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Abstract

Apoptosis is a biological process carried out during maturation, remodeling, growth, and 
developmental processes in tissues, and also represents an important defense mechanism 
of cells against intracellular microorganisms. In counterpart, diverse intracellular patho-
gens have developed a wide array of strategies to evade apoptosis and persist inside cells. 
Apoptotic cell death can be triggered through different intracellular signaling pathways 
that lead to morphological changes and eventually cell death. Among these pathways, 
MAPK and PI3K play a central role. The precise control of the signaling pathways that 
lead to apoptosis is crucial for the maintenance of tissue homeostasis. Paradoxically, these 
same pathways are utilized during infection by distinct intracellular microorganisms in 
order to evade recognition by the immune system, inhibit apoptosis, and therefore sur-
vive, reproduce, and develop inside cells.

Keywords: apoptosis, inhibition, protozoan parasites, signaling pathways

1. Introduction

The word apoptosis has its etymological origin in the Greek apó, which means “from” and 

ptōsis which means “falling off.” The merging of these two words is an allusion to the natu-

ral events of shedding cells and tissues, as well as the falling of old leaves during autumn. 

Apoptosis describes the process in which unwanted, damaged, or old cells are eliminated in 

multicellular organisms [1], which is necessary in all body tissues and happens naturally during 
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embryogenesis, metamorphosis, and constant cellular changes, being of upmost importance 

for the maintenance of homeostasis in all tissues [2]. The term apoptosis was coined since 1972 

by Kerr, to define a type of programmed cell death with morphological and molecular char-

acteristics different from other types of cell death. These characteristics include retraction of 
pseudopods with the consequent reduction of cellular volume and rounding of the cell, nuclear 

volume reduction (pyknosis) and fragmentation (karyorrhexis), structural modification of 
organelles followed by the formation of vesicles due to blebbing of the plasma membrane [3, 4]. 

Apart from being a fundamental process of cells for the maintenance of homesostasis, apoptotic 

cell death represents an important defense mechanism against intracellular pathogens. Against 

it, a wide spectrum of microorganisms has developed diverse strategies to inhibit apoptosis 

of their host cells. These strategies involve different signaling pathways that are hijacked by 
pathogens to achieve their goal of inhibiting apoptosis and persist inside cells. The purpose 

of this chapter is to better understand the signaling pathways that are targeted by protozoan 
parasites in order to evade the defense mechanism of apoptosis.

2. Generalities of apoptosis

2.1. Initiation of apoptosis

The activation of apoptosis requires the assembly of an intricate web of intracellular signaling 

pathways that occurs in three phases: initiation or activation, execution, and cellular demoli-

tion that are triggered in three different ways: the extrinsic pathway, the intrinsic pathway 
(subdivided in mitochondrial-induced apoptosis and endoplasmic reticulum stress-induced 

apoptosis) and the caspase-independent pathway [5–9].

2.1.1. The extrinsic pathway

This pathway is activated through extracellular stress signals that are detected and amplified 
by transmembrane receptors called death receptors [10–12]. Some of these receptors include 

the Tumor Necrosis Factor receptor (TNFR), Fas receptor (CD95), DR3/WSL, and Apo-2L 

(TRAIL-R1/DR4, TRAIL-R2/DR) [13, 14], which are characterized for the presence of intracellu-

lar domains called death domains (DD), which include the TNFR or TRADD and Fas or FADD 

death domains [15]. Once receptors become engaged with their respective ligands, activating 

proteins such as RIPK1, FADD, c-FLIP, c-IPAs, and ubiquitin ligase E3 are recruited [16–21], 

and in consequence, a supramolecular complex is formed by the activating protein-receptor 

domain that is recognized as a Death-Inducing Signaling Complex (DISC), which activates 

procaspase 8, the precursor of caspase 8 [16, 18–22]. In some cases, the extrinsic pathway can be 

triggered without a ligand as is the case of DCC and UNC5B receptors where, in the absence 

of a ligand, DCC interacts with cytoplasmic adapting protein DRAL to assemble an activa-

tion platform for caspase 9 [23]. In a similar manner, the UNC5B receptor, in the absence of 

netrins, recruits a molecular complex composed of PP2A and Death Associated Protein Kinase 

1 (DAPK1) [24]. In both cases, caspase 8 is activated to initiate cell death via apoptosis.
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2.1.2. The intrinsic pathway

The mitochondrial intrinsic pathway can be initiated by different intracellular stimuli such as 
irreversible genotoxic damage, increase in the cytoplasmic calcium (Ca+) concentration, oxida-

tive stress, among others [15]. In this pathway, a family of proteins called Bcl-2, characterized 

for having from 1 to 4 conserved domains that share homology with Bcl-2 or BH [6], has a lead-

ing role. This family is composed of proapoptotic proteins that, according to the BH domains 

that possess, are divided into Bax and “BH3 only” subfamilies. The members of the Bax sub-

family are Bak, Bax, Bok, and Mtd and possess three BH domains (BH1-BH3), while the “BH3 

only” subfamily, as denoted by its name, possesses a single BH3 domain and is composed of 

Bid, Bad, Bim, Bik, Blk, Hrk, NOXA or PUMA. On the other hand, the antiapoptotic proteins 

family present four BH domains (BH1-BH4) and is composed of Bcl-2, Bcl-XL, Bcl-W, Bfl-1, and 
Mcl-1 [6]. The BH1 and BH2 domains are structurally similar to the diphtheric toxin [25, 26]. 

