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Abstract

This paper develops a variable returns to scale multi-echelon data envelopment analysis
(DEA) model to measure the efficiency of supply chain. The model is constructed at first
with the assumption of serial sequence in a supply chain. The inputs of one stage become
the output of the other stage in the multi-echelon structure. The traditional variable
returns to scale model of DEA is modified to fit in the multi-echelon structure. The
developed model helps to evaluate the supply network in a coordinated manner. It also
provides helpful insights as how to improve the supply network performance.

Keywords: DEA, variable returns to scale, supply chain, process cycles

1. Introduction

Supply chain is a coordinated system of various processes meshed together to form a network

of strategic decision making. All the stages in supply chain are connected together through

feed-forward flow of materials and services as well as feedback flow of information [1]. Several

studies in the literature have underlined the practical importance of supply-chain performance

measures. Gunasekaran and Patel [2] argue that frequent evaluation and benchmarking of

supply chain outputs are necessary for companies to achieve their supply chain management

(SCM) objectives. Supply chain measures are crucial for the coordination of cross-functional

and inter-organizational activities in SCM, and for forming long-term alliances among firms in

the chain [3, 4]. Performance evaluation of supply chain helps to improve processes and

coordinate efforts of different stages and make contracting and risk sharing feasible in a supply

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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chain. However, detailed analysis of processes in a supply chain is a time and resource

consuming process [5]. To improve supply chain performance it is imperative to measure it.

With the measurement of performance the symptoms of the problem in a supply chain can be

identified. After identifying the symptoms managers can focus on detailed activity analysis at

an operational level.

Bibliography of [6] reveals that there is dearth of literature that utilized mathematical pro-

gramming and associated statistical techniques to help decision making in supply chain

benchmarking. Reference [7] reveals most models whether deterministic or stochastic deals

with single player in a supply chain rather than considering supply chain as a system. There

are some issues in measuring the efficiency of supply chain. The first point is the involvement

of different stages of supply chain to contain the DEA model. Secondly, the improvement

projection has to be coordinated at all stages of supply network.

New methods have been developed to measure the supply chain performance using DEA. For

instance, Ref. [8] decomposes the traditional DEA model to product of efficiencies by

decomposing the overall efficiency score. Reference [9] also decomposes the overall efficiency

scores of multiplicative efficiency model using game theory concepts. Reference [10] presents a

model to decompose overall radial efficiency of supply network at additive weighted average

of all the individual stages of supply chain network. In many cases, DMUs may have internal

or network structures; see for example, [11–13]. The types of special DMUs have inputs

converted to outputs and vice versa in the intermediate stages. Recently, some of the studies

have modeled DEA in two-stage processes. For example, Ref. [14] divides the US commercial

banks into profitability and marketability as first stage and second stage respectively. For the

first stage, they use labour and assets as inputs and profits and revenues and outputs. In the

second stage, the output in the first stage, i.e., profit and revenue are used as inputs and

market value, returns and earning per share constitute output. Reference [8] uses the same

method of two stage process for non-insurance companies where they use operating and

insurance expenses as outputs in the first stage and then underwriting and investment profits

in the second stage. Other examples include the impact of information technology use on bank

branch performance [15], two stage Major League Baseball performance [16], and many others.

In this paper, we use multi-echelon variable returns to scale Data Envelopment Analysis (DEA)

to measure performance of supply chain. In traditional DEA, the internal structures are gener-

ally ignored, the efficiency score is a function of given inputs and outputs [17]. More specifi-

cally, the production capability of production units is formulated only under some general

assumptions.1 The advantage of DEA is that utilizing multiple inputs and outputs it gives a

single index for measurement.

Although there are certain advantages of DEA, however, when dealing with supply chain it

becomes a limitation. Therefore, the DEA model needs to be modified appropriately to contain

the different connecting stages of supply chain to act as a single DMU. Further, DEA has an

assumption that the stages of supply chain are independent and not connected which

clearly violated the coordination nature of supply chain. In this paper, we have modeled

1

These assumptions on the production function include: monotonicity, convexity, envelopment and minimum extrapola-

tion; see [18] for an explanation.
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the multi-echelon variable returns to scale DEA in such a way that the coordination prop-

erty of supply chain is retained.

