
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by IntechOpen

https://core.ac.uk/display/322437626?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Chapter 1

Introductory Chapter: Organization and Function of
Sensory Nervous Systems

Thomas Heinbockel

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.78738

1. Introduction

This chapter introduces the concept of the sensory nervous system and briefly discusses the

value of model organisms in enhancing our understanding of the evolution of sensory sys-

tems. The world around us continuously stimulates our senses. These stimuli come in different

varieties (modalities) such as light, sounds, smells, tastants, and somatic sensation (touch,

pain, pressure, vibration, heat, cold). Our corresponding senses communicate the outside

world to the inside of our body with the help of specific receptors. These are part of the nervous

system and connect the periphery with the brain. The nervous system, in turn, can respond to

incoming information by generating adaptive signals and behaviors. It is essential for all

organisms to be able to perceive stimuli from the environment and to subsequently process

and integrate these stimuli with the help of our sensory systems. Animals including humans

have a need for information about the processes that go on inside of our body as well as on the

outside to maintain homeostasis and to properly respond to the organism’s bodily functions

and surrounding environment [1].

All of us are familiar with the well-known senses such as seeing, smelling, tasting, and hearing.

In addition, animal species have taken advantage of other environmental stimuli for orienta-

tion and survival and, thus, provide us with less-known examples of sensory systems, for

example, echolocation in bats, heat sensation in snakes, magnetic compass orientation in

migratory birds, or polarized light perception in insects. Consequently, the sensory nervous

system can show exquisite differences between the many existing animal species. Neverthe-

less, researchers have found astounding similarities in sensory processing even among mem-

bers of distant animal taxa with respect to the structure and function of the sensory pathways.

Several fundamental rules govern how the sensory nervous system processes stimuli in differ-

ent modalities [2]. In each case, specialized receptor cells transduce the environmental signal

into an electrical or a neural signal that is sent to the brain by afferent nerve fibers. Both the
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receptor cells themselves as well as the synaptic targets of the receptor cells, neurons in the brain,

are capable of encoding specific attributes of the stimulus such as its quality and quantity. In

some cases, receptor cells and central neurons can transmit information about the temporal

dynamics of the stimulus (intermittency) and its location in space. As far as the transmission of

sensory information from one relay station in a sensory pathway to the next is concerned,

neighboring groups of neurons in a given relay station maintain the spatial relationship of

receptor cells in the peripheral sense organs. This has been demonstrated in our spatial senses

such as vision and touch. This topological organization helps the organism to convey spatial

information about sensory stimuli [3]. Nevertheless, it would be a falsehood to assume that

sensory systems convey a perfect and complete picture of the world around us [4]. Even though

receptor cells at first glance appear to function as physical devices, they are meant simply to help

us make inferences about the world rather than provide us with correct measurements. Neurons

along a sensory pathway encode stimulus information and transform this information based on

computational rules inherent in the neurons and their synaptic connectivity [4]. Therefore, the

information that reaches the brain is not simply a mirror reflection of the environment; rather, the

information is exposed to multiple levels of processing.

2. Divisions of the nervous system

How does the sensory nervous system fit into our understanding of the nervous system? A

standard way to distinguish different parts of the nervous system is to refer to the central versus

peripheral nervous system [5, 6]. The central nervous system includes the brain and spinal cord

with about 86 billion neurons and trillions of glial cells in the brain. The peripheral nervous

system consists of the nerves and ganglia outside of the brain and spinal cord, and it can be

divided into the somatic and the autonomic nervous system. The somatic nervous system

comprises peripheral nerve fibers, namely sensory nerve fibers (afferent fibers) that send sensory

information to the central nervous system as well as motor nerve fibers (efferent fibers) that

project to skeletal muscles. The somatic nervous system affords us voluntary control over our

skeletal muscles [2, 6]. In contrast, the autonomic nervous system controls smooth muscles of the

viscera (internal organs) and the digestive tract as well as sweat glands, salivary glands, kidney,

bladder, pupil, and heart muscle. As the name implies, it works automatically (autonomously),

without a person’s conscious effort, that is, we do not have a voluntary control over the auto-

nomic nervous system. Accordingly, it is also called the involuntary or the vegetative nervous

system. The autonomic nervous system comes in two opposing parts, sympathetic and parasym-

pathetic. The sympathetic division stimulates bodily processes in response to information about

the body and the external environment received by the autonomic nervous system, whereas the

parasympathetic division has an antagonistic effect by inhibiting bodily functions.

Principally, the sensory nervous system with its different sensory systems is part of the

peripheral nervous system or, better, it starts in the periphery and ends in the central nervous

system. As a whole, the sensory nervous system detects and encodes stimuli and then sends

signals from receptors, that is, sense organs or simple sensory nerve endings, to the central
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nervous system, that is, it transduces environmental signals into electrical signals that are

propagated along nerve fibers. In contrast, the motor systems respond to information pro-

vided by the sensory systems to generate movements and other forms of behavior. The main

function of the sensory nervous system is to inform the central nervous system about stimuli

impinging on us from the outside or within us. By doing so, it informs us about any changes in

the internal and external environment. The central nervous system integrates the sensory

information and communicates the information to target organs in our body. Therefore, a

given sensory system comprises receptor cells in sense organs, neurons that project from sense

organs to the brain, and specific brain areas that process the afferent information coming from

the periphery. For each of the five classic senses (vision, touch, hearing, smell, and taste), a

corresponding cortical area exists in the brain [5] referred to as sensory cortex, namely visual

cortex, somatosensory cortex, auditory cortex, olfactory cortex, and gustatory cortex. Our

brain also houses a vestibular cortex to process information from the vestibular organs, the

utricle and saccule with the maculae, and the semicircular ducts with the crista ampullaris.