The antiapoptotic proteins Bcl-2 and Bcl-xL are located in the outer mitochondrial membrane 

and prevent the release of cytochrome c, while the proapoptotic proteins Bad, Bid, Bax, and 

Bim are located in the cytosol and under certain stimuli are translocated to the mitochondria, 

where they induce the release of cytochrome c [25, 26]. Additionally, caspase 8 may take part 

in the intrinsic pathway through Bid proteolysis, turning it into tBid, which also translocates 

to the mitochondria and activates Bcl-2, Bax, and Bak [27]. Once Bax and Bak have been trans-

located to the mitochondrial membrane, a molecular complex referred to as PTPC is activated 

and induces the Mitochondrial Transition Permeability (MTP) phenomenon [28, 29]. These 

events culminate in the permeabilization of the outer mitochondrial membrane or MOMP, 

which is the rate-limiting step in apoptosis that conducts to an energetic and metabolic damage 

and the cell faces irreversible apoptotic cell death. The release of cytochrome c from the mito-

chondrion permits its association with the Apoptosis Activation Factor (Apaf-1) thus forming 

a structure to which procaspase 9 is incorporated, originating a molecular complex referred to 

as the apoptosome. As procaspase 9 is activated, it recruits executor caspases 3 and 7, which 

causes a proteolytic effect inducing cell death [27]. As mentioned earlier, the intrinsic pathway 

can also be activated via endoplasmic reticulum stress whose main stimulus is the misfolding 

of proteins and their subsequent accumulation in the endoplasmic reticulum (ER). Once mis-

folded proteins reach a critical concentration, they activate ER membrane sensors [30].

The induction of apoptosis conducts hopelessly to the activation of caspases; nevertheless, 

the damage to the mitochondria can, in some cases, provoke the release of some molecules 

with proapoptotic capacities such as HTRA2, AIF and ENDOG that have the ability to induce 

apoptosis without the intervention of caspases. HTRA2 has the ability to attack proteolytically 
the cytoskeleton, while AIF and ENDOG can enzymatically attack DNA [31].

2.2. Caspases

Caspases (Cysteine-dependent, ASPartate-specific peptidASE) owe their name to the fact that 

their proteolytic functions lie specifically in an aspartate residue and require the presence of 
cysteine to perform their catalytic activity [6]. There are many types of caspases and are clas-

sified according to their function in initiation caspases: 2, 8, 9, and 10; executor caspases: 3, 6, 
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and 7; and inflammatory caspases: 1, 4, and 5. In addition, there are other caspases that perform 
diverse functions such as caspase 11, which regulates cytokines during septic shock, caspase 12 

that is associated with endoplasmic reticulum stress apoptosis, and caspase 14, which has only 

been isolated in embryonic tissue, specifically in keratinocytes. Caspases are found in cells in an 
inactive state called zymogens or procaspases that possess three distinct regions: a prodomain 

located in the N-terminal end, a minor subunit close to the C-terminal end and, in between, 

the major subunit. Procaspases are activated through autoactivation or activation by another 
caspase or molecule that cause the excision in two sites of the aspartate residues, the first one 
between the prodomain region and the major subunit, and the second between the major and 
minor subunits [32]. The activation of caspases starts with an initiator caspase that requires 

the formation of a multimeric adaptor protein complex called apoptosome whose formation is 

mediated by Apaf-1, an inactive monomer in nonapoptotic cells [31]. MOMP-mediated release 

of cytochrome c triggers the formation of the apoptosome through the binding of cytochrome c 

to Apaf-1 on the WDR domain, following by the conversion of ADP into dATP/ATP in the NOD 

domain [33–35]. Finally, procaspase 9 binds to Apaf-1 through a homotypical interaction with 

the CARD domains [36]. The apoptosome catalyzes the autoproteolytic action of procaspase 9, 

and its active form, caspase 9, remains active and bound to Apaf-1 as a holoenzyme [36].

2.3. Cellular demolition

Once apoptosis is triggered through one of the different pathways just explained, the activation of 
caspase 9 unchains a cascade of executioner caspases [6, 15], whose proteolytic action is directed 

to multiple substrates that finally culminate in the demolition of the cell. One central substrate tar-

geted by caspases is ROCK1, an actin cytoskeleton activity regulator that upon activation loses its 

C-terminal end, subsequent phosphorylation, and thus activation of the myosin for is subsequently 

phosphorylated, and thus activates the myosin light chain, which generates actin contraction that 

in turn triggers several phenomena such as phosphatidylserine translocation, cellular rounding 

and retraction, as well as vesicle formation or blebbing and loss of intercellular unions due to the 

proteolytical attack of desmosomes or other forms of cell to cell junctions. It also affects nuclear 
membrane integrity and provokes further fragmentation of DNA and degradation of proteins 

associated with transcription and translation [6, 37–49]. Other targets attacked by caspases are, for 
example, the caspase-activated DNase (CAD), whose activation culminates in DNA degradation 

at internucleosomal sites [49] or Golgi reassembly and stacking proteins (GRASP)that participate 

in Golgi apparatus conformation, cistern formation and connections leading to Golgi fragmenta-

tion and disintegration [6, 50]. Continuing with the demolition events, the mitochondrial proteins 

Bax and Bak are activated due to BH3 action, which in turn generate pores in the mitochondrial 

membranes and release of their contents. Also, the p75 subunit of the electron transport chain 

complex 1 is proteolytically degraded [6, 50]. One of the final acts of apoptosis is the release of 
chemotactic cytokines and other molecules, as well as the formation of union sites for phagocytic 

cells indispensable for the elimination of cellular remains by phagocytes for these cells [6, 51].

