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Abstract

The autonomic nervous system regulates multiple physiological functions; how distinct 
neurons in peripheral autonomic and intrathoracic ganglia communicate remains to be 
established. Increasing focus is being paid to functionality of the neurocardiac axis and 
crosstalk between the intrinsic nervous system and diverse organ systems. Current find-
ings indicate that progression of cardiovascular disease comprises peripheral and central 
aspects of the cardiac nervous system hierarchy. Indeed, autonomic neuronal dysfunc-
tion is known to participate in arrhythmogenesis and sudden cardiac death; diverse 
interventions (pharmacological, non-pharmacological) that affect neuronal remodeling 
in the heart following injury caused by cardiovascular disease (congestive heart failure, 
etc.) or acute myocardial infarction are being investigated. Herein we examine recent 
findings from clinical and animal studies on the role of the intrinsic cardiac nervous sys-
tem on regulation of myocardial perfusion and the consequences of cardiac injury. We 
also discuss different interventions that target the autonomic nervous system, stimulate 
neuronal remodeling and adaptation, and thereby optimize patient outcomes.

Keywords: autonomic nervous system, sympathetic, parasympathetic nerves, intrinsic 
cardiac neurons, intrinsic cardiac nervous system, ischemia, arrhythmias

1. Introduction

Physiological functions (i.e. muscle contraction, glandular function, visceral activity, nerve 

impulses, etc.) of the body are controlled by the autonomic nervous system (ANS). Innervation to 

the heart is consistent among species [1–3]; the ANS comprises central, intrathoracic extracardiac 

and intrinsic cardiac components (see review by Hanna et al. [4]). The sympathetic and parasym-

pathetic systems interact to stimulate energy expenditure under conditions of stress or return the 
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body to a restful state; these systems comprise pathways that include preganglionic and post-

ganglionic neurons (activated by endogenous chemical neurotransmitters). Increasing attention 
focuses on the complex anatomy and function of the cardiac neuraxis; how diverse populations 

of neurons in peripheral autonomic and intrathoracic ganglia communicate with each other and 

between different organ systems remains the subject of ongoing investigation. Treatment strate-

gies that modulate the ANS are being developed and tested in the setting of cardiac dysfunction, 
arrhythmias and sudden death with the objective of stimulating or maintaining cardiovascular 

function. Improved mechanistic understanding of changes that occur within the nervous system 

hierarchy during pathogenesis of cardiac disease is therefore essential. This chapter examines 

current scientific literature on the effects of ischemia on the cardiac nervous system; the role of 
intrinsic cardiac neurons on regulation of myocardial blood flow, cardiac function, pathogen-

esis of nerve and myocardial tissue injury is discussed. For this review, clinical and basic science 

reports were searched on MEDLINE, Google Scholar and PubMed with the keywords intrinsic 

cardiac nervous system (ICNS), ischemia, reperfusion, cellular protection, myocardium, nerves 

and combinations thereof. In addition, we referred to data from our own research.

2. Cardiac nervous system

The sympathetic (adrenergic) component of the ANS stimulates cardiac conduction and myo-

cardial cells; on the other hand, the parasympathetic (cholinergic) nervous system exerts an 

inhibitory influence [5, 6]. Regulation of cardiac performance by the ANS involves modula-

tion of heart rate (positive chronotropy), increases in cardiac contractility (positive inotropy) 

and cardiac relaxation (positive lusitropy), decreased venous capacitance plus constriction of 

resistance and cutaneous vessels [7].

Sympathetic cardiac nerves originate from stellate, superior, middle cervical and thoracic 

ganglia [8]; postganglionic sympathetic neurons project efferent axons to the heart [9]. 

Parasympathetic nerves develop from the cardiac component of the cranial neural crest; pre-

ganglionic neurons access to the heart occurs via the vagus nerves [10, 11]. Cardiac ganglia 

are located in epicardial fat, in ganglionated plexi adjacent to the major cardiac vessels and in 

the ventricular wall [12–14]. ANS neurons are classified by chemical phenotyping; cholinergic 
and adrenergic populations of ganglionic cardiac neurons are readily found in cardiac gan-

glia [15–17]. Sensory neurons, interneurons and sensory fibers that develop from the nucleus 

ambiguus [18–20] likely play a role in pathogenesis of cardiac disease. In fact, activation of 

the neuroendocrine system is considered central to pathogenesis of cardiac disease; excess 

sympathetic activation promotes cardiovascular dysfunction, arrhythmias and sudden death 

