macrophages, neutrophils, phagocytes, and another pro- and anti-inflammatory cells 
of the immune system, whereas indirect mechanisms involve the secretion of anti-microbial 

peptides and proteins (AMPs) and the expression of indoleamine 2,3-dioxygenase, interleu-

kin-17, and other molecules [94, 108]. Indeed, the anti-microbial effects of MSCs have been 
demonstrated in preclinical studies of sepsis, acute respiratory distress syndrome, and cystic 

fibrosis-related infections [108].

2.5. Enhancement of MSC therapy

Therapeutic interventions to optimize MSC function, such as growth factor administration 

[109–112], gene therapy [110], and modulation with small molecules or other pharmacologic 

approaches [110] are promising options under preclinical and clinical investigation to poten-

tiate myocardial repair and regenerative capacity. For example, in the phase I cardiopoietic 

stem cell therapy in heart failure (C-CURE) trial and subsequent phase II/III congestive 

heart failure cardiopoietic regenerative therapy (CHART-1) study [72, 109, 113], autologous 

bone marrow-derived MSCs from patients with ischemic cardiomyopathy were treated ex-

vivo with a cardiogenic cytokine cocktail to enhance their cardiac lineage commitment. In 

C-CURE, the authors reported significant improvement in cardiac function, physical per-

formance, hospitalization, and event-free survival in the cell therapy group compared to 

controls [109]. However, the larger CHART-1 trial reported neutral results at 39 weeks of 

follow up with regards to composite and individual outcomes, including all-cause mortal-

ity, heart failure events, and surrogate cardiac structural and functional endpoints [113]. A 

sub-analysis of the CHART-1 study extended the follow-up period to 52 weeks at which 

point the anti-remodeling properties of the cardiopoietic MSCs became evident [72]. These 

findings are consistent with those of other clinical trials of MSC-based therapy for ischemic 
cardiomyopathy [7, 9, 114].
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A potential approach to improve therapeutic potential is the combination of MSCs with c-kit+ 

CSCs [28, 29, 79]. Using a porcine model of chronic ischemic cardiomyopathy, the combination 

of autologous or allogeneic swine MSCs and c-kit+ CSCs provides greater reverse remodeling, 

scar size reduction, and functional improvements than MSCs alone [29, 79]. The demonstrated 

safety of cell-based therapy using MSCs [7, 9, 115, 116] and c-kit+ CSCs [117, 118] in patients 

with ischemic cardiomyopathy combined with these preclinical findings revealed important 
biological interactions between these two stem cell types that enhance therapeutic responses 

and led to the initiation of the Cardiovascular Cell Therapy Research Network (CCTRN)-

sponsored, Combination of Mesenchymal and C-kit+ Cardiac Stem Cells as Regenerative 

Therapy for Heart Failure (CONCERT-HF; NCT02501811) clinical trial.

2.6. MSC senescence and potential malignant transformation

There is evidence that senescence impairs the capacity of MSCs for multi-lineage differen-

tiation, homing, immune modulation and wound healing [102, 103]. As stem cells age, they 

undergo a “quiescence-to-senescence switch” that impairs their function [102, 104, 119, 120] 

(Figure 5). The mechanisms underlying the age-related declines in stem cell function involve 

intrinsic aging as well as age-related changes in their tissue microenvironment, including 

extracellular matrix components and the stem cell niche [101, 104, 121], thereby adversely 

impacting self-renewal and therapeutic potential. This has implications when considering the 

age and comorbidities of patients and donors. For example, dysfunctional stem cell niches 

Figure 5. Proposed mechanisms of aging-induced stem cell dysfunction. (A). Normal stem cell function involves 

activation of a quiescent stem cell to divide asymmetrically giving rise to a new stem cell (self-renewal) and another 

daughter cell that undergoes proliferation and differentiation. (B). Failure of self-renewal involves differentiation of 
both daughter cells, leading to a gradual depletion of the stem cell pool. (C). Aberrant differentiation may result from 
the abnormal skewing of the distribution of progeny toward one fate instead of various potential fates. Another potential 

mechanism involves the daughter cells acquiring abnormal fates that are not part of the normal repertoire. (D). Impaired 

stem cell response may be due to a decline or impairment in extrinsic or intrinsic signals. (E). Senescence and apoptosis 

of the quiescent stem cell or among the progeny following activation has also been described in aging. Adapted from 

Jones DL et al., Nature Cell Biology, 2011.
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have been implicated in the aging frailty syndrome, which is characterized by decreased 

strength, endurance, physiologic function, and reserve capacity in multiple organ systems 