3. Signal transduction pathways in apoptosis

3.1. MAPK family

For apoptosis to be carried out an orchestrated array of signal transduction pathways needs to 

be put into action among which mitogen-activated protein kinases (MAPK) play a leading role. 

Current Understanding of Apoptosis - Programmed Cell Death98



These mitogen-activated protein kinases, as denoted by their name, are activated not only by 

mitogens but also by other physical and chemical stimuli, such as growth factors, UV radiation, 

genotoxic agents, oxidative stress, inflammatory signals, and cytokines. Once activated, MAPK 
go through three secuencial phosphorylation steps [52], carried out by three groups of enzymes: 

(1) MAPK kinase kinase (MAPKKK or MAP3K), for example ASK1; MAPK kinase (MAPKK), 

for example MEK 1 through 7; MAPK such as ERK 1/2, JNK, and p38. MAPKs belong to the ser-

ine-/threonine-type kinases [53, 54] and possess tyrosine (Tyr) and threonine (Thr) conserved 

double phosphorylation domains [52]. They are further divided in three subfamilies according 

to the amino acid present in both phosphorylation sites (Thr-XXX-Tyr) [53–55]:

1. The p38-MAPK subfamily features glycine between the two phosphorylation sites (Thr-Gly-

Tyr) and is activated through stress signals, growth, and differentiation factors. This subfam-

ily is composed of the p38-MAPKα, p38-MAPKβ, p38-MAPKγ, and p38-MAPKδ isoforms 
that share a 12-amino acid activation loop and differ in affinity for the activating protein, 
tissue expression, and downstream effect. The p38α isoform, commonly referred to as p38, 
as well as the p38β isoform are ubiquitous being present in almost every tissue, while p38γ 
and p38δ isoforms have a more restricted localization. When p38 is activated, it initiates the 
three rounds of phosphorylation that culminate in the phosphorylation of p38 specifically at 
Thr180 and Tyr182 sites. This phosphorylation process produces conformational changes that 

lead to the enzyme binding with ATP and the acceptor substrate of the phosphate [56]. This 

subfamily participates in the regulation of certain growth factors, kinases and phosphatases, 

as well as in the regulation of ATF-2, MEF2, MAPKAPK, CDC25 or MSK1/2 and their activa-

tion triggers cellular proliferation, differentiation, apoptosis, among others [57, 58].

2. The JNK subfamily features proline between the two phosphorylation sites (Thr-Pro-Tyr) 

and is composed by the JNK1, JNK2, and JNK3 isoforms. These proteins are also known 

as stress-associated MAPKs or SAPKS (stress-activated protein kinases) and participate in 

cellular growth, differentiation, and apoptosis [59, 60] as a response to diverse stress signals, 

such as UV or gamma radiation, protein synthesis inhibitors (anisomycin), hyperosmolarity, 

toxins, ischemic damage, thermal shock, antineoplastic drugs, peroxides, and inflammatory 
cytokines, among others [59]. Stress signals initiate the three cycles of phosphorylation with 

the activation of MAP3K, ASK1 and ASK2, among others, which in turn activate MEK4 and 

MEK7 through phosphorylation of two specific serine and threonine residues. Finally, MEK4 
and MEK7, also known as MKK4 (SEK1/JNKK1) or MKK7 (SEK2/JNKK2) phosphorylate 

JNK in threonine-proline-tyrosine (Thr-Pro-Tyr) specific residues [59, 61, 62]. Interestingly, 

the biological roles of JNK isoforms are similar [63], although they are physically different 
and also differ in tissue localization. JNK1 and JNK2 are expressed in all tissues, while JNK3 
isoform is found predominantly in nervous tissue, and to a lesser extent in the heart and 

sperm [64–66]. Although JNK1, JNK2, and JNK3 can all induce apoptosis, there is evidence 

suggesting that each protein induces apoptosis through a different pathway. It has been 
demonstrated that all of them associate with p53, a nuclear transcription factor that activates 

proapoptotic gene expression, such as BAX or PUMA, but interestingly their expression var-

ies with respect to p53. In the case of JNK1, its expression is inversely proportional to p53, 

contrary to JNK2 expression, which is directly proportional to p53. Both JNK2 and JNK3 can 

phosphorylate p53, while JNK1 can only modify it post-transcriptionally [67, 68].

3. The ERK subfamily features glutamic acid between the two phosphorylation sites (Thr-

Glu-Tyr) and is composed of ERK1, also known as MAPK3, and ERK2, also known as 

MAPK1 or p42MAPK [62, 69]. These kinases are activated by growth factors, hormones, 
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and neurotransmitters through binding to different G-protein coupled receptors, tyrosine-
kinase receptors, and ion channels. Then, signal transduction continues with an adaptor 

protein that transmits the signal to a MAP3K of which several have been described for ERK 

such as Raf-1B-Raf, A-Raf, and TPL2 [62]. Following the described phosphorylation pat-

tern (MAPKKK → MAPKK → MAPK), the stimulus activates MAPKKK (i.e., Raf-1), which 

in turn phosphorylates MEK1 and MEK2 (both MAPKK) and these finally phosphorylate 
and activate ERK1 and ERK2 [62].

