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Abstract

Process Petri nets with time stamps (PPNTS) are the newly introduced class of low-level
Petri nets, whose definition and the properties are the main topic of this chapter; they
generalize the properties of Petri net processes in the area of design, modeling and
verification of generally parallel systems with the discrete time. Property-preserving Petri
net process algebras (PPPAs) were originally designed for the specification and verifica-
tion of manufacturing systems. PPPA does not need to verify composition of Petri net
processes because all their algebraic operators preserve the specified set of the properties.
These original PPPAs are generalized for the class of the PPNTSs in this chapter. The new
COMP, SYNC and JOIN algebraic operators are defined for the class of PPNTS and their
chosen properties are proved. With the support of these operators, the PPNTSs can be
extended also to the areas of project management and the determination of the project
critical path with the support of the critical path method (CPM). The new CPNET subclass
of PPNTS class is defined in this chapter. It is specially designed for the generalization of
the CPM activity charts and their properties. This fact is then demonstrated on the simple
project example and its critical path and other property specifications.

Keywords: process Petri nets with time stamps, property-preserving Petri net process
algebras, critical path method, discrete time, property preservation, parallel systems
modeling

1. Introduction

There are currently a number of formally defined classes of Petri nets [1, 2] available for

modeling of generally parallel systems. When studying distributed parallel programming

systems, real-time systems, economic systems and many other types of systems, it plays a role

modeling of the time variables associated with individual system events, the duration of the
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studied activities, the time history of the modeled system and many other time characteristics.

Special classes of Petri nets were introduced for the modeling of these types of systems with

discrete time and their properties were studied in detail. Time Petri nets and timed Petri nets

[3, 4] are currently the twomost important classes of low-level Petri nets that use the concept of

discrete time in their definition. Other classes of low-level Petri nets with discrete time are

introduced and discussed for instance in [5–7]. It can be stated that most of the currently

studied classes of Petri nets with discrete time use only the relative time variables usually

related to the specific marking of the given Petri net. This fact can then cause difficulties, for

example, in modeling complex time-synchronized distributed systems in which an external

time source is usually available and individual components of this system must be synchro-

nized with this external time source.

Process Petri nets (PPN) [8] were primarily introduced as a special subclass of classic low-level

Petri nets for their using in the area of workflow management. PPN is a continuous Petri net

that include within the set of all its places the unique input place, the unique output place and

a finite set of so-called resource places which may contain, along with the input place, the

tokens in the entry marking of the given PPN. These tokens located in the entry marking of

PPN at the resource places usually represent the permanent resources of the modeled system.

The given PPN can pass into its exit marking that is reachable from its entry marking by

performing the final sequence of the transition firings. The tokens of the PPN’s exit marking

may be then located only at its single output place and also at its resource places.

Process Petri nets with time stamps (PPNTS) are the newly introduced class of low-level Petri

nets whose definition and the properties are the main topics of this chapter. PPNTS generalize

the properties of PPNs in the area of design, modeling and verification of generally parallel

systems with the discrete time.

Property-preserving Petri net process algebras (PPPA) [9] were originally designed for the

specification and verification of manufacturing systems. PPPA has four types of operators:

extensions, compositions, refinements and reductions. All operators can preserve about 20

PPN’s properties (some of them under additional conditions), such as liveness, boundedness,

reversibility, RC-property, traps, siphons, proper termination, and so on. PPPA does not need

to verify composition of PPNs because all their algebraic operators preserve the specified set of

the properties. Hence, if the source PPNs satisfy the desirable properties, each of the composite

PPN, including the PPN that models the resulting system itself, also satisfies these properties.

These original PPPA are generalized for the class of the PPNTS in this chapter and their

properties of proper-formed, well-formed and pure-formed PPNTS are then newly introduced.

The new COMP, SYNC and JOIN algebraic operators are defined for the class of PPNTS and

their chosen properties are proved.

With the support of these operators, the PPNTS can be extended also to the areas of the project

management and the determination of the project critical path with the support of the critical

path method (CPM) [10]. The new CPPNET subclass of PPNTS class is then defined in this

chapter to represent pure-formed time-dependent processes. It is specially designed for the

generalization of the CPM activities charts and their properties. This fact is then demonstrated

on the simple project example and its critical path and other properties specification.
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This chapter is arranged into the following sections: Section 2 explains the base term of this

chapter, that is, process Petri nets with time stamps and introduces the terms of proper-

formed, well-formed and pure-formed PPNTS; Section 3 discusses algebraic operators COMP

and SYNC defined over the class of PPNTS and their main properties; Section 4 then intro-

duces the special subclass CPPNET of the PPNTS class and explains its use in the area of the

project management to represent pure-formed time-dependent processes with using of

PPNTSs and to find critical paths for these processes similarly as in the case of the well-known

critical path method (CPM). Finally, Section 5 gives the conclusions of the research to conclude

the chapter.