There is a substantial body of DEA literature, however, the use of DEA in supply chain

network to evaluate performance is limited. Reference [19] proposes a DEA model using value

chain approach to measure the performance of supply chain stages; Ref. [15] use the value-

chain model to evaluate IT’s impact on firm performance. References [7] and [20] propose

efficiency evaluation approaches for a two-tier supply chain model from a game theoretic

perspective. [12, 21, 22] introduce the network DEA model, in which the interior structure of

production units can be explicitly modeled. These studies tend to view supply chains as a

sequence of static, but independent processes. Reference [8] described a two-stage process

where 24 non-life insurance companies used operating and insurance expenses to generate

premiums in the first stage and then underwriting and investment profits in the second stage.

Other articles in this general area are due to [9, 10, 16]. Reference [23] suggests that perfor-

mance measures should be systematically deployed in a top-down fashion to ensure the

organization is controllable and well coordinated. A significant body of work has been

directed at problem settings where the DMU is characterized by a multi-stage process; supply

chains and many manufacturing processes take this form [24–26]. Supply chains similarly need

a systematic structure of performance measures for different units, e.g., individual firms, tiers

in the supply chain, and the whole chain.

DEA models are classified with respect to the type of envelopment surface, the efficiency

measurement and the orientation (input or output). There are two basic types of envelopment

surfaces in DEA known as constant returns-to-scale (CRS) and variable returns-to-scale (VRS)

surfaces. Each model makes implicit assumptions concerning returns-to-scale associated with

each type of surface. Charnes et al. [17] introduced the CCR or CRS model that assumes that the

increase of outputs is proportional to the increase of inputs at any scale of operation [27]. Banker

et al. [28] introduced the BCC or VRS model allowing the production technology to exhibit

increasing returns-to-scale (IRS) and decreasing returns-to-scale (DRS) as well as CRS. All the

mentioned papers of recent literature has examined a particular form of network structure,

namely, where the DMU is a two-stage serial process in which the outputs from the first stage

are intermediate variables that serve as inputs to the second stage. The current article extends this

idea to include those situations where the overall process can be decomposed into product of the

efficiencies of four processes. Therefore, we propose twomodels of efficiency decomposition that

deals with the assumption of variable returns to scale (VRS).

The rest of the paper is organized as follows. In Section 2, we propose two models of efficiency

decomposition namely, multi-echelon VRS model and multi-echelon VRS additive model. The

proposed models assume variable returns to scale (VRS). In Section 3, we discuss model

application. Finally our conclusions are presented in Section 4.

2. Multi-echelon DEA models

It is important to note that traditional DEA models assume that the operations follow constant

returns to scale. This represented one of the most limiting factors for the applicability of DEA,

Multi-Echelon Data Envelopment Analysis Variable Returns to Scale Models for Performance Evaluation of Supply…
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at least in the early years. Many economists viewed this assumption as over-restrictive and

preferred alternative statistical procedures in spite of the advantage offered by DEA.

Modifications of DEA to handle VRS categories were first described in 1984, when [28] came

up with a simple yet remarkable modification to the CCR DEA models in order to handle

variable returns to scale. This modification was suggested by comparing some previous stud-

ies on production functions. Hence, the DEA model is termed BCC (Banker, Charnes, Cooper)

model. In general, DEA programs incorporating an additional convexity constraint to take into

account variable returns to scale are called variable returns to scale or VRS model.

2.1. Multi-echelon variable returns to scale model

Consider the c-cycle process pictured in Figure 1. Suppose we have n DMUs and that each

DMUj j ¼ 1; 2;…; nð Þ has m inputs to first stage, and S outputs from this stage, zsjo , s ¼ 1, 2, ::, S.

These S outputs then become the inputs to the second cycle and Zopo
, where o ¼ 0, 1,…, O, is the

input or enters as a input of the existing stage and other subsequent stages. The outputs from

second, third and fourth stages are denoted as yrjo
where r ¼ 1, 2,…, R, vljo , where l ¼ 1, 2,…, L

and wkgo
where g ¼ 1, 2,…, G. The weights of cycle 1, cycle 2, cycle 3, and cycle 4 are ηAS , ur, μl,

and γk. The input weights of stage 1, 2, 3, and 4 are vi, vop, wop, and Oop. The VRS efficiency score

for the four stages can be determined by the following VRS models [28]:

θ∗ ¼ Max

PS
s¼1 η

A
s zsjo

Pm
i¼1 vixijo

�

PR
r¼1 uryrjo

PS
s¼1 η

A
s zsjo þ

PP
p¼1 vopozopo

� � �

PL
l¼1 μlvljo

PR
r¼1 uryrjo

þ
PQ

q¼1 wopzopo
�

PG
g¼1 γkwkjo

PL
l¼1 μlvljo þ

PN
n¼1 oopzopo

� �

(1)

subject to,
PS

s¼1 η
A
s zsjo

Pm
m¼1 vixijo

≤ 1 (2)

PR
r¼1 uryrjo

PS
s¼1 η

A
S zsjo þ

PP
p¼1 vopzopo

≤ 1 (3)

PL
l¼1 μlvljo

PR
r¼1 uryrjo

þ
PQ

q¼1 wopzopo
≤ 1 (4)

PG
g¼1 γkwkjo

PL
l¼1 μlvljo þ

PN
n¼1 oopzopo

≤ 1 (5)

X

S

s¼1

ηAs þ
X

R

r¼1

ur þ
X

L

l¼1

μl þ
X

G

g¼1

γk ¼ 1 (6)

ηAs , vi, ur, vopo ,μl, wop,γk, oop ≥ 0
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Using Charnes-Cooper transformation [29], Eqs. (1)–(5) are equivalent to,

Max
X

S

s¼1

η
A
s zsjo

 !

�

X

R

r¼1

uryrjo

 !

�

X

L

l¼1

μlvljo

 !

�

X

G

g¼1

γkwkjo

2

4

3

5

subject to,

X

m

i¼1

vixijo

 !

�

X

S

s¼1

η
A
s zsjo þ

X

P

p¼1

vopozopo

0

@

1

A �

X

R

r¼1

uryrjo
þ

X

Q

q¼1
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X

L
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X

N
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 !

¼ 1

(7)

X

S
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η
A
s zsjo

 !

�

X

m
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vixijo

 !

≤ 1 (8)

X

R
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uryrjo
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�

X

S
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η
A
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X

P

p¼1

vopzopo

0

@

1

A ≤ 1 (9)
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 !

�

X

R
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uryrjo
þ

X

Q

q¼1

wopzopo

0

@

1

A ≤ 1 (10)

X

G

g¼1

γkwkjo

0

@

1

A�

X

L

l¼1

μlvljo þ
X

N

n¼1

oopzopo

 !

≤ 1 (11)

X

S

s¼1

η
A
s þ

X

R

r¼1

ur þ
X

L

l¼1

μl þ

X

G

g¼1

γk ¼ 1 (12)

η
A
s , vi, ur, vopo ,μl, wop,γk, oop ≥ 0

A scale efficiency score of less than one does not indicate whether the organization is bigger or

smaller than its optimal size. To establish this, an additional variant of DEA, one subject to

non-increasing returns to scale must be run. The DEA linear programming problem for the

non-increasing returns to scale case is given by:

Figure 1. A serial multi-echelon DEA with inputs, carryover inputs, and outputs.
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Max
X
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X

G

g¼1

γkwkjo

0

@

1

A�
X

L

l¼1

μlvljo þ
X

N

n¼1

oopzopo

 !

≤ 1 (17)

X

S

s¼1

ηAs þ
X

R

r¼1

ur þ
X

L

l¼1

μl þ
X

G

g¼1

γk ≤ 1 (18)

ηAs , vi, ur, vopo ,μl, wop,γk, oop ≥ 0

2.1.1. Multi-echelon VRS additive model

We let
Pm

i¼1 vixijo þ
PS

s¼1 η
A
s zsjo þ

PP
p¼1 vopozopo

� �

þ
PR

r¼1 uryrjo
þ
PQ

q¼1wopzopo

� �

þ
PL

l¼1 μlvljoþ
�

PN
n¼1 oopzopoÞ = Rj j represent the total amount of resources consumed by the four-cycle process.