[122, 123]. Moreover, aging, renal failure, C-reactive protein (CRP) levels, and other adverse 

health parameters have been shown to correlate significantly with poor angiogenic potency 
of bone marrow stem cells [105, 124]. These studies suggest that the therapeutic potential of 

autologous MSCs obtained from patients may be limited, whereas more robust repair and 

regeneration would occur by using allogeneic MSCs from young, healthy donors. Indeed, two 

clinical trials in patients with ischemic and dilated cardiomyopathy, respectively, compared 

autologous to allogeneic MSCs and found that although both provided benefits in cardiac 
structural endpoints, the allogeneic MSCs provided greater cardiovascular functional benefits 
[5, 7, 81]. On the other hand, a study on the impact of recipient age on the efficacy of MSC 
therapy found that older (>60 years of age) patients responded just as effectively as younger 
(<60 years of age) patients when administered either autologous or allogeneic MSC therapy 

for chronic ischemic cardiomyopathy [125]. This finding is highly significant since the major-

ity of the population with cardiovascular disease requiring cell-based therapy is aged.

Although the evidence is conflicting [126–130], clinical trials of MSC therapy usually exclude 

patients with a history of cancer due to concerns regarding the MSCs’ potential for carcino-

genesis. It remains unclear whether MSCs have the potential to undergo spontaneous malig-

nant transformation and/or whether they interact with surrounding tumor stromal elements 

[129–131]. Spontaneous malignant transformation of human bone marrow-derived MSCs has 

been shown in vitro during long-term cultures [127]. These MSCs underwent faster prolif-

eration, failed to undergo complete differentiation, and exhibited altered morphology and 
phenotype. Moreover, when these altered MSCs were administered to immunodeficient mice 
rapid-growing tumors throughout the lung tissue were found. On the other hand, in a separate 

study [128], human bone marrow-derived MSCs were grown in culture and assessed at differ-

ent time points for expression of various tumor-related proteins until they reached senescence 

or passage 25. A progressive decrease in proliferative capacity with shortened telomeres was 

observed in most cultured MSCs until they reached senescence. In addition, the MSCs did not 

express telomerase activity or telomerase reverse transcriptase transcripts, and no chromo-

somal abnormalities or alternative lengthening of telomeres were observed, supporting the 

safety of in vitro MSC expansion, and therapeutic use. Despite these encouraging findings, the 
functional, phenotypic, and genetic characterization of culture-expanded MSCs merits further 

careful study [129, 131, 132]. In addition, recent findings indicate that various direct (e.g., cell 
fusion) and indirect (e.g., exosome or vesicle-mediated) interactions between MSCs and cancer 

cells can produce functional interference and/or mutual acquisition of new cellular properties 

[130]. These functional and phenotypic cellular alterations can lead to changes in metastatic 

behavior and induce new cancer stem cell development. On the other hand, exosomes and 

vesicle-mediated mechanisms may be a promising therapeutic tool against cancer.

2.7. Sex differences in MSCs

Sex differences exist in many disease states as well as with respect to the role of MSCs in organ 
repair and regeneration after injury. There is evidence that female MSCs exhibit decreased 

apoptosis, interleukin-6, and tumor necrosis factor and increased endothelial growth fac-

tor and vascular endothelial growth factor expression compared to male donor MSCs [133]. 
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Furthermore, in a mouse model of myocardial infarction, treatment with female MSCs pro-

duced greater improvement of cardiac functional endpoints than treatment with male MSCs 

[134]. Estradiol has been shown to contribute to these differences [135, 136]. A more complete 

understanding of how MSCs are influenced by donor sex and recipient hormonal environ-

ment is needed to address sex-related disparities in clinical outcomes as well as to optimize 

transplanted MSC function and survival.

3. MSCs as a regenerative therapeutic for cardiovascular diseases

The hypothesis that exogenously delivered stem cells would promote organ regeneration 

through transdifferentiation into tissue-specific cells sparked interest in stem cell research 
and cell-based therapy and was originally supported by studies in the heart [82] where MSCs 

become cardiomyocyte-like cells and endothelial cells [41, 43]. However, subsequent studies 

have revealed that the MSC-mediated cardiac regenerative process is more complex than was 

initially envisioned (Figure 6).