2. Process Petri nets with time stamps and their properties

Let N denote the set of all natural numbers, N := {1, 2,…}; N0 the set of all non-negative integer

numbers, N0 := {0, 1, 2, …}; ∅ the empty set; |A| the cardinality of the given set A; P (A)

denotes the family of all the subsets of the given set A; f: A ! B a function on a domain A to a

codomain B; ⌐ the logical negation operator. Let (A ⊂ N0) ∧ (∃n ∈ N: |A| = n) ∧ (A 6¼ ∅); then

max(A) := x, where (x ∈ A) ∧ (∀y ∈ A: x ≥ y). Multiset M over a nonempty set S is a function M:

S ! N0. The non-negative number M(a) ∈ N0, where a ∈ S, denotes the number of occurrences

of the element a in the multisetM. The multisetM over a nonempty set Swill be represented by

the notation M := [aM(a), bM(b), cM(c), …] = [a, …, a, b, …, b, c, …, c, …], where S := {a, b, c, …}.

Notation SMS then denotes the class of all the multisets over the set S.

Definition 1. Let A be a nonempty set. By the (nonempty finite) sequence σ over the set Awe

understand a function σ: {1, 2,…, n} ! A, where n ∈ N. Function ε: ∅ ! A is called the empty

sequence on the set A. We usually represent the sequence σ: {1, 2,…, n} ! A by the notation

σ = <a1, a2,…, an > of the elements of the set A, where ai = σ(i) for 1 ≤ i ≤ n. Empty sequence ε:

∅ ! A on the set A we usually represent by the notation ε = <>. We denote the set of all finite

(and possible empty) sequences over the set A by the notation ASQ.

If σ = <a1, a2,…, an > and τ = <b1, b2,…, bm > are the finite sequences, where σ ∈ ASQ, τ ∈ ASQ, n

∈ N, m ∈ N, then by the concatenation of the sequences σ and τ, denoted by σ++τ, we

understand the finite sequence σ++τ := < a1, a2, …, an, b1, b2, …, bm>. The following functions

are defined:

i. length: ASQ ! N0, so that: length(σ) := n, length(ε) := 0,

ii. elements: ASQ ! P (A), so that: elements(σ) := {a | ∃i, 1 ≤ i ≤ n: a = σ(i)}, elements(ε) := ∅,

iii. prefix: ASQ � N0 ! ASQ, so that:

prefix(<a1, a2,…, an>, m) := < a1, a2,…, am>, if m ≤ n,

prefix(<a1, a2,…, an>, m) := < a1, a2,…, an>, if m > n,

prefix(ε, m) := ε,
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iv. suffix: ASQ � N0 ! ASQ, so that:

suffix(<a1, a2, …, an>, m) := < am + 1, am + 2, …, an>, if m < n,

suffix(<a1, a2, …, an>, m) := ε, if m ≥ n,

suffix(ε, m) := ε,

v. create: N � A ! ASQ, so that: create(n, a) := < a, a, …, a>, where length(<a, a, …, a>) = n,

vi. sort: (N0)SQ ! (N0)SQ, so that: sort(σ) := r,

where (r = <b1, b2, …, bn>) ∧ (b1 ≤ b2 ≤ … ≤ bn) ∧ ([a1, a2, …, an] = [b1, b2, …, bn]).

We use the following subsets of the set (N0)SQ:

• N
# := {σ ∈ (N0)SQ | (σ = ε) ∨ ((σ = <a1, a2, …, an>) ∧ (a1 ≤ a2 ≤ … ≤ an)), n ∈ N},

• N
0 := {σ ∈ (N0)SQ | (σ = ε) ∨ ((σ = <0, 0, …, 0>) ∧ (length(σ) = n)), n ∈ N}.

Thus, the elements of the set N# constitute the empty sequence ε and all the finite ascending

ordered sequences σ consisting of non-negative integer numbers. Similarly, the elements of the

set N0 then form an empty sequence ε and all the sequences in the form <0, 0, …, 0 > of any

finite length.

Definition 2. Net NET is an ordered triple NET := (P, T, A), where P is finite nonempty set of

places, T is finite set of transitions, P ∩ T = ∅, and A is finite set of arcs, A ⊆ (P� T) ∪ (T� P).□

The given net NET is then described with a bipartite graph containing a finite nonempty set P

of places used for expressing of the conditions of a modeled process (we usually use circles for

their representation), a finite set T of transitions describing the changes in the modeled process

(we usually draw them in the form of rectangles) and a finite set A of arcs being principally

oriented while connecting the place with the transition or the transition with the place and we

usually draw them as lines with arrows.

Some commonly used notations for the nets are •y = {x | (x, y) ∈ A} for the preset and y• = {x |

(y, x)∈A} for the postset of a net node y (i.e., place or transition). A path of a netNET := (P, T,A) is

a nonempty sequence <x1,…, xk> of net nodes, where k∈N, which satisfies (x1, x2), (x2, x3),…, (xk-

1, xk) ∈A. A path of the netNET := (P, T, A) leading from its node x to its node y is a circuit if (y, x)

∈ A. We denote the set of all the circuits of the net NET by CIRCUITSNET. Net NET’ := (P0, T’, A’)

is a subnet of the net NET := (P, T, A) if (P0 ⊆ P) ∧ (T’ ⊆ T) ∧ (A’ = A ∩ ((P0 � T’) ∪ (T’ � P0))). Net

NET is connected if and only if it is not composed of two ormore disjoint and nonempty subnets.