The model 1–5 with incorporation of variables ψA, ψB, ψC, and ψD becomes

Max

PS
s¼1 η

A
s zsjoþψA þ

PR
r¼1 uryrjoþψB þ

PL
l¼1 μlvljoþψC þ

PG
g¼1 γkwkjo

þ ψD

Rj j

" #

(19)

subject to,
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PS
s¼1 η

A
s zsjo þ ψA

Pm
i¼1 vixijo

≤ 1 (20)

PR
r¼1 uryrjo

þ ψB

PS
s¼1 η

A
S zsjo þ

PS
s¼1 vopzopo

≤ 1 (21)

PL
l¼1 μlvljo þ ψC

PR
r¼1 uryrjo

þ
PQ

q¼1 wopzopo
≤ 1 (22)

PG
g¼1 γkwkjo

þ ψD

PL
l¼1 μlvljo þ

PN
n¼1 oopzopo

≤ 1 (23)

ψA,ψB,ψC, and ψD, free in sign:

ηAs , vi, ur, vopo ,μl, wop,γk, oop ≥ 0, jo, po ¼ 1, 2,…, n:

Model (19)–(23) is equivalent to

Max
X

S
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R
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3
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Rj j ¼ 1 (29)

ψ1,ψ2,ψ3, and ψ4, free in sign:

ηAs , vi, ur, vopo ,μl, wop,γk, oop ≥ 0
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3. Application

A supply chain consists of all parties involved directly or indirectly in fulfilling a customer

request. The supply chain includes not only the manufacturers and suppliers, but also trans-

porters, warehouses, retailers and even customers themselves. A supply chain is a series of

processes and can be described as cycle view. A cycle view of supply chain divides processes

into cycles each performed at the interface between two successive stages of a supply chain [30].

The cycle view of process is important as it delineates the responsibilities of each player of each

stage. The process cycle helps making operational decision as it clearly mentions the roles and

responsibilities of each member of the supply chain. To evaluate the performance of supply

chain we consider the four cycles namely—customer cycle, replenishment cycle, manufactur-

ing cycle and procurement cycle. The first cycle, i.e., the customer cycle starts at the retailer’s

site. The customer fills in the demand and the demand is received by the retailer. The cycle

initiates as soon as the retailer receives the order from the customer.

From the customer cycle we take two inputs - Technological functionality and Sales order by

FTE. The first input is the functionality of the technology in place. This is measured in units of

functionality where a higher number indicates more functionality. The second input is sales

order by full time employee (FTE). This indicator measures the number of customer orders that

are processed by full time employees per day. The outputs for customer cycle are Order

fulfillment cycle time and Cycle inventory. Order fulfillment cycle time is a continuous mea-

surement defined as the amount of time from customer authorization of a sales order to the

customer receipt of product. On the other hand, Cycle inventory represents the average order

quantity amount on hand. The inputs and outputs extracted from customer cycle is displayed

in Table 1.

The replenishment cycle [30] starts at the juncture of retailer or distributor interface and includes

replenishing retailer inventory. The replenishment policy consist of decisions regarding when

to reorder and how much to reorder. The decisions determine the cycle and safety inventory.

The inputs of replenishment cycle are—technological functionality and sales order by FTE. The

first input is the functionality of the technology in place. This is measured in units of

Customer order cycle Description

Inputs

Technological functionality The functionality of the technology in place. This is measured in units of functionality

where a higher number indicates more functionality

Sales order by FTE This indicator measures the number of customer orders that are processed by full time

employees per day.

Outputs

Order fulfillment cycle time It is a continuous measurement defined as the amount of time from customer authorization

of a sales order to the customer receipt of product

Cycle inventory It represents the average order quantity amount on hand

Table 1. Inputs and outputs of customer cycle.
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functionality where a higher number indicates more functionality. The second input is sales

order by full time employee (FTE). This indicator measures the number of customer orders that

are processed by full time employees per day. The outputs of replenishment cycle are—Fill

rate, Inventory cycle time and Cycle inventory. Fill rate is the number of items ordered

compared with items shipped. Fill rate can be calculated on a line item, SKU, case or value

basis. Inventory cycle time is a measure of the Manufacturing Cycle Time plus the time

included to deploy the product to the appropriate distribution center and Cycle inventory

represents the average order quantity amount on hand. The inputs and outputs of replenish-

ment cycle are given in Table 2.

The manufacturing cycle [30] occurs at the distributor/manufacturer (or retailer/manufacturer)

interface and includes all processes involved in replenishing retailer inventory. The

manufacturing cycle is triggered by customer orders/replenishment orders/forecast of cus-

tomer demand and current product availability in the manufacturer’s finished goods ware-

house.