[21]. Of note, is that visualization of the ICNS and the presence of interneuron connections is 

particularly challenging [22–25]; however, several immune histochemical techniques which 

target specific neurotransmitters within parasympathetic and sympathetic neurons have been 
particularly successful [26–30]. Neuroimaging techniques, cardioneural optical mapping and 

optogenetics are also being used to define the complex anatomy of the cardiac nervous system 
in animals and living humans to evaluate the role of the ANS in normal cardiac function as 

well as pathogenesis of cardiac disease [4, 31–33].
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3. Vasoregulation

Arteries normally respond to humoral, metabolic, mechanical and neural stimulation; local 

metabolic control occurs secondarily to myocardial metabolic change [34, 35]. In the heart, 

blood flow across the ventricular wall is precisely coordinated to metabolic requirements via 
adjustments in vessel tone; flow is therefore independent of external physical factors since 
metabolism is the ultimate determinant of regional perfusion over the operative range of 

autoregulation [36–38]. The ANS contributes to regulation of myocardial blood flow; sym-

pathetic nerve stimulation produces a biphasic response, which trends to coronary dilatation 

resulting from increases in myocardial oxygen demand as well as perfusion pressure [39, 40]. 

Neuropeptide chemicals elevate local catecholamine levels that modulate cardiac dynamics 

and indirectly increase blood flow across the left ventricular wall [40–42]. In dogs, with an 

intact cardiac nervous system, we documented significant increases in myocardial blood flow 
following application of nicotine or bradykinin to selected ganglionated plexi on the heart 

[40]; stimulation of nicotine sensitive neurons increases cardiac metabolic demand (i.e. higher 

heart rate and LV systolic pressure) but stimulation with bradykinin produces a similar result 

without affecting LV pressure. On the other hand, Vergroesen et al. documented that intact 
cardiac nerves were not essential for regulation of coronary blood flow [43]; however, they 

suggested that cardiac nerves essentially alter the speed of response of the coronary vascular 

bed to changes in heart rate and perfusion pressure. The cardiac nervous reflexes thought to 
be responsible for these effects has not been established but diverse cardiac afferent fibers and 
receptor subtypes (i.e. ventricular, coronary artery) have been studied.

Stimulation of ventricular mechanoreceptors causes an increase in arterial perfusion pres-

sure, which results in greater blood volume and reflex coronary vasodilatation [44, 45]; 

higher perfusion pressures promote vasoconstriction. However, stimulation of coronary 

artery baroreceptors also promote reflex vasodilatation [46]. These reflex responses following 
mechanoreceptor stimulation may confer protection against arterial injury and thereby slow 

progression of coronary artery disease.

Local release of prostaglandins, nitric oxide (NO) and endothelium-derived relaxation factors 

stimulate activation of select populations of cardiac neurons that contribute to vasoregulation. 

NO contributes to neuronal mediated vasoregulation; NO induced vasodilatation involves 

adrenergic, myogenic and hormonal influences [47, 48]. NO in concert with other vasoactive 

mediators effectively counteracts vasoconstrictor mechanisms [49–51]; these effects may be gen-

der dependent. Three nitric oxide synthase (NOS) isoforms that synthesize NO from l-arginine 

have been documented; of these, two are constitutively expressed Ca2+-dependent isoforms—

eNOS (endothelial) is localized in cardiocytes as well as vascular and endocardial endothe-

lium while nNOS (neuronal) is found in cardiac neurons [52–54]. The ubiquitous nature of NO 

implies a role in regulation of central nervous system, myocardium and vascular function [55]; 

nNOS and cardiac inhibitory G protein are believed to work in parallel in order to reduce sinus 

node rate and thereby modulate heart rate variability [56]. NO directly affects intrinsic cardiac 
neurons; almost 40% of these neurons are NOS positive [57]. Altered neuronal effects of NO 
may be important in pathogenesis of hypertension, septic shock, diabetes mellitus, etc.
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Figure 2. Myocardial blood flow distribution across the ventricular wall (measured with microspheres) in hearts from 
dogs with intact cardiac nerves (closed symbols) and after acute cardiac decentralization (open symbols). Data are means 

± SEM.