Definition 3. Process net with time stamps (PNTS) PNTS is an ordered tuple PNTS := (P, T, A,

AF, TP, TI, IP, OP, RP), where

i. (P, T, A) is the connected net, ∀t ∈ T: (•t 6¼ ∅) ∧ (t• 6¼ ∅),

ii. AF: (P � T) ∪ (T � P) ! N0 is the arc function,

AF x; yð Þ > 0⇔ x; yð Þ∈A,AF x; yð Þ ¼ 0⇔ x; yð Þ∉A,where x, y∈P∪T,
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iii. TP is the transition priority function, TP: T ! N,

iv. TI: (T � P) ! N0 is the time interval function,

v. IP is the input place, (IP ∈ P) ∧ (•IP = ∅) ∧ (∀p ∈ (P \ ({IP} ∪ RP)): •p 6¼ ∅),

vi. OP is the output place, (OP ∈ P) ∧ (OP• = ∅) ∧ (∀p ∈ (P \ ({OP} ∪ RP)): p• 6¼ ∅),

vii. RP is the set of resource places, (RP ⊆ (P \ {IP, OP})) ∧ (∀t ∈ T: ⌐(•t ⊆ RP)).

The class of all the PNTS will be denoted by PNTS. □

The given PNTS PNTS := (P, T, A, AF, TP, TI, IP, OP, RP) is represented by the connected net

(P, T, A) with nonempty preset and postset of each of its transitions t; the arc function AF

assigning each arc with a natural number (such number has the default value of 1, if not

explicitly indicated in the PNTS diagram) expressing the number of removed or added tokens

from or to the place associated with that arc when firing a particular transition; transition

priority function TP assigns with each transition the natural number value expressing its

priority (with the default value of 1); the time interval function TI assigns to each arc of the type

(transition, place) a non-negative integer d expressing the minimum time interval during which

the token has to remain in the place instead of being able to participate in the next firing of some

transition and it thus determines the so-called time marking of the given PNTS (the value d

associated with the respective arc is given in the format +d in the PNTS diagram); the input place

IP is the only one nonresource place of PNTS PNTSwith no input arc(s); the output place OP is

the only one nonresource place of PNTS PNTSwith no output arc(s); the finite set RP of resource

places is used for expressing conditions of a modeled process containing some initial resources

and we use circles with the double line for their representation.

Definition 4. Let PNTS := (P, T, A, AF, TP, TI, IP, OP, RP) be the PNTS. Then:

i. marking M of the PNTS PNTS is a function M: P ! N0,

ii. time marking m of the PNTS PNTS is a function m: P ! N
#,

where ∀p ∈ P: |M(p)| = length(m(p)),

iii. variable τ ∈ N0 is the net time of the PNTS PNTS,

iv. state S of the PNTS PNTS is an ordered triple S := (M, m, τ),

v. transition t ∈ T is enabled in the state S := (M,m, τ) of the PNTS PNTS that is denoted by t

en S, if ∀p ∈ •t: (M(p) ≥ AF(p, t)) ∧ (∀n ∈ elements(prefix(m(p), AF(p, t))): n ≤ τ)),

vi. firing of the transition t ∈ T results in changing the state S := (M, m, τ) of the PNTS PNTS

into its state S0 := (M’, m’, τ) that is denoted by S [t〉 S0, where ∀p ∈ P:

• M’(p) := M(p) � AF(p, t) + AF(t, p),

• m’(p) := sort(suffix(m(p), AF(p, t))++create(τ + TI(t, p), AF(t, p))),

vii. elapsing of time interval δ∈N results in changing the state S := (M,m, τ) of PNTSPNTS into

its state S0 := (M,m, τ + δ), where ∀t ∈ T: ⌐(t en (M,m, τ)), that is denoted by S [δ〉 S0, so that:
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∀t∈T ∀n∈N; 1 ≤n < δ : ⌐ t en M;m; τþ nð Þð Þð Þ ∧ ∃t∈T : t en M;m; τþ δð Þð Þ,

viii. if the transitions t1, t2,…, tn ∈ T are enabled in the state S := (M, m, τ) of PNTS PNTS (i.e.,

(t1 en S) ∧ (t2 en S) ∧… ∧ (tn en S)) we say that these transitions are enabled in parallel in

the state S that is denoted by {t1, t2,…, tn} en S,

ix. finite nonempty sequence σ := t1 t2 … tn of the transitions t1, t2, …, tn ∈ T for which the

following is valid in the state S1 := (M1, m1, τ1) of PNTS PNTS:

• (M1, m1, τ1) [t1〉 (M2, m2, τ1) [t2〉… [tn〉 (Mn + 1, mn + 1, τ1),

• ∀t ∈ T: ⌐(t en (Mn + 1, mn + 1, τ1)),

is called step σ in the given state S1 of PNTS PNTS and it is denoted by.

M1;m1; τ1ð Þ σ½ i Mnþ1;mnþ1; τ1ð Þ,

x. finite nonempty sequence r of steps and time intervals elapsing that represents the

following finite sequence

M1;m1; τ1ð Þ σ1½ i M2;m2; τ1ð Þ δ1½ i… Mnþ1;mnþ1; τnð Þ δn½ i Mnþ1;mnþ1; τnþ1ð Þ

of the state changes of PNTS PNTS is the sequence r := σ1 δ1 σ2 δ2 … σn δn of steps σ1, σ2,…,

σn and time intervals elapsing δ1, δ2, …, δn,

xi. we say the state S0 of PNTS PNTS is reachable from its state S if there exists the finite

sequence r := σ1 δ1 σ2 δ2 … σn δn of steps σ1, σ2, …, σn and time intervals elapsing