3.1. Clinical trials in cardiac disease

Multiple clinical trials suggest that MSCs can ameliorate left ventricular remodeling and 

improve cardiac function in patients with acute and chronic ischemic cardiomyopathy [7, 9, 

11, 72, 84, 115, 116, 137–141]. The Transendocardial mesenchymal stem cells and mononu-

clear bone marrow cells for ischemic cardiomyopathy (TAC-HFT) trial demonstrated reverse 

remodeling and improved regional contractility of the scar as well as improved functional 

capacity and quality of life over 1 year in patients with chronic ischemic cardiomyopathy 

treated with transendocardial injection of autologous bone marrow-derived MSCs versus 

bone marrow mononuclear cells or placebo [9, 142]. The mesenchymal stromal cells in chronic 

ischemic Heart Failure (MSC-HF) trial showed that intramyocardial injection of autologous 

bone marrow-derived MSCs in patients with severe ischemic cardiomyopathy improved ven-

tricular function and myocardial mass [140]. The same group showed that intramyocardial 

delivery of autologous MSCs into patients with coronary heart disease and refractory angina 

provided a sustained effect (3-year follow-up) in improving exercise capacity and ventricu-

lar function, and reducing hospitalization rates and revascularizations [143]. As mentioned 

previously, the CHART-1 study also demonstrated the anti-remodeling properties of cardio-

poietic MSCs at the 1-year follow-up [72]. Encouraging results from preclinical studies with 

combination therapy [28, 79] have led to the initiation of the CONCERT-HF (NCT02501811) 

trial by the Cardiovascular Cell Therapy Research Network (CCTRN) in an effort to examine 
the effects of the transendocardial delivery of a combination of autologous bone marrow-
derived MSCs and cardiac progenitor cells into patients with ischemic cardiomyopathy.

Autologous adipose tissue-derived MSCs are also undergoing investigation in the cardiovas-

cular field. The adipose-derived stromal cells for treatment of patients with chronic ischemic 
heart disease (MyStromalCell) trial was a phase II, first-in-man, single-center, double-blind, 
randomized, and placebo-controlled study of intramyocardial injections of autologous adi-

pose-derived MSCs in patients with chronic ischemic heart disease and refractory angina but 

preserved ejection fraction [111, 112]. The MSCs were obtained from abdominal adipose tissue, 
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culture-expanded in vitro and stimulated with vascular endothelial growth factor-A (VEGF-A) 
(165) the week before treatment. The six month follow-up results demonstrated safety, and 

although a significant increase in exercise capacity was observed in the patients treated with the 
MSCs but not with placebo, there was no statistically significant difference between the MSC 
and placebo treatment groups.

An important issue in this new field is whether MSCs can be used as an allograft [5, 7, 89], avoid-

ing the need for bone marrow aspiration of patients and tissue culture delays prior to treatment. 

Furthermore, the function of autologous MSCs may be impaired in patients with comorbidities 

and/or advanced age [101–104]. A meta-analysis of 82 preclinical studies [144] demonstrated 

that allogeneic therapy is safe and at least as effective as autologous MSC therapy, suggesting 
that allogeneic MSCs are characteristically immunomodulatory, as discussed above.

The therapeutic benefit of allogeneic MSCs versus placebo delivered intravenously has been 
investigated in patients after acute MI [11, 145, 146]. Not only did these results show the safety 

of allogeneic MSC delivery to humans, but also moreover, echocardiography demonstrated 

a 6% increase in ejection fraction at 3 months for patients treated with MSCs. Moreover, the 

percutaneous stem cell injection delivery effects on neo-myogenesis (POSEIDON) trial com-

pared allogeneic vs. autologous MSCs delivered by transendocardial stem cell injection in 

patients with chronic ischemic cardiomyopathy and showed that both MSC types are safe 

and clinically effective [7, 147]. Similarly, the percutaneous stem cell injection delivery effects 
on neo-myogenesis – dilated cardiomyopathy (POSEIDON-DCM) trial demonstrated safety 

and efficacy of transendocardial autologous vs. allogeneic MSC therapy in patients with non-
ischemic, dilated cardiomyopathy, with a cardiac function efficacy preference toward alloge-

neic MSCs [5].

Figure 6. Effects Of mesenchymal stem cell therapy in heart disease.
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The transendocardial stem cell injection delivery effects on neomyogenesis study (TRIDENT) 

trial compared the safety and efficacy of two doses (20 million and 100 million) of allogeneic 
bone marrow-derived human MSCs delivered transendocardially in patients with ischemic 

cardiomyopathy [116]. Although both cell doses reduced scar size, only the 100 million doses 

increased LVEF, highlighting the crucial role of cell dose in the responses to cell therapy. In 

phase 2 dose-escalation study investigating immunoselected (Stro-1/Stro-3+ enriched), alloge-

neic bone marrow-derived MPCs (25, 75, and 150 million cells) delivered transendocardially in 

patients with ischemic and non-ischemic heart failure, no differences were observed in LVEF 
at 12 months of follow-up, although the 150 million MPC group had a significant reduction in 
left ventricular end-systolic and end-diastolic volumes, a measure of reverse remodeling, at 6 

months and a non-significant decrease of both ventricular volumes at 12 months [56]. These and 

other ongoing studies determining the optimal dose and delivery are essential to advance the 

field, decipher mechanism(s) of action, and enhance planning of pivotal Phase III trials [148–152].