3.2. MAPK participation in apoptosis

One of the upmost actions of MAPK is the activation of transcription factors, which regulate 

the expression of genes that lead to crucial molecular events in the cell regarding growth, 

proliferation, inflammatory cytokine production, and apoptotic cell death [56]. In relation to 

apoptosis, a key participant is JNK that plays its role through two different mechanisms. The 
first one is related to nuclear events in which JNK is translocated to the nucleus and activates 
c-Jun and other transcription factors that promote proapoptotic gene expression, through 

p53/73 or c-Jun/AP1-dependent mechanisms [70, 71]. The second mechanism relates to JNK 

activation and translocation to the mitochondria, where it promotes the phosphorylation of 

protein 14–3-3, a protein that normally inhibits Bax by being bound to it. As protein 14–3-3 is 

phosphorylated, Bax is released and translocates to the interior of the mitochondria where it 

oligomerizes and forms pores in the mitochondrial membrane with the subsequent release of 

cytochrome c and apoptosis induction through the intrinsic pathway. Apart from these two 

mechanisms, JNK can also phosphorylate “BH3-only” family members, whose antiapoptotic 

effect inhibits Bcl-2 and Bcl-xL and is also involved in the posttranslational modifications 
of Bid and Bim, both of which induce Bad and Bax activity [70, 71]. Another MAPK deeply 

involved in apoptosis is p38, which in many times is simultaneously activated with JNK [72]. 

p38 exerts its central role in apoptosis through the activation of proapoptotic proteins, mainly 

BimEL, BAD, and Bax [73–77] and simultaneously induces the inhibition of ERK and Akt 

antiapoptotic pathways [76, 77]. Also, p38 and JNK participate in TLR signaling pathways. 

These key participants of the innate immune response function as regulatory sensors of both 

apoptosis signaling through the induction of MAPK p38 and JNK [78, 79] and survival signals 

through PI3K and some Bcl-2 family members [80–82].

4. PI3K/Akt signaling pathway and its participation in apoptosis 

inhibition

As previously mentioned, MAPK p38 and JNK play an important role in apoptosis induction. 

On the other hand, PI3K activation promotes cellular survival. PI3K is a heterodimer formed 

by a p85 regulatory subunit and a p110 catalytic subunit responsible for phosphate transfer. 

The signaling pathway initiated by this kinase is activated by different stimuli, with growth 
factors standing out among them. Once a ligand binds to the tyrosine specific tyrosine-kinase 
receptor, an IRS adaptor protein is activated, which in turn activates the regulatory PI3K sub-

unit and generates a conformational change that allows the binding of the catalytic subunit 

and thus the assembly of the active molecule that catalyzes the conversion of PIP
2
 into PIP

3
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[83, 84]. PIP
3
 interacts with the pleckstrine homology (PH) domain, located in the N-terminal 

region of the serine/threonine kinase Akt or PKB, with the final result of the kinase being 
recruited to the plasma membrane [85–87]. Furthermore, PDK1 phosphorylates Akt/PKB 

producing a conformational change that facilitates a second phosphorylation by the rictor-

mTOR1 complex [88]. Finally, the PI3K/Akt pathway leads to diverse effects associated with 
cellular proliferation and survival [89, 90]. Specifically, it produces the inactivation of many 
proapoptotic signals, such as BAD, procaspase-9, and FKHR (Forkhead) transcription factors 

[21, 91]. It also promotes the activation of CREB, NF-κB, and HIF-1α transcription factors, 
which in turn activate the expression of antiapoptotic genes [92–94].

5. Apoptosis inhibition and infection

Apoptosis constitutes a very important defense mechanism against intracellular microorgan-

isms [95], whom in order to survive inside cells need to inhibit the induction of apoptosis. It 

has been demonstrated that diverse intracellular pathogens including virus [96], bacteria [97], 

and protozoan parasites [98] have developed mechanisms to persist within host cells without 

inducing apoptosis.

5.1. Inhibition of apoptosis by Leishmania

Leishmania is an obligate intracellular parasite that infects a variety of cells such as neutrophils, 

macrophages (Mφ) and dendritic cells (DC). Leishmania has developed diverse mechanisms 

to manipulate host cells in order to evade the immune response and survive inside cells. 

Some of these strategies are the evasion of the phagosome-lysosome fusion and the inhibition 

of apoptosis. Studies have demonstrated that monocytes, macrophages, and dendritic cells 

grown in apoptogenic conditions and infected with different species of Leishmania present an 

inhibition of normal apoptosis. Also, Leishmania infection prevents natural apoptosis of neu-

trophils. The first demonstration of the inhibition of apoptosis by Leishmania was performed 

by Moore and Matlashewski in 1994 who demonstrated that the infection of bone marrow 

derived-macrophages (BMM) with Leishmania donovani promastigotes or the stimulus with 

LPG inhibited apoptosis induced by the deprivation of M-CSF. Interestingly, the culture 

supernatant of infected BMM was able to inhibit apoptosis suggesting that the effect could 
be due to soluble mediators [99]. A later study showed that cellular activation increased the 

production of TNF-α, TGF-β, IL-6, and GM-CSF, while the secretion of M-CSF and IL-1β 
diminished [100]. Studies performed later with another species, Leishmania major, showed that 

the infection of macrophages grown in the absence of M-CSF or in the presence of stauro-

sporine inhibited the release of mitochondrial cytochrome c, thus delaying apoptosis. It was 

observed that the infection of BMM with L. major promastigotes inhibited caspase-3 activation 

owed to a decrease in MOMP and subsequent release of cytochrome c, which was not associ-

ated to NF-κB activation since the use of specific inhibitors did not affect the capacity of L. 
major to inhibit macrophage apoptosis. It was also demonstrated that the infection of BMM 

obtained from BALB/c o C57BL/6 mice with L. major promastigotes preserved the phenom-

enom of apoptosis inhibition despite the genetic background of the host or type of immune 

response (Th2 or Th1, respectively) [101]. Also, studies performed with cell lines reported 