Studies from our laboratory, in dogs subject to acute cardiac decentralization, indicated that 

intrinsic cardiac neurons function independently of central neuronal inputs. In decentralized 

and innervated hearts coronary autoregulation was similar (Figure 1) despite substantial 

reductions in myocardial oxygen demand (in decentralized hearts) [58]. In addition, perfusion 

across the ventricular wall (in decentralized hearts; Figure 2) was preserved thus confirming 

Figure 1. Coronary blood flow versus diastolic coronary artery pressure during autoregulation. Pressure-flow relations 
in dogs with intact cardiac nerves (closed circles) and after extracardiac nerve ablation (open circles) are shown. Note the 

similarity between the two curves; reactive hyperemia blood flow was lower in decentralized dogs as shown.
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earlier findings of Rimoldi and coworkers [59] who reported no change in transmural distri-

bution of myocardial blood flow after regional sympathetic denervation. Stability of perfu-

sion across the ventricular wall was suggested to be due to several factors including neuronal 

modulation, autoregulation and variations in coronary resistance at the microvessel level 

(<100 μm). Interestingly, in neuropathy patients the innervation/ventricular perfusion ratio 

during reactive hyperemia is lower in innervated compared to denervated regions within the 

ventricular wall [60]. These findings are considerably different from those reported in human 
subjects after suppression of adenosine-mediated sympathetic activation [61].

4. Ischemic injury

4.1. Nervous system

Ischemia significantly modulates function of intrinsic cardiac neurons because of local accu-

mulations of metabolic by-products (i.e. reactive oxygen species, purinergic compounds, etc.) 

[62–64]. A limited number of animal studies have investigated the overall effects of ischemia 
on activity of nerves that course over, or through infarcted myocardium [65]; findings indi-
cate that blood supply to these cardiac nerves is not a determining factor for conduction of 

action potentials [66]. The question of whether, or not, cardiac nerves are more, or less, sen-

sitive to ischemia is less adequately studied; consequently, the injury threshold of cardiac 

nerves and neurons remains unknown. However, it is possible that activity of cardiac neu-

rons post-ischemia is preserved consequent to stimulation of ventricular sensory neurites that 

transduce mechanical and chemical milieu in the myocardium [67]. During acute myocardial 

ischemia, norepinephrine is released from sympathetic nerves; this triggers sympathetic 

nerve regeneration (i.e. sprouting, budding) and nerve remodeling to promote sympathetic 

hyperinnervation, which ultimately plays a role in arrhythmogenesis [68–72]. Function of car-

diac sympathetic neurons post-ischemia can also be triggered by the elevated production of 

intra-neuronal galanin (i.e. promotes regeneration of sympathetic axons) [73]; galanin modi-

fies synaptic transmission and contributes to arrhythmogenesis and sudden cardiac death. 
Additionally, multiple autacoids (adenosine, bradykinin, NO, reactive oxygen species, etc.) 

produced during ischemia stimulate the central nervous system, cardiac autonomic ganglia 

and sympathetic efferent postganglionic axons in coronary vessels [74, 75]. Neuropeptide 

chemicals released from sensory neurites also modulate intrinsic cardiac neuronal activity 

[41, 76]. It is interesting to speculate that common survival pathways of cardiac neurons may 

be shared with cardiocytes but this has not been established.

4.2. Heart

Infarction causes major changes between peripheral and central aspects of the cardiac nervous 

system; structural and functional alterations at the cardiomyocyte level include; (1) changes 

in collagen matrix [77], (2) induction of electromechanical dyssynchrony [78], (3) ventricular 

contractile dysfunction [79], apoptosis [80], etc. In the heart, ischemia affects the ICNS which 
is the convergence point for cardiac neural control. As such, afferent inputs are modulated 
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along with descending neural inputs [78] (i.e. including reflex-induced sympathoexcitation 
and reduced central drive from parasympathetic nerves [81, 82]). Heightened sympathetic 

tone partly mediated by neurotransmission through the stellate ganglia has been linked to 

cardiac pathogenesis as well as risk of cardiac arrhythmias and sudden death [83, 84].

Acute coronary artery occlusion produces distinct alterations in cardiomyocyte pathology 

that ultimately contribute to cell death; for cardiac myocytes a transmural gradient of cell 

death occurs in relation to duration and degree of ischemia [85, 86]. Transmural necrosis is 

mostly manifest by 6 h after acute coronary occlusion; the potential for tissue salvage after 

this time is limited (i.e. species dependent). Physiopathology of ischemic injury is gener-

ally well-documented [87–90]; numerous cytoprotective strategies to limit ischemic injury 

(i.e. pharmacologic, endogenous, etc.) have been tested but none has achieved widespread 

clinical use [90–92]. Post-ischemic remodeling of sympathetic neurons in stellate ganglia is 

not well established; however, a potential relation exists between ganglion inflammation 
and oxidative stress [93]. A recent study in rodents documented greater oxidative stress  