A recent trial assessed the safety and preliminary efficacy of intravenously administered, 
allogeneic, ischemia-tolerant MSCs in patients with non-ischemic cardiomyopathy [153]. 

Ischemia-tolerant MSCs are grown under chronic hypoxic conditions and have been 

shown to better migrate toward wound healing-related cytokines and cytokines found 
in ischemic tissues and express higher levels of hypoxia-inducible factor-1 [154]. These 

studies suggested that ischemia-tolerant MSCs may be therapeutically more effective than 
MSCs grown under normoxic conditions. An increase in LVEF and reductions in end-sys-

tolic and end-diastolic volumes were observed at three months of follow up in the treated 

group but was not significantly different from the placebo group. Functional capacity and 
health status were significantly improved in the MSC treated group compared to placebo.

MSCs derived from umbilical cord (UC-MSCs) have also been tested in patients with heart 

failure. The randomized clinical trial of intravenous infusion umbilical cord mesenchymal 

stem cells on cardiopathy (RIMECARD) trial is a randomized, double-blind, placebo-con-

trolled trial that evaluated the safety and efficacy of UC-MSCs administered intravenously 
in patients with heart failure of ischemic or non-ischemic origin [141]. Infusion of allogeneic 

UC-MSCs was safe, with no development of alloantigen directed antibodies post-infusion, 

and effective in improving LVEF, functional status, and quality of life. Intramyocardial 
delivery of UC-MSCs in patients with heart failure has also been shown to produce 

improvements in LVEF and end-systolic volume in patients with severe heart failure [155].

Ongoing clinical trials are assessing the safety and efficacy of allogeneic MSC therapy in 
patients with acute myocardial infarction, chronic ischemic and non-ischemic cardiomyopa-

thy, and left ventricular assist devices. These studies will continue to pave the way for the 

development of allogeneic cell-based regenerative therapies for structural and functional 

disorders of the myocardium. The results from cardiovascular stem cell clinical trials are so 

far promising, with recent trials highlighting the vast therapeutic potential of allogeneic over 

autologous stem cells. However, many challenges remain, such as addressing long-term 

safety, serial stem cell injections, and optimal cell type, dose, and delivery route [148–152].

3.2. Vascular disease

Endothelial dysfunction is characterized by impaired endothelial vasodilation, a proinflam-

matory and prothrombotic state, and impaired bioactivity of EPCs and contributes to the 
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pathophysiology of most forms of cardiovascular disease, including hypertension, coronary 

artery disease, heart failure, peripheral vascular disease, kidney disease, diabetes mellitus, 

and metabolic syndrome [156, 157]. Endothelial function is implicated in heart failure [158] 

and we have studied the therapeutic potential of MSCs in restoring endothelial function in 

patients with ischemic and non-ischemic cardiomyopathy [81]. As mentioned above, indi-

viduals with heart failure received either autologous or allogeneic MSCs, and those in the 

allogeneic MSC group exhibit increased EPC colony formation and improved flow-mediated 
vasodilation (FMD), both of which strongly correlate with improved endothelial function 

[158, 159] (Figure 7). Moreover, patients who received allogeneic MSCs had reduced levels of 

VEGF. Elevated VEGF is associated with heart failure progression [160]. The concordant resti-

tution of these parameters to near normal after allogeneic MSC therapy has significant clinical 
implications for the heart failure population and may play a critical role in the advancement 

of cardiovascular treatment modalities.

Figure 7. MSCs in vascular disease. Allogeneic mesenchymal stem cell therapy can help restore endothelial function 

in patients with cardiomyopathy by increasing EPC CFUs (A) and improving FMD (E) when compared to autologous 

therapy (B and F). Representative EPC-CFUs plated on fibronectin for 5 days before (C) and after (D) allogeneic MSC 
administration (magnification 20x). Reproduced from Premer C et al., EBioMed, 2015.
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It is well established that cardiovascular disease is the leading cause of death and disability 

among people with type 2 diabetes mellitus [161] and has long been appreciated that endothe-

lial dysfunction underlies the high rates of cardiovascular disease associated with long-term 

diabetes [162]. The persistent hyperglycemia and other metabolic abnormalities directly affect 
the endothelium, contributing to the pathophysiology of disease [163]. Based on our findings 
of improved endothelial function after allogeneic MSC treatment in patients with heart failure 

[81], we are conducting a clinical trial entitled, Allogeneic Mesenchymal Human Stem Cells 

Infusion Therapy for Endothelial Dysfunction in Diabetic Subjects (ACESO; NCT02886884) to 

investigate whether intravenously delivered MSCs restore endothelial function parameters, 

including FMD and EPC function, as well as decrease circulating inflammatory markers and 
improve clinical parameters of diabetes. Similarly, the Intravenous Infusion of Umbilical 

Cord Tissue (UC) Derived Mesenchymal Stem Cells (MSCs) Versus Bone Marrow (BM) 

Derived MSCs to Evaluate Cytokine Suppression in Patients With Chronic Inflammation Due 
to Metabolic Syndrome (CERES; NCT03059355) trial is testing MSC therapies to restore endo-

thelial function.