The inputs of manufacturing cycle are—Bill-of-materials (BOM), Usage quantity and Indepen-

dent demand ratio. Bill-of-materials (BOM) is a record of all the components of an item, the

parent-component relationships, and the usage quantities derived from engineering and pro-

cess design. Usage quantity is the number of units of a component needed to make one unit of

its immediate parent. Independent demand ratio is for manufacturers that also supply replace-

ment parts and consumables this metric helps to define the percentage mix of demand for an

item from independent (outside sources) vs. dependent (inside sources). The ratio is calculated

by dividing the unit usage for customer orders by the total unit usage of the item from all

sources (work orders, sales samples, destructive testing, inventory adjustments, etc.). The out-

puts of manufacturing cycle are—Finished product cycle time and End item. Finished product

cycle time is the average time associated with finalizing activities, such as: package, stock, etc.

and the other output End item is the final product sold to a customer. The inputs and outputs

of manufacturing cycle are displayed in Table 3.

Replenishment process cycle Description

Inputs

Technological functionality The functionality of the technology in place. This is measured in units of functionality

where a higher number indicates more functionality

Sales order by FTE This indicator measures the number of customer orders that are processed by full time

employees per day.

Outputs

Fill rate The number of items ordered compared with items shipped. Fill rate can be calculated on

a line item, SKU, case or value basis.

Inventory cycle time Measure of the Manufacturing Cycle Time plus the time included to deploy the product

to the appropriate distribution center

Cycle inventory It represents the average order quantity amount on hand.

Table 2. Inputs and outputs of replenishment cycle.
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The procurement cycle [30] takes place at the interface of manufacturer/supplier and includes

the necessary processes to make sure that the materials are available for manufacturing to take

place as per schedule. In the procurement cycle, the components are ordered by manufacturer

from the suppliers that replenish the component inventory. In this cycle components are

ordered precisely once the production set up is finalized by the manufacturer.

The inputs from the procurement cycle are - Purchased item and Direct material cost. Pur-

chased item is an item that has one or more parents, but no components because it comes from

a supplier. Direct material cost is the sum of costs associated with acquisition of support

material. The outputs of procurement cycle are - On time ship rate and Delivery schedule

adherence. On time ship rate is the percent of orders where shipped on or before the requested

ship date. On time ship rate can be calculated on a line item, SKU, case or value basis. Delivery

schedule adherence is a business metric used to calculate the timeliness of deliveries from

suppliers. Delivery schedule adherence is calculated by dividing the number of on time

deliveries in a period by the total number of deliveries made. The result is then multiplied by

100 and expressed as a percentage. The inputs and outputs of procurement cycle are displayed

in Table 4.

3.1. Multi-echelon VRS DEA model results

The efficiency results of the CCR and BCC model are shown in Table 5 for 11 supply chain

sub-processes of a particular product (e.g., detergent). First, the efficient supply chains, in each

process cycle are: customer order cycle (1, 4, 7, 9, and 11) replenishment process cycle (1, 2, 5, 6,

8, 11), manufacturing process cycle (2, 4, 6) and procurement process cycle (5, 6, 9). The same

table shows the efficiency results of RTS. The RTS efficiency score is calculated as the ratio of

CCR efficiency score to BCC efficiency score. Table 5 indicates that, customer order cycle, the

BCC efficient but not scale-efficient process, cycles were operating on an increasing returns to

scale (IRS) frontier because they can achieve greater economies of scale if they increase the

Manufacturing cycle Description

Inputs

Bill-of-materials (BOM) A record of all the components of an item, the parent-component relationships, and the

usage quantities derived from engineering and process design.

Usage quantity The number of units of a component needed to make one unit of its immediate parent.

Independent demand ratio For manufacturers that also supply replacement parts and consumables this metric helps to

define the percentage mix of demand for an item from independent (outside sources) vs.

dependent (inside sources). The ratio is calculated by dividing the unit usage for customer

orders by the total unit usage of the item from all sources (work orders, sales samples,

destructive testing, inventory adjustments, etc.).

Outputs

Finished product cycle time Average time associated with finalizing activities, such as: package, stock, etc.

End item The final product sold to a customer.