Signaling Pathways Targeted by Protozoan Parasites to Inhibit Apoptosis
http://dx.doi.org/10.5772/intechopen.76649

101



similar results as in the case of the monocyte cell line U937 infected with Leishmania infantum 

where inhibition of actinomycin D-induced apoptosis was observed [102] or in macrophages 

from the cell line RAW 264.7 infected with Leishmania major where apoptosis diminished even 

in the presence of cycloheximide [103]. In neutrophils, it has been observed that spontaneous 

apoptosis is inhibited by Leishmania major due to a decrease in caspase-3 activity [104]. It has 

also been demonstrated that amastigotes and promastigotes of Leishmania mexicana inhibit 

camptothecin-induced apoptosis in monocyte-derived dendritic cells [105, 106]. Moreover, 

Leishmania parasites are characterized for presenting differences among different species 
and also intraspecific. In particular, it has been shown that different strains of L. major cause 

diverse clinical manifestations in susceptible BALB/c mice [107]. While the infection with the 

strains V1 and IR137 could be resolved, the infection with the LV39 strain presents a severe 

course of infection, which cannot be resolved. The infection of RAW 264.7 macrophages with 

the less virulent strains (V1 e IR37) of L. major showed a lower degree of inhibition of apopto-

sis as compared to the infection with the more virulent (LV39) [103].

6. Signaling pathways involved in the inhibition of apoptosis by 

Leishmania

As it has been just mentioned, Leishmania has the capacity to inhibit apoptosis of different cells; 
however, the mechanisms involved in this inhibition have not been fully deciphered. MAPK 

and PI3K have been implicated due to their participation in apoptosis and the intervention 

of Leishmania with these kinases. Regarding the role of Leishmania infection in the modula-

tion of proapoptotic pathways such as MAPK, it has been shown that L. mexicana amastigotes 

and promastigotes significantly reduced MAPK JNK and p38 phosphorylation in monocyte-
derived dendritic cells [108, 109]. Other authors working with the same species showed 

that the inhibitoy effect in the activation of MAPK in dendritic cells was only observable in 

immature dendritic cells since maturation driven by the stimulation with LPS did not sup-

press MAPK phosphorylation, in particular JNK [110]. In bone marrow macrophages (BMM), 

previously stimulated with IFN-γ, it was also shown that L. donovani promastigotes exerted 

a similar effect of inhibiting the activation of p38, JNK, and ERK that was directly associated 
with TNF-α production, which ensured the survival of the parasite [111]. Other authors also 

demonstrated that inhibition of p38 was associated with an increase in the number of infected 

macrophages and parasite survival [112]. Interestingly, not only the parasite but also some 

surface components such as gp63 have been shown to inhibit the apoptotic signaling of MAPK 

p38 [113]. Other studies have shown that Leishmania infection can also activate MAPK as dem-

onstrated with the infection of neutrophils with L. major that caused the transient activation 

of ERK1/2, which delayed apoptosis and the pharmacological inhibition of ERK1/2 phos-

phorylation reversed the effect. Moreover, the infection of neutrophils with L. major led to the 

enhanced and sustainable expression of the antiapoptotic proteins Bcl-2 and Bfl-1. As down-

stream events, the release of cytochrome c from mitochondria and processing of caspase-6 

were inhibited, as well as a reduced expression of FAS on the surface of neutrophils [114]. In 

BMM the infection with infected with L. amazonensis it has been observed that ERK 1/2 activa-

tion generates an epigenetic modification in the IL-10 locus, which results in a great induction 
of this cytokine in the infected macrophages [115]. Also, macrophages grown in the presence 
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of LPG show an altered production of IL-12 associated with ERK activation and signaling 

[116]. Other authors demonstrated that ERK 1/2 activation induced by L. amazonensis yielded a 

lesser expression of CD40 and IL-12 production in bone marrow derived dendritic cells, with 

the subsequent inhibition of dendritic cell maturation. Specific ERK 1/2 inhibition induced the 
production of NO which caused an increase in parasite death [117]. Interestingly, Leishmania 

infection not only intervenes with signaling pathways that induce apoptosis but also with 

pathways that promote survival as it has been shown with the infection of BMM with L. major 

and L. pifanoi promastigotes that promotes resistance to apoptosis through activation of PI3K/

Akt. It was also demonstrated that Akt phosphorylates Bad, which in turn interacts with the 