Peripheral artery disease is generally caused by atherosclerosis in which cholesterol plaque 

builds up, ultimately weakening blood vessel walls and restricting blood flow, severely 
impairing endothelial function. The evaluation of cell therapy on exercise performance and 

limb perfusion in peripheral artery disease: The CCTRN patients with intermittent claudica-

tion injected with ALDH bright cells (PACE) Trial demonstrated safety but no improvement 

in peak walking time or capillary perfusion [164]. In patients with complete occlusion of 

femoral arteries, a post-hoc exploratory analysis suggested an improvement in the number of 

collateral arteries. Future clinical trials testing different cell types, doses, and administration 
routes are needed to optimize peripheral artery disease treatment.

4. MSCs as immunomodulatory, anti-Inflammatory, anti-fibrotic, 
and anti-rejection therapy

MSCs exhibit immune-privileged properties in vitro and in vivo [165] likely due to the 

absence of MHC II, B-7 costimulatory molecule, and CD40 ligand [90–92, 166] (Figure 8). 

The lack of costimulatory molecules prevents T-cell responses and also induces an immu-

nosuppressive local microenvironment through the production of prostaglandins and 

other soluble mediators including nitric oxide, indoleamine 2,3-dioxygenase, and heme 

oxygenase-1 [92, 167–170]. MSCs reduce the respiratory burst that follows neutrophilic 

responses by releasing interleukin (IL)-6 [171]. They also inhibit the differentiation of 
immature monocytes into dendritic cells hence the antigen presentation to naïve T cells 

is greatly impaired [172]. In addition, MSCs release soluble factors, such as hepatocyte 

growth factor and transforming growth factor (TGF)-β1 [173], that suppress the prolifera-

tion of cytotoxic and helper T-(Th) cells. MSCs also stimulate Foxp3+ regulatory T cells 

with concurrent suppression of Th1, Th2, or Th17 responses [174]. These findings suggest 
that MSCs are an effective therapeutic strategy to induce tolerance in solid organ trans-

plantation [175].
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4.1. Transplantation

Le Blanc et al. first reported the clinical immunoregulatory response to MSCs in a case of 
severe, treatment-resistant grade IV acute graft-vs-host disease (GVHD) [13]. A multicenter 

phase 2 trials for steroid-resistant, severe acute GVHD confirmed this observation [12] and 

MSCs obtained from HLA-identical siblings, haploidentical third-party donors, or HLA-

mismatched third-party donors were similarly effective. Recently, infusion of MSCs the day 
of hematopoietic cell transplantation (HCT) promotes engraftment and improves outcomes. A 

pilot study of allogeneic MSC infusion before nonmyeloablative HCT from HLA-mismatched 

donors showed sustained engraftment in 19 out of 20 patients, and the 1 year incidence of 

nonrelapse mortality, relapse, overall survival, progression-free survival, and death from 

GVHD was favorable compared to a historic control group [176]. In another pilot study evalu-

ated the effect of infusion of MSCs at the time of dual transplant of cord blood and third-party 
donor mobilized hematopoietic stem cells regarding tolerance, cord blood engraftment, and 

effects on acute GVHD, both preventive and therapeutic [177]. MSC infusions were effective 
for treating severe acute GVHD, but no significant differences in cord blood engraftment and 
incidence of severe acute GVHD were observed. Although there is accumulating evidence of 
safety from these small pilot studies [96], randomized trials are necessary to establish efficacy.

Figure 8. Immunomodulatory effects of mesenchymal stem cells. MSCs are immunoprivileged cells that inhibit both 
innate (neutrophils, dendritic cells, and natural killer cells) and adaptive (T cells and B cells) immune cells.
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A single-site, open-label, randomized controlled clinical trial in 159 patients undergoing 

living-related donor kidney transplantation showed that induction therapy with autologous 

MSCs resulted in lower incidence of acute rejection, decreased the risk of opportunistic infec-

tion, and better estimated renal graft function at 6 months compared with anti-IL-2 receptor 
antibody induction therapy [16]. However, graft function and rejection rates were similar 

after 1 year [178]. Therefore, MSC therapy can safely replace induction immunotherapy, 

reducing opportunistic infections, without compromising graft function and survival [179].