Table 3. Inputs and outputs of manufacturing cycle.
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volume. For customer order cycle, five BCC-efficient retail chains were operating on IRS and

four on decreasing returns to scale (DRS) frontiers. Of the BCC-inefficient supply chains, 64%

and 20% were in the IRS region in cycle 1 and cycle 2, respectively. As economists have long

recognized, an IRS frontier firm would generally be in a more favorable position for expansion,

compared to a firm operating in a DRS region. Note that the concept of RTS may be ambiguous

unless a process cycle is on the BCC-efficient frontier, since we classified RTS for inefficient

process cycles by their input oriented BCC projections. Thus, a different RTS classification may

be obtained for a different orientation, since the input-oriented and the output-oriented BCC

DMU Customer cycle Replenishment cycle Manufacturing cycle Procurement cycle Efficiency

CCR1 BCC2 RTS3 CCR BCC RTS CCR BCC RTS CCR BCC RTS CCR BCC

1 1.00 1.00 CRS 1.00 1.00 CRS 0.08 0.19 DRS 0.63 0.98 DRS 0.677 0.792

2 1.00 1.00 CRS 1.00 1.00 CRS 1.00 1.00 CRS 1.00 1.00 CRS 1.000 1.000

3 0.45 0.49 DRS 0.76 0.82 IRS 0.06 0.09 DRS 0.17 0.18 IRS 0.360 0.395

4 1.00 1.00 CRS 0.45 0.61 IRS 0.46 1.00 DRS 0.64 0.92 DRS 0.637 0.882

5 0.51 0.54 IRS 1.00 1.00 CRS 0.13 0.39 DRS 0.44 1.00 DRS 0.520 0.732

6 0.43 1.00 IRS 0.66 1.00 IRS 0.27 1.00 IRS 0.64 1.00 DRS 0.500 1.000

7 0.97 1.00 DRS 0.69 0.70 DRS 0.02 0.03 DRS 0.12 0.12 IRS 0.450 0.462

8 0.52 0.53 IRS 1.00 1.00 CRS 0.10 0.10 CRS 0.28 0.30 IRS 0.475 0.482

9 0.90 1.00 IRS 0.45 0.95 IRS 0.43 0.75 DRS 1.00 1.00 CRS 0.695 0.925

10 0.74 0.94 DRS 1.00 1.00 CRS 0.01 0.02 IRS 0.09 0.11 IRS 0.460 0.517

11 0.76 1.00 DRS 0.96 1.00 DRS 0.01 0.02 IRS 0.06 0.07 IRS 0.447 0.522

1Charnes-Cooper-Rhodes Model.
2Banker-Charnes-Cooper Model.
3Returns-to-Scale.

Table 5. Multi-echelon VRS model results of supply chains.

Procurement process cycle Description

Inputs

Purchased item An item that has one or more parents, but no components because it comes from a supplier.

Direct material cost Sum of costs associated with acquisition of support material.

Outputs

On time ship rate Percent of orders where shipped on or before the requested ship date. On time ship rate can

be calculated on a line item, SKU, case or value basis.

Delivery schedule

adherence

Delivery Schedule adherence (DSA) is a business metric used to calculate the timeliness of

deliveries from suppliers. Delivery schedule adherence is calculated by dividing the

number of on time deliveries in a period by the total number of deliveries made. The result

is then multiplied by 100 and expressed as a percentage.

Table 4. Inputs and outputs of procurement process cycle.
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models can yield different projection points on the VRS frontier. Thus, it is necessary to explore

the robustness of the RTS classification under the output oriented DEA method. Note that an

IRS DMU (under the output-oriented DEA method) must be termed as IRS by the input

oriented DEA method. Therefore, one only needs to check the CRS and DRS supply chain

processes in the current study. Using the input oriented approach, we discover only two DRS

supply chain processes in replenishment cycle (DMUs 2, 4, 6 and 9) and seven DRS (DMUs 1,

3, 4, 5, 6, 7, and 9) in the manufacturing cycle. These results indicate that (i) in general; the RTS

classification under different process cycle is independent of the orientation of DEA model;

and (ii) there are serious input deficiencies in manufacturing cycle at the current usage quan-

tities derived from engineering and process design. Given the fact that supply chains are

assigned different efficiencies in case of CRS and VRS assumptions, i.e., using CCR models

and BCC models, we can distinguish two different kinds of efficiencies Technical and Scale