δ1, δ2, …, δn such that S [σ1 δ1 σ2 δ2 … σn δn〉 S0; the set of all the reachable states

of PNTS PNTS from its state S is denoted by [S〉; the set of all the finite sequences

r := σ1 δ1 σ2 δ2 … σn δn associated with all the reachable states S0 ∈ [S〉 is denoted by

[S〉〉, that is,

S½ ii≔ σ1 δ1 σ2 δ2… σn δn ∣∃S
0 ∈ S½ i : S σ1 δ1 σ2 δ2… σn δn½ i S0, n∈Nf g,

xii. the set of all the states S := (M, m, τ) of PNTS PNTS is denoted by S,

xiii. the set of all the markings M associated with the set S of all the states of PNTS PNTS is

denoted by M, that is, M := {M | (S = (M, m, τ)) ∧ (S ∈ S)},

xiv. static state Ss := (Ms, ms, τs) of PNTS PNTS is every of its states where

∀p∈P\RP : Ms pð Þ ¼ 0ð Þ ∧ ms pð Þ ¼<>ð Þ,

xv. the set of all the static states Ss := (Ms, ms, τs) of PNTS PNTS is denoted by Ss,

xvi. the set of all the static markings Ms associated with the set Ss of all the static states of

PNTS PNTS is denoted by Ms, that is, Ms := {Ms | (Ss := (Ms, ms, τs)) ∧ (Ss ∈ Ss)},

xvii. the function ξ:M!Ms which assigns to each markingM ∈M of a given PNTS PNTS the

associated static marking Ms ∈ Ms is defined as follows:

• ∀p ∈ RP: ξ(M(p)) := M(p),

• ∀p ∈P \ RP: ξ(M(p)) := 0,
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xviii. entry state Se := (Me, me, τe) of PNTS PNTS is every of its states where

• ∃k ∈ N: (Me(IP) = k) ∧ (length(me(IP)) = k),

• ∀p ∈ P \ (RP ∪ {IP}): (Me(p) = 0) ∧ (me(p) = <>),

• ∀p ∈ RP: (Me(p) ≥ 0) ∧ (me(p) ∈ N0),

xix. the set of all the entry states Se := (Me, me, τe) of PNTS PNTS is denoted by Se,

xx. exit state Sx := (Mx, mx, τx) of PNTS PNTS that is reachable from its entry state

Se := (Me, me, τe) is every of its states where

• Sx ∈ [Se〉,

• Mx(OP) = Me(IP),

• ∀p ∈ P \ (RP ∪ {OP}): (Me(p) = 0) ∧ (me(p) = <>),

xxi. the set of all the exit states Sx := (Me, me, τe) of PNTS PNTS that are reachable from its

entry state Se := (Me, me, τe) is denoted by [Se〉x,

xxii. the set of all the exit states Sx of PNTS PNTS that are reachable from all its entry states

Se ∈ Se is denoted by Sx. □

The above established concepts are demonstrated in a simple example of the PNTS PNTS1 :=

(P, T, A, AF, TP, TI, IP, OP, RP) that is shown in Figure 1, where P := {IP, P1, R1, OP}, T := {T1,

T2, T3}, A := {(IP, T1), (IP, T2), (T1, P1), (T2, P1), (R1, T1), (P1, T3), (T3, R1), (T3, OP)}, AF :=

{((IP, T1), 1), ((IP, T2), 1), ((T1, P1), 1), ((T2, P1), 2), ((R1, T1), 1), ((P1, T3), 1), ((T3, R1), 1), ((T3,

OP), 1)}, TP := {(T1, 2), (T2, 1), (T3, 1)}, TI := {((T1, P1), 3), ((T2, P1), 3), ((T3, R1), 1), ((T3, OP),

4)}, IP := IP, OP := OP, RP := {R1}.

PNTS PNTS1 is in its entry state Se := (Me, me, τe), where markingMe := (Me(IP),Me(P1),Me(R1),

Me(OP)) = (2, 0, 2, 0), time marking me := (me(IP), me(P1),me(R1), me(OP)) = (<0, 2>, <>, <0, 0>, <>)

and net time τe = 0 (i.e., τe = τ). Static marking Ms ∈ Ms associated with the entry marking Me

(see (xiv) and (xvii) of Definition 4) has the value Ms := ξ(Me) = (0, 0, 2, 0).

Figure 1. Firing of transition T1 in PNTS PNTS1.
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Time marking m of any PNTS expresses the current time state of the modeled system using the

final (or empty) ascending ordered sequences of non-negative integers (i.e., elements of the set

N
#) associated with each of its places. The individual values of the time marking m associated

with the arbitrary place p of the given PNTS in its state S, informally said, represent the values

of the net time τ at which the respective token can first participate in the firing of selected

enabled transition t of the given PNTS.

The transitions T1 and T2 are enabled in the entry state Se because (see (v) of Definition 4):

• ∀p ∈ •T1: (2 =M(IP) ≥ AF(IP, T1) = 1) ∧ (2 =M(R1) ≥ AF(R1, T1) = 1) ∧ (∀n ∈ elements(prefix

(m(IP), AF(IP, T1))) = elements(prefix(<0, 2>, 1)) = elements(<0>) = {0}: 0 ≤ 0) ∧ (∀n ∈ elements

(prefix(m(R1), AF(R1, T1))) = elements(prefix(<0, 0>, 1)) = elements(<0>) = {0}: 0 ≤ 0),

• ∀p ∈ •T2: (2 = M(IP) ≥ AF(IP, T1) = 1) ∧ (∀n ∈ elements(prefix(m(IP), AF(IP, T2))) = elements

(prefix(<0, 2>, 1)) = elements(<0>) = {0}: 0 ≤ 0).