Despite these encouraging results, the long-term safety of MSC transplants needs to be further 

investigated in chronically immunosuppressed patients that are at increased risk for opportu-

nistic infections and tumors [132, 180]. In this regard, a clinical trial evaluated the safety and 

tolerability of third party MSC administration after liver transplantation. Patients enrolled 

in the experimental arm were infused with a single dose of 1.5 million MSCs/kg, 3(±2) days 

after the liver transplantation [181]. There was no impairment in liver transplant function and 

no increased rate of opportunistic infection or new cancer detected following MSC infusion. 

In addition, there was no difference in overall rates of rejection or graft survival. Weaning of 
immunosuppression in MSC recipients was not successful.

Issues needing further investigation include dose, timing and site of administration, interac-

tion with immunosuppressive drugs, and whether MSCs are effective at preventing acute 
rejection and/or inducing tolerance. In a murine kidney transplant model, it was shown that 

MSC administration before (day -1) but not a few days after kidney transplantation avoided 

the acute deterioration of graft function while maintaining the immunomodulatory effect of 
MSCs [182]. Moreover, a clinical study found that autologous bone marrow-derived MSC 

infusion at day 7 post-kidney transplant induced acute kidney graft dysfunction, attributed 
to engraftment syndrome [183], although MSC infusion was associated with lower memory/

effector CD8+ T cells, expansion of CD4+ regulatory T cells, and reduction of donor-specific 
CD8+ T-cell cytotoxicity compared with control kidney transplant recipients given the same 

induction therapy (basiliximab/low dose thymoglobulin) but not MSCs [184].

Islet cell transplantation combined with MSC therapy for type 1 diabetes in a cynomolgus 

monkey model provides clinical evidence for the anti-rejection effect of MSCs [185]. MSC 

treatment significantly enhanced islet engraftment and functions one month post-transplant, 
compared with animals receiving islets without MSCs. In addition, infusions of donor or 

third-party MSCs resulted in a reversal of rejection episodes and prolongation of islet func-

tion. Stable islet allograft function was associated with increased numbers of regulatory T 

cells in peripheral blood, suggesting that MSCs enhance islet engraftment, thereby decreasing 

the numbers of islets needed to achieve insulin independence.

4.2. Autoimmune diseases

Autologous MSC transplantation evaluated in clinical trials of amyotrophic lateral sclerosis [18]  

and multiple sclerosis [17, 186] is safe and associated with increased proportion of CD4+ CD25+ 

regulatory T cells, decreased proliferative responses of lymphocytes, and lower expression of co-

stimulatory molecules (CD40+, CD83+, and CD86+), and HLA-DR on myeloid dendritic cells within 

24 hours of transplantation [17]. In a randomized, placebo-controlled, phase 2 trial of multiple 

Mesenchymal Stromal Cells as a Therapeutic Intervention
http://dx.doi.org/10.5772/intechopen.78586

159



sclerosis, bone marrow-derived MSCs were also found to reduce inflammatory MRI parameters, 
supporting their anti-inflammatory and immunomodulatory properties [187]. Moreover, autolo-

gous and allogeneic MSC therapy showed evidence of benefit in other autoimmune disorders 
such as refractory Crohn’s disease [188–191] and systemic lupus erythematosus [14, 192, 193], 

respectively. Although there are no clinical trial results in patients with rheumatoid arthritis 

(clinical trials are ongoing; NCT01851070), in vitro studies show that allogeneic MSCs or MSC-

differentiated chondrocytes inhibit the proliferation and activation of collagen type II-stimulated 
T-cells and the secretion of proinflammatory cytokines, including IFN-gamma and TNF-alpha 
by CD4+ and CD8+ T cells, while increasing the secretion of IL-10 and restoring the secretion of 

IL-4 [194, 195]. These results suggest that the immunomodulatory and anti-inflammatory effects 
of MSCs offers an effective therapeutic modality for arthritic diseases [195], and several clinical 

trials are ongoing evaluating bone marrow, adipose, and UC-derived MSCs.