Efficiencies. The CCR model (without the convexity constraint) estimates the gross efficiency

of a supply chain. This efficiency comprises technical efficiency and scale efficiency. Technical

efficiency describes the efficiency in converting inputs to outputs, while scale efficiency recog-

nizes that economy of scale cannot be attained at all scales of production, and that there is one

most productive scale size, where the scale efficiency is maximum at 100%. The multi-stage

VRS model takes into account the variation of efficiency with respect to the scale of operation,

and hence measures pure Technical Efficiency. Note that while only DMU 2 is assigned 100%

efficiency in the case of the CRS assumption, DMU 6 is considered 100% efficient in case of the

VRS assumption. This indicates that the inefficiencies assigned to DMU 2 in case of the CRS

assumption are purely due to their scales of operation.

Although a number of observations on supply chain cycles are efficient, only one supply chain

performance (DMU 2) is efficient, i.e., the observation 2 represents the best practice of the

supply chain system. Note that, all the supply chain cycles are efficient. Note that individual

supply chain process efficiency is greater than the overall supply chain efficiency score, indi-

cating that supply chain system could achieve more input savings.

Model 24 yields optimal values on the performance measures for supply chain to reach the best

practice. Consider DMU 4 in Table 5. Since customer order cycle is efficient, no adjustments for

measures related to the customer cycle are required. However, in order to reach the best

practice, the replenishment, manufacturing, and procurement cycles should reduce their direct

input. In addition, the procurement and manufacturing cycles should reach an agreement on

the procurement price of raw materials to increase the revenue of procurement cycle. The fill

rate of replenishment cycle should be increased. This solution indicates that based upon the

best practice, the replenishment cycle should be able to maintain a fill rate of 90% while the

manufacture reduces its shipment to the distributor of replenishment cycle.

Some supply chains may choose to operate with high cost and high availability while others

are lean with lower levels of service. The notion of DEA efficiency provides an approach for

efficiency measurement of supply chain and its processes. Multi-echelon VRS DEA models

makes it clear that two supply chains may have different input-output mix yet both may be

efficient. This model enables supply chain processes to collectively improve the supply chain

performance. Through the use of the proposed models, any supply chains can find ways to

achieve best-practice performance and to gain competitive edge.
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4. Conclusion

Recent literature has examined a particular form of network structure, namely, where the

DMU is a two-stage serial process in which the outputs from the first stage are intermediate

variables that serve as inputs to the second stage. The current article extends this idea to

include those situations where the overall process can be decomposed into product of the

efficiencies of four stages. Therefore, we propose two models of efficiency decomposition that

deals with the assumption of variable returns to scale (VRS). The proposed models, i.e., multi-

stage DEA variable returns to scale (VRS) models that we have developed, adopt an alternative

view of efficiency decomposition four-echelon supply chain structure. Our approach extends

and generalizes the [8] and [10] two-stage models to four-echelon supply chain model with

inclusion of the supply chain process concept in using inputs and outputs.

The analysis of the process cycles of 11 supply chains using the proposed DEA models shows

that close to 45% of the supply chains were inefficient in four process cycles namely—customer

order cycle, replenishment process cycle, manufacturing cycle and procurement cycle. Further,

most supply chains exhibited DRS in manufacturing cycle and procurement cycle, while some

of them exhibited IRS in customer order cycle and replenishment process cycle. This suggests

that up-stream components of the supply chain may have a negative effect on finished product

cycle time and end item.

We developed the multi-stage DEA models to evaluate the efficiency of supply chains. In these

models, firms’ production processes in multi-stages are interrelated. The empirical application

shows that using conventional DEA models could lead to significantly biased evaluation

results in multi-stage production situations. We also show that breaking down the production

processes of supply networks for evaluation can generate more practical insights in how to

improve the supply network performance, either in terms of technical or scale efficiencies.

Themulti-echelon DEAmodels developed in this paper can be applied to awide range of practical

situations, including evaluating the effect of investments in IT systems and environmental

improvements, human resources and the pollution effect etc. Future studies can deal with evaluat-

ing panel and longitudinal performance and efficiency changes of firms (e.g., [31–33]). The multi-

stage DEA model can benefit these studies by providing a more accurate estimation of firms’

performance over time. In themulti-stage DEAmodels the assumption of sequential flow of inputs

and outputsmay be relaxed to give rise to a complexmodel that can best fit the realworld scenario.
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