14–3-3 protein, inhibiting it and boosting the antiapoptotic action of Bcl-2 [118]. It has also been 

demonstrated that infection of monocyte-derived dendritic cells with L. mexicana amastigotes 

activated antiapoptotic signals, such as PI3K/Akt phosphorylation [108]. Recently, the partici-

pation of Akt in the inhibition of apoptosis by Leishmania has been more widely analyzed. The 

infection of BMM or RAW 264.7 with L. donovani promastigotes and treated both with a specific 
Akt inhibitor or a dominant negative construct diminished the antiapoptotic effect, increased 
the production of IL-12, and decreased the production of IL-10, which resulted in loss of para-

site survival. It was shown that in infected cells FOXO-1, a transcriptional regulator of pro-

apoptotic proteins, is found mainly in the cytoplasm. The transfection of cells with FOXO-1, 

constitutively active that cannot be phosphorylated Akt and thus remained sequestered in the 

nucleus, led to a reduction of the antiapoptotic effect in infected period. Also, it was observed 

that the activation of Akt, induced by the infection of macrophages with L. donovani promas-

tigotes, causes the inactivation of GSK-3β (Glycogen synthase kinase 3 beta), which permits 

the release of β-catenin in order to initiate the transcription of antiapoptotic proteins. It was 
shown that in infected cells and transfected with the constituvely active construct for GSK-3β 
by silencing β-catenin there was a loss in mitochondrial membrane potential along with the 
activation of caspase-3 and production of IL-12 [119]. This was the first observation showing 
that the reversion of the antiapoptotic effect diminishes parasite survival, which suggests that 
the Akt pathway is a pivotal step in the modulation of the cellular machinery since Leishmania 

through the modulation of Akt is capable of activating antiapoptotic proteins, inhibiting pro-

apoptotic and also inhibiting the production of IL-12 [119].

Continuing with the role of Leishmania in modulating antiapoptotic pathways it has been 

shown that in murine macrophages infected with L. donovani promastigotes and treated with 

the apoptosis inductor, actinomycin D, there was an increase in the mRNA levels and protein 

level of MCL-1. Interestingly, the silencing of MCL-1 in infected cells dampened the antiapop-

totic effect in a similar way as the silencing of the transcription factor CREB, which dimin-

ished the expression of MCL-1 and increased the apoptosis of cells [120]. In a different study, 
several populations of macrophages (derived from peripheral blood, THP-1 and murine) 

were infected with L. donovani and the expression of Bcl-2 increased twice with respect to 

uninfected cells. Also, the use of specific inhibitors for Bcl-2 increased the level of NO, which 
diminished the parasite load of the cells. Interestingly, it was shown that in patients with 

visceral leishmaniasis, there was an increase in the expression of Bcl-2 and the levels of NO in 

serum were very low [121].

Recently, the receptor of programmed death 1 (PD-1) has been associated with the effect of 
inhibition of apoptosis in cells infected with Leishmania. The induction of apoptosis with H

2
O

2
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in BMM and RAW 264.7 cells increased the expression of PD-1, while the infection with L. don-
ovani diminished it along with the induction of apoptosis. The activation of PD-1 pathway was 

found to negatively regulate the phosphorylation of pro-survival AKT, which was reversed 

during infection [122].

During the induction of apoptosis, reactive oxygen species (ROS) are produced; on the other 

hand, an overproduction of (ROS) induces apoptosis. The analysis of the effect of Leishmania in 

the modulation of ROS was analyzed in RAW 264.7 macrophages treated with H
2
O

2
 and infected 

with L. donovani promastigotes and was observed that the parasite did not affect the level of 
ROS and apoptosis was inhibited along with a decrease in caspase 3 and 7, which could be due 

to Suppressor Of Cytokine Signaling (SOCS) along with the activity of thioredoxin and tyro-

sine phosphatases. The silencing of SOCS genes diminished thioredoxin levels and increased 

apoptosis of cells [123]. Recently, De Souza-Vieira et al. demonstrated the activation of two PI3K 

isoforms, PI3K γ (ROS dependent) and PI3K δ (ROS independent) in neutrophils infected with 
L. amazonensis. The activation of these isoforms, in turn, activates the ERK pathway downstream, 

which is associated with the process of netosis with the subsequent activation of ROS and the 

release of neutrophil extracellular traps (NETs) [124].

7. Inhibition of apoptosis by Trypanosoma cruzi

7.1. Immune response to T. cruzi

Chagas’ disease affects nearly 8 million people in Latin America [125] and is caused by the 

intracellular parasite Trypanosoma cruzi. The infection with T. cruzi is characterized by an 

acute phase that can be controlled by the immune system of the host. Afterwards, patients can 

remain asymptomatic or develop a chronic phase that affects mainly the heart and peripheral 
nervous system [126, 127]. In some cases, patients seem asymptomatic although they present 

several damages. T. cruzi has the capacity to infect virtually any cell where infective tripomas-

tigotes reach the cytoplasm, replicate, lyse the cell and infect other cells. One of the cells inside 

the mammalian host where T. cruzi replicates is the macrophage. These cells are crucial for 

the immune response against the parasite because, depending on the stimulus, can be classi-

cally or alternatively activated. Classically activated macrophages (M1) produce nitric oxide 

(NO) that has the capacity of killing T. cruzi, whereas alternatively activated macrophages, 

belonging to the M2 spectrum, synthesize polyamines that actually promote infection [128, 

129]. Thus, one of the most important mechanisms of protective immunity against T. cruzi is 

the classical activation of macrophages for the elimination of the intracellular parasites. T. cruzi 
must control the activation of macrophages and inhibit apoptosis in order to perpetuate inside 

the cells. To achieve this, parasites must reduce the production of toxic molecules, including 

NO and its derivatives [130, 131] and must escape from the parasitophorous vacuole [132].