When enabling individual transitions of the given PNTS so-called conflicts can originate in its

certain markings (or conflict transitions). At the enabling of the transitions t1 and t2 of the

given PNTS in its state S the conflict occurs, if both transitions t1 and t2 have at least one input

place, each of the transitions t1 and t2 is individually enabled in the state S, but the transitions

t1 and t2 are not enabled in parallel in the state S (see (viii) of Definition 4) and enabling of one

of them will prevent enabling of the other (i.e., (•t1 ∩ •t2 6¼ ∅) ∧ (t1 en S) ∧ (t2 en S) ∧ ⌐({t1, t2} en

S)). The term of conflict transitions can be obviously easily generalized for the case of a finite

set t1, t2, …, tn, n ∈ N of the transitions of the given PNTS.

The transitions T1 and T2 in the entry state Se of PNTS PNTS1 are conflict transitions because

the time marking me(IP) = <0, 2 > (i.e., only one token of the entry marking Me(IP) may

participate in the firing of the transition T1 or T2 in the net time τe = 0). When solving such

transitions conflict we therefore follow the rule which determines, informally said, that from

the set of conflict transitions the one will be enabled, whose value of the transition priority

function TP is the highest. If such transition from the set of conflict transitions does not exist,

the given conflict would have to be solved by other means. The transition T1 is then enabled in

the entry state Se on the basis of that rule in our studied example (because TP(T1) = 2 and TP

(T2) = 1).

Firing of the transition T1 changes the entry state Se := (Me, me, τe) of the PNTS PNTS1 into its

state S1 := (M1, m1, τe) (i.e., Se [T1〉 S1—see Figure 1), where (see (vi) of Definition 4):

• M1(IP) := Me(IP) - AF(IP, T1) = 2 � 1 = 1,

• m1(IP) := sort(suffix(me(IP), AF(IP, T1))) = sort(suffix(<0, 2>, 1)) = sort(<2>) = <2>,

• M1(P1) := Me(P1) + AF(T1, P1) = 0 + 1 = 1,

• m1(P1) := sort(create(τ + TI(T1, P1), AF(T1, P1))) = sort(create(0 + 3, 1)) = sort(create(3,

1)) = sort(<3>) = <3>,

• M1(R1) := Me(R1) - AF(R1, T1) = 2 � 1 = 1,

• m1(R1) := sort(suffix(me(R1), AF(R1, T1))) = sort(suffix(<0, 0>, 1)) = sort(<0>) = <0> .
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There is no enabled transition in the state S1 := (M1, m1, τ1) and it is necessary to perform the

time interval elapsing with the value of δ = 2. This will change the state S1 := (M1, m1, τe) into

the state S2 := (M1, m1, τ1), where τ1 := τe + δ = 2 (i.e., S1 [2〉 S2). It can be easily shown that

transition T1 in the state S2 is enabled and firing of this transition changes the state S2 :=

(M1, m1, τ1) of the PNTS PNTS1 into its state S3 := (M2, m2, τ1) (i.e., S2 [T1〉 S3), where M2 :=

(M2(IP), M2(P1), M2(R1),M2(OP)) = (0, 2, 0, 0) and m2 := (m2(IP), m2(P1), m2(R1), m2(OP)) = (<>,

<3, 5>, <>, <>).

It can then be easily verified that S3 [1〉 S4 [T3〉 S5 [2〉 S6 [T3〉 Sx, where:

• S4 = (M2, m2, τ2) = ((0, 2, 0, 0), (<>, <3, 5>, <>, <>), 3),

• S5 = (M3, m3, τ2) = ((0, 1, 1, 1), (<>, <5>, <4>, <7>), 3),

• S6 = (M3, m3, τ3) = ((0, 1, 1, 1), (<>, <5>, <4>, <7>), 5),

• Sx = (M4, m4, τ3) = ((0, 0, 2, 2), (<>, <>, <4, 6>, <7, 9>), 5).

There are no enabled transitions in the exit state Sx := (M4, m4, τ3) of PNTS PNTS1 that is

reachable from the entry state Se := (Me,me, τe) (see (xx) of Definition 4) and there is also no time

interval elapsing value δ in this state that enables any of the transitions.

The set AMs ⊆Ms of all the allowed static markings of the given PNTS PNTS, informally said,

expresses how many tokens may be located in its individual resource places if PNTS PNTS be

in its (now no longer arbitrary) allowed entry state ASe ∈ ASe, where ASe ⊆ Se. For instance, the

set AMs of the PNTS PNTS1 (see Figure 1) can be defined as AMs := {(0, 0, k, 0) | k ∈ N}, that is,

there must be at least one token in the resource place R1 (and of course at least one token in the

input place IP) in any allowed entry state ASe ∈ ASe.