(i.e. lipofuscin accumulation, mitochondrial degeneration, etc.), metabolic activity (higher 

rate of lipid peroxidation) and inflammation in stellate glial cells [94]. These physiopathologi-

cal mechanisms are believed to contribute to local inflammation (i.e. leukocyte infiltration) 
within stellate ganglia; this stimulates neuronal activity and oxidative stress, which increases 

cardiac afferent neurotransmission [95]. Other contributing factors include circulating neuro-

hormonal compounds (i.e. angiotensin II, etc.) and brainstem-mediated increases in efferent 
sympathetic outflow [96–98]. Equally, cardiac inflammation and oxidative stress produced by 
repeated defibrillation are involved in ganglion pathology [99].

The importance of cardiac nerves for the pathogenesis of post-ischemic infarct development 

and cardiac dysfunction has been investigated in experimental models of ischemia-reperfu-

sion injury. In cardiac decentralized pigs, significant ventricular dysfunction accompanied 
by patchy subendocardial necrosis occurs after acute coronary occlusion [100]; myocardial 

perfusion-function relations in these animals were not affected by nerve status. In addi-
tion, we reported coronary vascular reserve to be comparable after nerve ablation albeit 

in a different experimental model [101], which is consistent with most published findings 
[102–105]. We also confirmed a trend towards smaller infarcts in dogs subject to extracardiac 
nerve ablation or pharmacologic decentralization using the autonomic ganglionic blocker 

hexamethonium bromide (Figure 3) [106]; these findings are also in agreement with earlier 
studies documenting increased tolerance to ischemic injury and a reduction in ventricular 

fibrillation threshold post-decentralization [102, 107, 108]. Reduced oxygen demand and 

improved perfusion of affected tissues could be responsible for increased ischemic tolerance 
of myocytes [43, 104, 105, 109] in the absence of intact cardiac nerves. Of note, extracardiac 

surgical ablation of sympathetic and parasympathetic efferent neuronal inputs produces 
a decentralized (not denervated) heart without complete elimination of parasympathetic 

involvement [110, 111]; on the other hand, pharmacologic ganglionic blockade with hexa-

methonium bromide blocks transmission within peripheral autonomic ganglia and vagal 

cardio-acceleration [112]. Continued research into the identification of endogenous com-

pounds that modulate or activate intrinsic neuronal populations to induce cellular protec-

tion remains a priority.
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4.3. Cardiac arrhythmogenesis

Sudden cardiac death due to ventricular arrhythmias is highly relevant to cardiovascular 

disease related mortality [113]; autonomic neuronal dysfunction is a major contributor to 

induction of atrial and ventricular dysrhythmias [114–116]. Pathologically induced dis-

turbances in neural processing within the cardiac neural hierarchy affect efferent neuronal 
outputs throughout the myocardium [19, 117] (i.e. intrinsic and extrinsic cardiac ganglia, 

central reflexes [95, 118–121]). Cardiac neurons are generally classified as afferent, efferent 
or convergent on the basis of responses to various cardiovascular stimuli [31, 120]. A study 

from Ardell’s laboratory examined functional remodeling of neuronal elements within the 

context of myocardial infarction [120]; they showed that: (1) morphological and phenotypic 

remodeling of intracardiac ganglia is dependent on the site of injury, (2) attenuation of affer-

ent neural signals to intrinsic cardiac neurons (i.e. within ischemic zone) but preservation of 

these signals in remote and border regions (i.e. neural sensory border zone), (3) autonomic 

efferent inputs to intrinsic cardiac neurons are maintained, (4) transduction capacity increases 
in convergent intrinsic local circuit neurons (of the heart) and (5) connectivity of intrinsic car-

diac neurons is reduced. Current findings suggest that neuronal remodeling can occur inde-

pendently of direct injury to specific neuron subsets; as such, neuronal plasticity within the 
cardiac neuroaxis is crucial post-infarction and during progression of cardiovascular disease 

[122, 123]. Indeed, healed myocardium provides a particular challenge to electrical propaga-

tion and regulation of cardiac function [124, 125]; abnormal cardiac efferent signaling results 
in continuous discord between central and peripheral aspects within the neural hierarchy that 

produces fatal arrhythmias due to excessive sympathoexcitation [122]. The peri-infarct region 