In addition to the sensory cortices, the brain or, more specifically, the cerebral cortex is

involved in the control of voluntary movement, for example, in the frontal lobe [6]. Parts of

the brain are responsible for encoding sensory information and controlling motor behavior.

These are the primary sensory and motor cortices, and they constitute only about one-fifth of

the cerebral cortex [2]. Not all brain areas can be assigned easily to either sensory or motor

functions. These areas are involved in processing complex stimuli, forming relations

between objects and planning adaptive responses including memory formation. The func-

tions are referred to as cognition and are carried out in the association cortices in the parietal,

temporal, and frontal lobes such as the prefrontal cortex, posterior parietal cortex, and

inferotemporal cortex [2].

3. Relevance of the sensory nervous system

As pointed out so poignantly by Barth et al. [7], “there is no life without sensors and sensing.”

The authors emphasize that even in bacteria without a nervous system, sensory performance is

in place. Sensing and sensory systems are a characteristic property of living animals and have

evolved over millions of years by selective pressures to develop many sense organs for specific

tasks with magnificent precision [1]. As a result, animals use a stunning diversity of sensory

systems to extract information from their environment [8] and have many sensory abilities not

know to humans such as ultraviolet, infrared, ultrasound, electromagnetic reception, and

skeletal strain detection [7]. On the one hand, the differences between the sensory systems in

terms of complexity are obvious. On the other hand, despite all the differences, there are

commonalities that have been discovered in sensory systems and the brains [1]. As indicated

by these authors, while some animals such as insects and mollusks may vastly differ from

humans, they share a surprising number of basic properties of living organisms. The similar-

ities extend to brain functions such as learning and memory and advanced cognitive abilities

which traditionally have been associated with primates rather than snails, bees, or birds.
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4. The olfactory system

A prominent example of the commonalities of sensory systems is provided by the olfactory

system that has been studied in vertebrates and invertebrates for several decades [9–18]. The

similarities start in the periphery with olfactory receptor cells located in the olfactory epithe-

lium in the nose of vertebrates or in the paired antennae of insects. The receptor cells are

adapted to detect a vast array of odorants by means of receptor proteins that are positioned

in the membranes of the receptor cells. The olfactory receptor cells are associated with

various types of sensilla in invertebrates (e.g., insects) [19] or the olfactory epithelium lining

a portion of the nasal cavity of vertebrates (e.g., mammals) [20]. Individual receptor cells are

specialized to respond to one or a few different odorants by expressing one member of a

large gene family of olfactory receptor proteins as shown for rodents [20]. Likewise, Clyne

et al. [21] and Vosshall et al. [22] identified a novel family of seven transmembrane-domain

proteins, which are encoded by 100–200 genes and are likely to function as Drosophila

melanogaster olfactory receptors. An individual olfactory receptor cell in the antenna of D.

melanogaster is thought to express one or a few of the candidate olfactory receptor genes, and,

therefore, each olfactory receptor cell is functionally distinct [23]. In insects, an antennal

receptor cell in male moths might respond to only one component of several chemicals that

make up the sex pheromone released by the conspecific females [24–26]. The olfactory

receptor cells send their axon to the first central relay station for olfactory information

processing in the brain and form synaptic contacts with central neurons. In vertebrates, this

takes place in the olfactory bulb; in insects, it occurs in the antennal lobes of the

deutocerebrum [27]. In both, the olfactory bulb and the antennal lobes, olfactory information

is processed in brain modules, the olfactory glomeruli. Each glomerulus is a discrete ana-

tomical and functional unit and serves as an anatomical address dedicated to collecting and

processing specific molecular features about the olfactory environment, conveyed to it by

olfactory receptor cell axons expressing specific olfactory receptor proteins [11, 12, 28–30].

Thus, the glomeruli in the antennal lobes of insects and the olfactory bulbs of vertebrates are

organized chemotopically [30–35], analogous to visuotopy, in visual systems, and tonotopy,

of auditory systems. In both vertebrates and insects, olfactory information is extensively

processed at the level of the glomeruli through feedforward and feedback inhibition and

modulation provided by centrifugal neurons. Information is subsequently conveyed to a

higher-order olfactory center such as the olfactory cortex in vertebrates or the mushroom

bodies and lateral horn in insects [36, 37]. These circuit similarities among distant taxa

demonstrate the convergence of basic brain mechanisms in sensory systems.

5. Animal model systems

Which animal models are used to study sensory nervous systems? The question relates to

finding the best animal model to study a particular sensory system. Most biological and

biomedical research focuses on a small number of animal models, the Core Four, mice,

zebrafish, fly (Drosophila), and worm (Caenorhabditis) because of their genetic tractability
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[38]. Many other animal species are being used to determine the structure and function of a

specific sensory system. This is in part mandated by the fact that not all animal species are

equipped with the same senses. And even if they possess a specific sensory system, it might

be rudimentary in its anatomy or simply does not perform a function relevant to the species’

survival. As the champion for Neuroethology, Hoy [38] points out that there is a need for

nongenetic discovery science, like neuroethology, that will mine the biodiversity of neural

systems and behavior mechanisms so that the Core Four model species will not become the

Final Four.

As stated by August Krogh many years ago [39] and quoted by others [38, 40], “For a large

number of problems there will be some animal of choice or a few such animals on which it can

be most conveniently studied.” Along the same lines, Bernard [41] stated even earlier (1865)

that “In scientific investigation, the smallest processes are of the utmost importance. The

happy choice of an animal, an instrument built in a certain way, the use of a reagent instead

of another, are often enough to solve the highest general questions (translated from French).”

In that sense, the diversity of species finds its way back into neurobiological research and our

understanding of the sensory nervous system [42–44].
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