Definition 5. Let PNTS := (P, T, A, AF, TP, TI, IP,OP, RP) be a PNTS, AMs ⊆Ms be the set of all

of its allowed static markings and ASe := {ASe | (ASe = (AMe, ame, 0)) ∧ (ξ(AMe) ∈ AMs)} be the

set of all of its allowed entry states. Then:

i. PNTS is k-bounded PNTS if

∀ASe ∈ASe ∃k∈N0∀p∈P ∀S∈ ASe½ i, S≔ M;m; τð Þ : M p
� �

≤k,

ii. PNTS is proper-formed PNTS if

∀ASe ∈ASe : ∀S∈ ASe½ i∃Sx ∈ ASe½ ix : Sx ∈ S½ ið Þ ∧ ∃n∈N : ∣ ASe½ ið i∣ ¼ nÞ,

iii. proper-formed PNTS is well-formed PNTS if

∀ASe ∈ASe∀Sx ∈ ASe½ ix, Sx≔ Mx;mx; τxð Þ : ξ Mxð Þ∈AMs,

iv. well-formed PNTS is pure-formed PNTS if

∀ASe ∈ASe∀Sx ∈ ASe½ ix, Sx≔ Mx;mx; τxð Þ : ξ AMeð Þ ¼ ξ Mxð Þ: □

PNTS is proper-formed PNTS if for any of its state S that is reachable from any allowed entry

state ASe ∈ ASe there exists its output state Sx that is also reachable from its allowed entry state
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ASe ∈ ASe such that the output state Sx is also reachable from the state S (i.e., ∀S ∈ [ASe〉 ∃Sx ∈

[ASe〉x: Sx ∈ [S〉). Furthermore, the cardinality of the set [ASe〉〉 of all the sequences r := σ1 δ1 σ2

δ2 … σn δn associated with all the reachable states S ∈ [ASe〉〉 must be finite (i.e., (∃n ∈ N: |

[ASe〉〉| = n).

Proper-formed PNTS is well-formed PNTS if for any of its allowed entry state ASe ∈ ASe and

for any of its exit state Sx ∈ [ASe〉x, where Sx := (Mx, mx, τx), it is true that the exit static marking

ξ(Mx) of all its resource places is an element of the set AMs of all its allowed static markings if

PNTS PNTS be in its allowed entry state ASe ∈ ASe (i.e., ∀ASe ∈ ASe ∀Sx ∈ [ASe〉x, Sx := (Mx, mx,

τx): ξ(Mx) ∈ AMs).

Well-formed PNTS is pure-formed PNTS if for any of its allowed entry state ASe ∈ ASe, where

ASe := (AMe, ame, τe), and for any of its exit state Sx ∈ [ASe〉x, where Sx := (Mx, mx, τx), it is true

that the exit static marking ξ(Mx) of all its resource places is equal to the entry static marking

ξ(AMe) of all its resource places that is associated with the allowed entry state ASe (i.e., ∀ASe ∈

ASe ∀Sx ∈ [ASe〉x, Sx := (Mx, mx, τx): ξ(AMe) = ξ(Mx)).

For instance, if the set AMs of the PNTS PNTS1 (see Figure 1) is defined as:

i. AMs := {(0, 0, k, 0) | k ∈ N} (i.e., there must be at least one token in the resource place R1 in

any allowed entry state ASe ∈ ASe), then it can be shown that PNTS PNTS1 is k-bounded,

proper-formed, well-formed and pure-formed PNTS,

ii. AMs := {(0, 0, 0, 0)} (i.e., there may not be any token in the resource place R1 in any

allowed entry state ASe ∈ ASe), then it can be shown that PNTS PNTS1 is k-bounded,

proper-formed, but not well-formed or pure-formed PNTS (see for instance the sequence

1; 0; 0; 0ð Þ; < 0 >;<>;<>;<>ð Þ; 0ð Þ T2½ i 0; 2; 0; 0ð Þ; <>;< 3; 3 >;<>;<>ð Þ; 0ð Þ 3½ i:

0; 2; 0; 0ð Þ; <>;< 3; 3 >;<>;<>ð Þ; 3ð Þ T3 T3½ i 0; 0; 2; 2ð Þ; <>;<>;< 4; 4 >;< 7; 7 >ð Þ; 3ð Þ,

where ξ Mxð Þ ¼ ξ 0; 0; 2; 2ð Þð Þ ¼ 0; 0; 2; 0ð Þ∉ 0; 0; 0; 0ð Þf g ¼ AMsÞ:

Lemma 1. If PNTS is proper-formed PTNS then PNTS is k-bounded PNTS.

Proof. Clear. PNTS PNTS := (P, T, A, AF, TP, TI, IP, OP, RP) is a connected net that contains the

finite set T of the transitions. Then the finite number of tokens will be added to each of the

places p ∈ P by firing each of the transitions t ∈ T. The number of states S ∈ [ASe〉 for any

allowed entry state ASe ∈ ASe must be also finite because PNTS is proper-formed PNTS (i.e., ∃n

∈ N: |[ASe〉〉| = n). From these facts then immediately follows that in any state S ∈ [ASe〉 the

finite number of tokens must be placed in any place p ∈ P, where any final number of tokens is

placed in the input place IP in the entry state ASe. From these facts then immediately follows

that ∀ASe ∈ASe ∃k∈N0 ∀p∈P ∀S∈ ASe½ i, S≔ M;m; τð Þ : M pð Þ ≤ k: □

Definition 6. Process Petri net with time stamps (PPNTS) PPNTS is an ordered couple

PPNTS := (PNTS, Se), where PNTS := (P, T, A, AF, TP, TI, IP, OP, RP) is the PNTS and Se ∈ Se

is the entry state of PNTS PNTS. The class of all PPNTSs will be denoted by PPNTS. □
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3. Algebraic operators COMP and SYNC and their properties

We study the issue of transforming PNTS through precisely defined binary operator COMP

and n-ary operator SYNC over the class PNTS and we also examine the preservation of

individual PNTS’s properties when applying each of these operators. Formal enrollment of an

application of generally n-ary operator OP whose operands are the PNTS PNTS1, PNTS2, …,

PNTSn (n ∈ N) and whose application requires the specification of values of k formal parame-

ters (k ∈ N) par1, par2, … park, will be denoted by the expression.