(i.e. interface between dense scar and surviving myocardium) also has an increased potential 

for ectopic beats [71, 126]. Ajijola and coworkers recently determined that (1) despite scar-

ring, myocyte loss and ion channel remodeling significant regulation of electrical activation 

Figure 3. Histogram of myocardial infarct size (as percent of anatomic area at risk) in dogs undergoing ischemia–

reperfusion injury. Three distinct groups are shown: (1) control (CTR); (2) acute cardiac decentralized (DCN) and (3) 

hexamethonium bromide (HEX). Data are mean ± 1SD; n = 8/group.
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Pertinent studies

Pharmacological interventions

• Neuregulin-1 [134–138]

• Ghrelin [139]

• Vasopressin [140]

• Anesthetic preconditioning [141]

Non-pharmacological interventions

• Transcutaneous electrical nerve stimulation (TENS) [142–144]

• Bioelectronic block [145–148]

• Spinal cord stimulation (SCS) [118, 149–152]

• Vagal nerve stimulation (VNS) [78, 153, 154]

• Renal nerve denervation [155–157]

• Cardiac decentralization and carotid body ablation [158–162]

• Cardiac conditioning (ischemia, exercise) [21, 163, 164]

Table 1. Management strategies that target the autonomic nervous system.

occurs via cardiac sympathetic nerves within the peri-infarct region, and (2) there is significant 
remodeling of sympathetic innervation within the anteroapical region [127]; additionally, they 

emphasized the critical role of adrenergic activation in modulating propagation patterns.

Premature ventricular contractions (PVC; contraction of the ventricles caused by abnormal 

electrical activity) often lead to cardiovascular events, left ventricle dysfunction and sud-

den cardiac death [128]; multiple mechanisms have been proposed including mechanical 

dyssynchrony, abnormalities in calcium handling and oxygen consumption and autonomic 

imbalance [122, 129, 130]. Hamon and coworkers documented (using in vivo cardioneural 

mapping) that PVCs are a powerful stressor for the ICNS and that PVC-induced neural and 

electrophysiological changes are critical for arrhythmogenesis and remodeling. PVCs with 

variable coupling intervals have a more complex impact on cardiac neurons than those with 

fixed short or long coupling intervals [128]. The unpredictability of coupling intervals could 

trigger a sympathovagal imbalance that influences cardiomyocyte function and leads to elec-

tric instability. Greater neuronal responses (particularly within convergent neurons that are 

responsible for reflex processing) to variable compared to constant stimulus (i.e. neural adap-

tation) have been described in sensory neurons of the visual, auditory and olfactory systems 

[131, 132]. In the heart sympathetic nerve activity is greater during irregular cardiac pacing 

and is independent of hemodynamic changes [133]. As such, increased variability of PVC 

coupling interval could play a role in reflex activation of the ANS. Greater understanding 
of underlying mechanoelectric mechanisms of PVC-induced arrhythmogenesis should help 

to improve risk stratification in cardiac patients that would allow use of more aggressive 
pharmacologic and non-pharmacologic therapeutics (i.e. specifically targeting the ANS) in 
prophylactic management (cf. Table 1).

Autonomic Nervous System46



5. Therapeutic interventions

5.1. Pharmacological

Pharmacologic interventions can play an important role in post-ischemic nerve repair; though 

most medications reduce the incidence of arrhythmias some can be proarrhythmic [165]. 

Significant improvement in acute and chronic ischemic cardiomyopathy, myocarditis and 
vagus nerve remodeling have recently been reported in clinical and experimental studies with 

different pharmacological approaches such as epidermal growth factor neuregulin-1 (NRG1) 
[134, 138, 166–168]. NRG1 is a key factor for cardiac development [136, 169]; NRG1 activates 

tyrosine kinase causing a host of cardiovascular effects: (1) regulation of structure and func-

tion in cardiomyocytes (i.e. apoptosis, cell proliferation), (2) promotion of angiogenesis and 

(3) downregulation of sympathetic nerve mRNA and protein expression levels to inhibit 

nerve remodeling [134, 135, 137, 170].

5.2. Non-pharmacological

Cardiovascular disease is often accompanied by increased activity of carotid body chemo-

receptors, which induces an autonomic imbalance [161]; ablation of carotid bodies has been 

documented to markedly improve post-ischemic cardiovascular end-points in clinical and 

animal studies [159, 160, 171]. Catheter ablation techniques have been used effectively in 
patients with ventricular tachyarrhythmias [147]; in addition, bilateral cardiac stellate decen-

tralization (removes excessive sympathetic input to cardiomyocytes) is used in subjects that 

do not respond to conventional treatments [158]. A drawback of the latter intervention is 
that it is permanent and generally accompanied by secondary effects [172]. Of note is that 

the ICNS preserves the ability to coordinate neural activity and electrical stability even after 

disconnection of inputs from higher central command (i.e. brain) [173].