Transplanted MSCs exert a protective effect in type 1 diabetes mellitus [196]. MSCs localize 

to the pancreas after intravenous transplantation and lower blood sugar levels [197], similar 

to MSCs isolated from the Wharton’s jelly of the umbilical cord, which differentiated into 
mature islet-like cell clusters and possessed insulin-producing ability in vitro and in vivo 

[198]. Transplanted MSCs lower blood sugar through secretion of trophic cytokines that 

promote endogenous pancreatic stem cells in the ductal epithelium to differentiate into new 
ß-cells and directly differentiate into functionally competent, new ß-cells [199]. Furthermore, 

MSCs produce a variety of cytokines and growth factors, which could promote survival of 

surrounding cells and improve the microenvironment of pancreas [200]. Based on these find-

ings, clinical trials have been initiated to test safety and therapeutic efficacy. A pilot, ran-

domized, controlled, and open-label trial investigated the potential benefits on metabolic 
control and safety of combined umbilical cord-derived MSCs and autologous bone marrow 

mononuclear cell transplantation without immunotherapy in patients with established type 1 

diabetes [201]. The treatment was not only well tolerated, but at 1 year, metabolic measures, 

including hemoglobin A1C, fasting glycemia, and daily insulin requirements, improved in 

the treated patients, whereas it decreased in control subjects. In another clinical study, treat-

ment with a single intravenous infusion of autologous MSCs was tested in new-onset type 1 

diabetic patients and found to be safe and to show benefit in slowing disease progression and 
preserving β-cell function [202].

4.3. Pulmonary diseases

A recent randomized, double-blinded, placebo-controlled study demonstrated the safety 

of systemic administration of allogeneic MSCs in patients with moderate to severe chronic 

obstructive pulmonary disease (COPD) [15], however, there were no differences in the fre-

quency of COPD exacerbations, pulmonary function tests, or quality of life after 2 years of fol-

low up. A significant decrease in levels of circulating C-reactive protein (CRP) was observed 
in MSC-treated patients who had elevated CRP levels at study entry, suggesting a beneficial 
effect of MSC infusion on systemic inflammation [15].

Idiopathic Pulmonary Fibrosis (IPF) is a lung disease characterized by progressive interstitial 

fibrosis leading to hypoxemic respiratory failure for which no effective treatment exists [203]. 

Histologically, there is evidence of alveolar epithelial cell injury, interstitial inflammation, 
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fibroblast proliferation, and extracellular matrix collagen deposition. Because MSCs home 
to sites of injury, inhibit inflammation and contribute to epithelial tissue repair, they offer a 
potential therapy for IPF [203]. The phase 1 clinical trial entitled allogeneic human mesen-

chymal stem cells in patients with IPF via intravenous delivery (AETHER) demonstrated the 

safety of bone marrow-derived MSCs in nine patients with mild to moderate IPF [10]. A 3.0% 

mean decline in percent predicted forced vital capacity, and 5.4% mean decline in percent 

predicted diffusing capacity of the lungs for carbon monoxide was observed by 60 weeks 
post-MSC infusion, suggesting potential for efficacy.

Of note, a study has provided evidence of a resident c-kit+ multi-potent stem cell in the human 

lung [204]. These lung c-kit+ stem cells were shown to have the capacity to develop into bron-

chioles, alveoli, and pulmonary vessels, supporting the notion that they play an important role 

in lung homeostasis and tissue regeneration after injury. Although the therapeutic implica-

tions of these findings have not been investigated, we can infer from findings in ischemic heart 
disease models that there is the potential for MSCs to stimulate endogenous c-kit+ lung stem 

cell proliferation and differentiation, thereby facilitating lung tissue repair and regeneration.

4.4. Cutaneous wounds

Chronic, non-healing cutaneous wounds are a major cause of morbidity. The ability of MSCs to 

differentiate into various cell types and their capacity to secrete factors important in accelerat-
ing wound healing have made cell therapy a promising strategy for tissue repair and regen-

eration [24, 205]. Although both autologous and allogeneic MSCs appear to be well suited as 

wound healing therapies, allogeneic MSCs derived from young healthy donors may have an 

advantage over autologous sources where age and systemic comorbidities, such as diabetes, 

chronic renal failure, and arterial or venous insufficiency, are a contributing factor. The effects 
of aging and systemic illness on MSCs include impaired cell migration, reduced growth factor 

production, and poor tissue remodeling [24]. A study evaluated MSCs and fibroblasts derived 
from normal donors and chronic wound patients to characterize the induction of mobilization 

when these cells are mixed as well as examine the effect of soluble factors on fibroblast migra-

tion [206]. These studies showed that MSCs participate in skin wound closure by affecting der-

mal fibroblast migration in a dose-dependent manner, but impairments were noted in chronic 
wound patient fibroblasts and MSCs as compared with those derived from normal donors. 
These results support the notion that allogeneic MSCs from “healthy” donors provide greater 
efficacy for wound healing compared to autologous MSCs. Such promising findings have sup-

ported the use of MSCs in animal models of burn wound healing [207–209]. Consequently, a 

clinical trial entitled “Stem Cell Therapy to Improve Burn Wound Healing” (NCT02104713) is 
currently underway and is examining the efficacy of allogeneic MSCs in burn wound closure 
for patients with a 2nd degree burn wounds of less than 20% total body surface area.