PNTS≔ PNTS1;PNTS2;…;PNTSn½ �:OP par1; par2;…; park
� �

,

where PNTS is the resulting PNTS.

Definition 7. Let PNTS1 := (P1, T1, A1, AF1, TP1, TI1, IP1, OP1, RP1) and PNTS2 := (P2, T2, A2,

AF2, TP2, TI2, IP2, OP2, RP2) be the PNTSs. Let AMs1 := {(AMs1(IP1), AMs1(p11), …, AMs1(p1n),

AMs1(r11), …, AMs1(r1m), AMs1(OP1)) | P1 := {p11, …, p1n, r11, …, r1m}, RP1 := {r11, …, r1m}, n ∈

N, m ∈ N} be the set of all the allowed static markings of PNTS1, AMs2 := {(AMs2(IP2),

AMs2(p21), …, AMs2(p2k), AMs2(r21), …, AMs2(r2h), AMs2(OP2)) | P2 := {p21, …, p2k, r21, …,

r2h}, RP2 := {r21, …, r2h}, k ∈ N, h ∈ N} be the set of all the allowed static markings of PNTS2.

Cartesian product AMs1 ⊗ AMs2 is then the following set:

AMs1 ⊗AMs2≔ AMs1 IP1ð Þ;AMs1 p11ð Þ;…;AMs1 p1nð Þ;AMs1 r11ð Þ;…;AMs1 r1mð Þ;AMs1 OP1ð Þ;ðf

AMs2 IP2ð Þ;AMs2 p21ð Þ;…;AMs2 p2kð Þ;AMs2 r21ð Þ;…;AMs2 r2hð Þ;AMs2 OP2ð ÞÞ j:

AMs1 IP1ð Þ;AMs1 p11ð Þ;…;AMs1 p1nð Þ;AMs1 r11ð Þ;…;AMs1 r1mð Þ;AMs1 OP1ð Þð Þ∈AMs1 ∧ :

AMs2 IP2ð Þ;AMs2 p21ð Þ;…;AMs2 p2kð Þ;AMs2 r21ð Þ;…;AMs2 r2hð Þ;AMs2 OP2ð Þð Þ∈AMs2g:

PNTS PNTS1 and PNTS2 are disjoint and we denote this fact by PNTS1 ∠ PNTS2 if.

P1 ∩P2 ¼ ∅ð Þ ∧ T1 ∩T2 ¼ ∅ð Þ: □

Definition 8. The function COMP: PNTS � PNTS! PNTS of nets composition is defined as

follows: if PNTS1 := (P1, T1, A1, AF1, TP1, TI1, IP1, OP1, RP1) and PNTS2 := (P2, T2, A2, AF2, TP2,

TI2, IP2, OP2, RP2) be the arbitrary PNTSs, PNTS1 ∠ PNTS2, t be an arbitrary transition, where

(t ∉ T1) ∧ (t ∉ T2), ti ∈ N0, then PNTS := [PNTS1, PNTS2].COMP(t, ti), where PNTS PNTS :=

(P, T, A, AF, TP, TI, IP, OP, RP) fulfills the following:

i. P := P1 ∪ P2,

ii. T := T1 ∪ T2 ∪ {t},

iii. A := A1 ∪ A2 ∪ {(OP1, t), (t, IP2)},

iv. AF := AF1 ∪ AF2 ∪ {((OP1, t), 1), ((t, IP2), 1)},
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v. TP := TP1 ∪ TP2 ∪ {(t, 1)},

vi. TI := TI1 ∪ TI2 ∪ {(t, IP2), ti)},

vii. IP := IP1,

viii. OP := OP2,

ix. RP := RP1 ∪ RP2. □

Symbolic representation of PNTS [PNTS1, PNTS2].COMP(t, ti) can be seen in Figure 2.

Lemma 2. Let PNTS1 := (P1, T1, A1, AF1, TP1, TI1, IP1, OP1, RP1) and PNTS2 := (P2, T2, A2, AF2,

TP2, TI2, IP2,OP2, RP2) be two arbitrary PNTS, PNTS1 ∠ PNTS2, t be an arbitrary transition, (t ∉

T1) ∧ (t ∉ T2), ti ∈ N0, AMs1 and AMs2 be the sets of all the allowed static markings of PNTS1

and PNTS2. Let PNTS := [PNTS1, PNTS2].COMP(t, ti).

Figure 2. Symbolic representation of PNTS [PNTS1, PNTS2].COMP(t, ti).
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If PNTS1 and PNTS2 are proper-formed, resp. well-formed, resp. pure-formed, PNTS and

AMs = AMs1 ⊗ AMs2 be the set of all the allowed static markings of PNTS PNTS, then also

resulting PNTS is proper-formed, resp. well-formed, resp. pure-formed, PNTS.