The development of a specific immune response against T. cruzi overcomes the evasion strate-

gies displayed by the parasite. Antibodies as well as T cells are required for the control of 

infection [133–135], where both CD4 and CD8 T cells produce IFN-γ that activates macro-

phages to restrain infection [136, 137], while CD8 T cells eliminate cells harboring parasites 

in the cytoplasm and also promote immunopathology in the heart [138, 139]. Some of these 

Current Understanding of Apoptosis - Programmed Cell Death104



mechanisms are regulated by cytokines, such as IL-10 and TGF-β, which diminish inflamma-

tion and thus pathology, but might contribute to the persistence of parasites [140, 141]. Also, it 

has been demonstrated that apoptosis of lymphocytes in the course of T. cruzi infection down 

regulates T-cell expansion [142, 143], B-cell response [144], parasite killing by M1 [143, 145], 

and CD8 T-cell-mediated immunity [146, 147]. Furthermore, infection is also promoted by the 

phagocytosis by macrophages of apoptotic T lymphocytes in a matter dependent of prosta-

glandins, TGF-β, and polyamine biosynthesis [148], which are characteristic of M2 activation 

[128]. In contrast, the blockade of prostaglandin production or the inhibition of T lymphocyte 

apoptosis by caspase inhibitors reduces parasite growth in vitro and parasitemia in an experi-

mental model of Chagas disease [148, 149].

7.2. Apoptosis modulation in T. cruzi infection

7.2.1. Apoptosis induction

As just mentioned, it has been demonstrated that there is intense apoptosis of T lymphocytes 
during the course of T. cruzi infection [142]. The induction of apoptosis occurs through the 

extrinsic pathway as the infection with T. cruzi provokes the expression of both Fas (CD95) and 

Fas ligand (FasL) [143, 145], caspase-8 activity, and activation of effector caspase-3 [143, 144] 

in T lymphocytes from T. cruzi-infected mice. CD8 T lymphocytes help in the control of infec-

tion by T. cruzi, and the induction of apoptosis of these cells disrupts the immune response 

and interestingly affects macrophage activation. Apoptosis of CD8 T lymphocytes promotes 
macrophage differentiation toward an M2-like phenotype, which favors T. cruzi infection [150].

7.2.2. Apoptosis inhibition

T. cruzi resides in the cytoplasm of diverse cells, and thus CD8 lymphocytes are important for 

their elimination. It has been shown that CD8 T cells are preferential targets, as compared to CD4 

lymphocytes, for early effects of apoptosis inhibition in acute infection [146, 151]. In addition to 

macrophages, T. cruzi infects cardiomyocytes and it is common to find an intense myocarditis 
during the acute phase of infection. Despite cardiac damage, infected individuals may remain 

asymptomatic for decades. Thus, T. cruzi may directly prevent cardiomyocyte death in order to 

prevent heart destruction and favor its survival. It has been shown that T. cruzi, as well as cruz-

ipain, an important T. cruzi antigen, promotes survival of cardiomyocytes cultured under serum 

deprivation through the expression of the antiapoptotic protein Bcl-2, but not of Bcl-xL. Also, 

T. cruzi displays other antiapoptotic strategies such as the phosphorylation of Akt and ERK 1/2, 

which differentially modulate Bcl-2 family members [152]. In addition, cruzipain enhances argi-

nase activity that favors parasite growth within the cell. Interestingly, the inhibition of arginase 

activity by NG-hydroxy-L-arginine (NOHA) abrogated the antiapoptotic action of cruzipain 

suggesting that arginase activity is required for the survival effect of cruzipain [153].

Apart from invading the heart, T. cruzi colonizes the peripheral nervous system and it has been 

shown that the infection of Schwann cells by T. cruzi suppresses host cell apoptosis caused by 

growth factor deprivation. The antiapoptotic effect of the parasite has been related to the interac-

tion of Akt with T. cruzi PDNF, glycosylphosphatidylinositol (GPI)-anchored parasite-derived 

neurotrophic factor, known mostly for its neuraminidase and sialyltransferase activities [154].
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8. Apoptosis inhibition in Toxoplasma gondii infection

Toxoplasma gondii is an obligate intracellular parasite capable to infect almost all types of nucle-

ated cells and has developed multiple mechanisms to avoid immune elimination. It has been 

reported that this parasite can modulate multiple signaling pathways in their host cells in order 

to inhibit apoptosis, ensuring in this way its survival and persistence during infection. As a clear 

example of this process, different evidences have shown a failure in the activation of caspase 8, 
caspase 9, and caspase 3 after apoptosis induction in T. gondii infected cells [155–158].

The activation of the NF-κB transcription factor has been pointed as a pivotal mechanism 
used by T. gondii to inhibit apoptosis in several host cell types [157, 159, 160]. Following infec-

tion, it has been described that T. gondii induces NF-κB translocation into the nucleus, where 
this factor induces the transcriptional upregulation of genes that codify for antiapoptotic pro-

teins that belong to the Bcl-2 and IAP families [157, 159, 160]. The translocation of NF-κB to 
the nucleus and subsequent gene transcription is clearly dependent of the host cell IκB kinase 
(IKK), which phosphorylates the IκB inhibitor molecules that maintain NF-κB inactive, allow-

ing after this phosphorylation the activation and nuclear translocation of this transcription 

factor. However, in T. gondii-infected cells, the existence of a novel parasite-derived IκB kinase 
(TgKK) has been identified at the parasitophorous membrane together with phosphorylated 
IκB molecules [161]. In this sense, both host IKK and TgIKK cooperate for a continuous NF-κB 
activation during infection, in a process in which the host IKK could be inducing the initial 

phosphorylation of IκB molecules, followed by a sustained participation of the TgIKK, which 
presence increases as the parasite replicates [162].