4.5. Neurological diseases

MSCs are also considered a promising therapeutic strategy for acute injury and progressive 

degenerative diseases of the central nervous system [210], such as spinal cord injury [211, 212]

ischemic stroke [21, 22, 213, 214] Parkinson’s disease [215, 216] traumatic brain injury [217, 218]

multiple sclerosis [17, 186, 219, 220] and multiple system atrophy [23]. Studies suggest that the 
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neuroprotective effect of MSCs is mediated by the production of various trophic factors, includ-

ing brain-derived neurotrophic factors, nerve growth factor, and insulin-like growth factor-1, 

which contribute to recovering neurobehavioral function and stimulating endogenous regen-

eration [210, 212, 221]. In addition, MSCs home to injured brain tissues and exert immunoregula-

tory properties, reduce apoptosis, and improve neuronal cell survival [215, 217, 221]. However, 

it is unclear if MSCs differentiate into neural cells in vivo [210, 212].

4.6. Liver diseases

The anti-fibrotic properties of MSCs may exert therapeutic effects in liver regeneration and 
disease. MSCs inhibit activated fibrogenic cells such as hepatic stellate cells [222]. Numerous 

preclinical studies on bone marrow [223–225]. adipose tissue [226], and UC-derived [227]

MSC treatment for improvement of liver fibrosis have been conducted and have reported 
reductions in liver fibrosis as well as improvements in hepatic function. Indeed, MSC based 
therapies for patients with end-stage liver disease, have shown promise in phaseIand II clini-

cal trials [19, 20, 228]. MSC transplantation was safe and well-tolerated and hepatic function 

improved in patients with liver fibrosis [20]. Moreover, the biochemical hepatic index and 

model for end-stage liver disease (MELD) score were markedly improved from 2 to 3 weeks 

post transplantation [19]. However, the long-term hepatic function was not significantly 
enhanced in patients with liver failure caused by hepatitis B [19]. Notably, many of these 

clinical trials differ in MSC source, and liver pathology [229–232] and perhaps certain type of 

MSCs may serve as better therapeutic options for specific liver pathologies. These early stage 

studies and more recent clinical trials suggest that MSC transplantation is safe and may confer 

benefit to patients with liver cirrhosis and various kinds of liver diseases [233].

4.7. Aging frailty

Frailty is a medical syndrome that increases in prevalence with age and augments the risk for 

adverse health outcomes, including mortality, hospitalization, fall, and institutionalization. 

Markers of frailty include age-associated declines in lean body mass, strength, endurance, bal-

ance, walking performance, and activity; and are accompanied by declines in physiologic reserve 

in most organ systems. Together, these symptoms lead to the loss of homeostasis and the capa-

bility to withstand stressors and resulting vulnerabilities. Notably, there is a robust correlation 

between frailty and biomarkers of inflammation. There is also evidence that endogenous stem 
cell production decreases with age, likely contributing to reduce ability to regenerate and repair 

organs and tissues. Therefore, a regenerative treatment strategy could ameliorate signs and 

symptoms of aging frailty. Currently, there are no approved treatments for frail patients and 

therefore no established standard of care. There are specific features of the frailty syndrome that 
support the hypothesis that MSCs will also ameliorate or improve frailty. Indeed, in a pilot study 

and subsequently in a randomized, double-blind, dose-finding study, we demonstrated safety 
of intravenous infusion of allogeneic MSCs into elderly, frail individuals and found significant 
improvements in physical performance measures and inflammatory biomarkers [6, 234–235]. 

These findings suggest that frailty can ultimately be prevented or attenuated, and the link between 
frailty and inflammation offers a potential therapeutic target, addressable by cell therapy
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5. Conclusions

The promising cell-based therapy field has exploded in the past decade and currently, MSCs 
from various sources, mainly bone marrow and adipose-derived, are being evaluated in 

phase I and II trials for a myriad of chronic, disabling disorders with no currently effective 
therapies. Although preclinical studies provide mechanistic insights into therapeutic effects 
of MSCs and phase I/II studies provide evidence of safety in the short-term, questions regard-

ing most effective dose, route of administration, interaction with other concurrent therapies, 
sustainability/durability of effect, and adverse effects, including opportunistic infections and 
tumor development or progression, remain to be resolved. Addressing these questions will 

require rigorously conducted, multicenter clinical trials with well-defined clinical outcomes, 
longer duration of follow up, and more patients [151, 236].
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