Specific neuron subpopulations can be targeted for neuromodulation therapy [174–176]; spinal 

cord stimulation (SCS), vagus nerve stimulation (VNS) and bioelectronic therapy (i.e. charge-

balanced direct current, axonal modulation, kilohertz (kHz) frequency alternating current, etc.) 
are used in ischemic heart disease patients to abate reflex activation of peripheral ganglia [118, 

147, 148, 174, 177, 178]. Application of electric current by stimulation/suppression of action 

potential propagation along nerves modulates neuron and organ function [145, 179]. Blockade 

of action potential propagation is produced by either kHz frequency alternating current or 

direct current; these protocols are used repeatedly and safely in patients [145, 147, 180].

SCS stimulates sympathetic afferents to transduce signals, which initiate from the ischemic 
myocardium, to spinal cord dorsal horn neurons [121, 181]. In the majority of patients receiv-

ing this treatment beneficial effects (i.e. improved exercise capacity, quality of life, etc.) last for 
more than a year [182, 183]. Additionally, SCS augments resistance to stress in myocytes by 

modifying myocyte energetics [177, 184]; in our laboratory, we documented that concurrent 

SCS did not influence post-ischemic ventricular perfusion [150].

VNS, on the other hand, protects myocardium [185–187] through anti-adrenergic interac-

tions (i.e. higher parasympathetic activity stimulates muscarinic receptor activation that 
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limits excess adrenergic receptor activation [188]) within intrinsic cardiac ganglia [189, 190] 

combined with reduced release of norepinephrine from presynaptic mechanisms in ischemic 

myocardium [191]. VNS also influences myocyte energetics due to its regulatory effects on 
glycogen metabolism [78, 185]; all of these factors can change sensory transduction within the 

cardiac milieu in the event of disparities between oxygen and nutrient supply and demand.

Salavation and co-workers have examined potential differences between SCS and VNS with 
regard to their ability to alter cardiac sensory neurons in nodose ganglia to transduce the 

ischemic myocardium; they reported that these interventions differentially obtund nocicep-

tive-related nodose afferent neuronal inputs to the medulla but do not affect mechanosensi-
tive transduction capabilities [192]. These nerve stimulation techniques are presently being 

tested in a number of clinical trials in heart failure patients (i.e. NECTAR-HF, ANTHEM-HF, 

INOVATE-HF) with promising results [153, 193, 194].

Intact neural pathways may be unimportant for protection of ischemic myocardium; this is 

most apparent in the transplanted heart where autonomic ganglia are disconnected from 

central neurons [121, 195]. Endogenous compounds released into the bloodstream or locally 

near nerves, neurons and cardiomyocytes, etc. during ischemia could stimulate intracellu-

lar pathways that transduce cytoprotective mechanisms. For instance, cardiac conditioning, 

which significantly delays development of post-ischemic tissue injury [91, 196–198], might 

involve activation of the ICNS (cf. recent review [90]). A variety of conditioning stratagems 

(both pharmacologic and non-pharmacologic) that trigger cellular transduction pathways 

(guanylate cyclase, kinases, etc.) mediate cellular protection through end-effectors; significant 
cross-tolerance exists with regard to the mechanisms involved [106, 199, 200].

6. Conclusions

Neurocardiology involves dynamic exchange between neurohumoral control systems and 

the cardiac milieu; bi-directional interactions between sympathetic and parasympathetic 

efferent pathways regulate inter-organ communications at different levels of the neuraxis.

This is evident in the cardiac conditioning paradigm (i.e. pre-, per-, post- and remote) where 

endogenous ligands and catecholamines trigger intracellular transduction pathways to medi-

ate cytoprotective end-effectors that promote cell survival [201, 202]. Strategies that protect 

against non-lethal ischemic injury could depend on nervous system status the question of 

how cytoprotective signals are transmitted between organs remains crucial. New findings 
support the concept that disorders within the ANS contribute to pathogenesis of organ injury, 

co-morbidities [203, 204] and even survival. Improved comprehension of modifications within 
the cardiac-neuro axis at the molecular, cellular, organ and whole body levels are critical for 

development of therapeutic strategies.
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