Besides the NF-κB-dependent inhibition of apoptosis during infection with T. gondii, an 

inhibition of caspase 9 and caspase 3 activation through a direct blockage, exerted by the 

parasite, of apoptosome formation and cytochrome c release has been proposed [156, 162]. In 

this regard, the T. gondii-dependent inhibition of cytochrome c release from the mitochondria 

is associated with a parasite direct degradation of the proapoptotic proteins Bad and Bax, 

without affecting the mRNA levels for these proteins in the host cell, a fact that suggests that 
the parasite is able to block directly antiapoptotic proteins of the Bcl-2 family in a host cell 

transcription machinery-independent process [163, 164]. Additionally, among other signaling 

pathways hijacked by T. gondii to tilt the balance of the Bcl-2 family proteins toward an anti-

apoptotic state of the host cell during infection, the modulation of the PI3-K/PKB/Akt path-

way has been involved [155, 165]. In T. gondii-infected macrophages, it has been documented 

that this parasite activates PI3-Kinase (PI3-K), which in turns phosphorylates protein kinase B 

(PKB/Akt), which acts as an apoptosis inhibitor of the host cells [165].

In addition to the inhibition of apoptosis by T. gondii via the mitochondrial pathway, this 

parasite has also been reported to mediate the inhibition of apoptosis through the extrinsic 

pathway [166]. In this regard, it has been demonstrated that during infection, T. gondii can 

inhibit Fas/CD95-triggered apoptosis in host cells by inducing an aberrant processing and 

degradation of the initiator caspase 8, a process that results in a decrease in the recruitment 

of this protease to the death-inducing signaling complex and the inability to activate effector 
caspases, for example, caspase 3 and caspase 7 [166].

Due to the fact that host defense in chronic infections due to T. gondii is critically depen-

dent on the cytotoxic activity of CD8 T cells, which induce apoptosis of the infected cells via 
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the secretion of granzyme proteases, it is not surprising the blockage of this pathway by the 

parasite. Hence, T. gondii has been demonstrated to protect their host cells from Granzyme 

B-induced apoptosis, involving a mechanism by which the parasite abrogates the activity of 

Granzime B in the infected cells [167].

9. Apoptosis inhibition in Plasmodium spp. infection

In the mammalian host, Plasmodium parasites infect primarily hepatocytes and erythro-

cytes, and modulation of apoptosis by this parasite in both host cell types has been found 

to be crucial during infection. After transmission by the Anopheles mosquito, Plasmodium 

sporozoites are rapidly transported to the liver, where they invade and develop within 

hepatocytes before reaching erythrocytes [168]. In the liver, sporozoites transmigrate 

through the cytosol of multiple hepatocytes, causing wounding in the traversed cells with 

the release of the hepatocyte growth factor (HGF), which helps the parasite to reach a final 
hepatocyte in which it will reside and multiply [158, 169, 170]. It has been proposed that 

HGF binds to the c-mesenchymal-epithelial transition factor (c-Met) located on the surface 

of hepatocytes, a process that leads to PI3-K activation and a further protection of these 

cells from apoptosis [171, 172]. Albeit PI3-K activation trough HGF/c-Met signaling has 

been proposed to protect hepatocytes from apoptosis during early liver stages of infection 

with Plasmodium, other data suggest that PI3-K activation is not required to maintain this 

antiapoptotic state [173].

During the blood stage of infection with Plasmodium, in which merozoites invade erythro-

cytes, multiple changes are induced in the host cell by the parasite in order to satisfy its nutri-

tional requirements [164]. One of these changes is the activation of Ca2+ permeable channels 

in the plasmatic membrane of erythrocytes and the posterior entry of Ca2+ into these cells. 

An increase in the intracellular concentration of Ca2+ in erythrocytes has been demonstrated 

to induce a type of programmed cell death called eryptosis, which is characterized by cell 

shrinkage, cell membrane blebbing, and exposure of phosphatidyl serine, resembling apop-

tosis [174]. Due that infection with Plasmodium leads to the entry of Ca2+ into the erythrocytes 

and that the increment of the concentration of this ion stimulates eryptosis, it has been shown 

that Plasmodium can delay the execution of this programmed cell death mechanism by seques-

tering free Ca2+ ions present in the cytosol of erythrocytes [175].

10. Conclusion

Both apoptosis and its inhibition are fundamental biological processes for the homeostasis 

of an organism. Both processes are present throughout life and are essential for growth, 

development, and reproduction. Studies on the molecular mechanisms that inhibit apop-

tosis have been carried out in order to elucidate the specific signaling pathways that take 
place during apoptosis inhibition. Up to date, various routes implicated in apoptosis 

activation or inhibition have been rooted out; however, there is still much to be found. 

Ironically, the same pathways that are involved in homeostasis and health participate in 

cell death processes that occur during infections and function as a defense mechanism 
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against intracellular pathogens. In counterpart, microorganisms have developed a wide 

array of strategies to evade apoptosis of their host cell. Some of these strategies involve the 

hijacking of signaling pathways that participate in apoptosis. The better understanding 
and gaining of knowledge on these intracellular circuits and the physiopathology behind 

them will permit the development of new strategies and drugs to effectively treat the 
pertaining diseases mentioned in this work.
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