Proof. Clear, it directly follows from Definition 5, Definition 7 and Definition 8. □

Definition 9. The function SYNC: PNTS� PNTS�…� PNTS! PNTS of synchronous nets

composition is defined as follows: if PNTS1 := (P1, T1, A1, AF1, TP1, TI1, IP1,OP1, RP1), PNTS2 :=

(P2, T2, A2, AF2, TP2, TI2, IP2, OP2, RP2),…, PNTSn := (Pn, Tn, An, AFn, TPn, TIn, IPn, OPn, RPn),

be the arbitrary PNTSs, ∀i, 1 ≤ i ≤ n, ∀j, 1 ≤ j ≤ n: i 6¼ j ) PNTSi ∠ PNTSj, where n ∈ N, pi and po

be the arbitrary places, (pi ∉ P1 ∪ P2 ∪… ∪ Pn) ∧ (po ∉ P1 ∪ P2 ∪… ∪ Pn) ∧ (pi 6¼ po), ti and to be

the arbitrary transitions, (ti ∉ T1 ∪ T2 ∪… ∪ Tn) ∧ (to ∉ T1 ∪ T2 ∪… ∪ Tn) ∧ (ti 6¼ to), af1 ∈ N, af2 ∈

N,…, afn ∈ N, ti1 ∈ N0, ti2 ∈ N0,…, tin ∈ N0, tio ∈ N0, then

PNTS≔ PNTS1;PNTS2;…;PNTSn½ �:SYNC pi; po; ti; to; af 1;…; afn; ti1;…; tin; tioð Þ,

where PNTS PNTS := (P, T, A, AF, TP, TI, IP, OP, RP) fulfills the following:

i. P := P1 ∪ P2 ∪… ∪ Pn ∪ {pi, po},

ii. T := T1 ∪ T2 ∪… ∪ Tn ∪ {ti, to},

iii. A := A1 ∪ A2 ∪… ∪ An ∪ {(pi, ti), (ti, IP1),…, (ti, IPn), (OP1, to),…, (OPn, to), (to, po)},

iv. AF := AF1 ∪ AF2 ∪… ∪ AFn ∪ {((pi, ti), 1), ((ti, IP1), af1),…, ((ti, IPn), afn), ((OP1, to), af1),…,

((OPn, to), afn), ((to, po), 1)},

v. TP := TP1 ∪ TP2 ∪… ∪ TPn ∪ {(ti, 1), (to, 1)},

vi. TI := TI1 ∪ TI2 ∪… ∪ TIn ∪ {((ti, IP1), ti1),…, ((ti, IPn), tin), ((to, po), tio)},

vii. IP := pi,

viii. OP := po,

ix. RP := RP1 ∪ RP2 ∪… ∪ RPn. □

Symbolic representation of PNTS [PNTS1, PNTS2,…, PNTSn].SYNC(pi, po, ti, to, af1,…, afn, ti1,

…, tin, tio) can be seen in Figure 3.

Lemma 3. Let PNTS1 := (P1, T1, A1, AF1, TP1, TI1, IP1, OP1, RP1), PNTS2 := (P2, T2, A2, AF2, TP2,

TI2, IP2,OP2, RP2),…, PNTSn := (Pn, Tn, An, AFn, TPn, TIn, IPn,OPn, RPn) be arbitrary PNTSs, ∀i,

1 ≤ i ≤ n, ∀j, 1 ≤ j ≤ n: i 6¼ j) PNTSi ∠ PNTSj, where n ∈ N, pi and po be arbitrary places, (pi ∉ P1

∪ P2 ∪… ∪ Pn) ∧ (po ∉ P1 ∪ P2 ∪… ∪ Pn) ∧ (pi 6¼ po), ti and to be arbitrary transitions, (ti ∉ T1 ∪ T2 ∪

… ∪ Tn) ∧ (to ∉ T1 ∪ T2 ∪… ∪ Tn) ∧ (ti 6¼ to), af1 ∈ N, af2 ∈ N,…, afn ∈ N, ti1 ∈ N0, ti2 ∈ N0,…, tin

∈ N0, tio ∈ N0 and AMs1, AMs2, …, AMsn be the sets of all the allowed static markings of

PNTS1, PNTS2,…, PNTSn. Let PNTS := [PNTS1, PNTS2,…, PNTSn].SYNC(pi, po, ti, to, af1,…,

afn, ti1,…, tin, tio).
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If PNTS1, PNTS2, …, PNTSn are proper-formed, resp. well-formed, resp. pure-formed, PNTS

and AMs = AMs1 ⊗ AMs2 ⊗ … ⊗ AMsn is the set of all the allowed static markings of PNTS

PNTS, then also PNTS is proper-formed, resp. well-formed, resp. pure-formed, PNTS.

Proof. Clear, it directly follows from Definition 5, Definition 7 and Definition 9. □

4. Process Petri nets with time stamps and their applications in project

management area

Critical Path Method (CPM) is a method used in modeling and project management that was

developed at the end of 1950s and that is commonly used for all the types of projects including

software development [10]. The CPM is the most widely used method of so-called network

analysis, even though it is designed to analyze the time consumption of only deterministic

projects, that is, projects where the duration of each of their activities is exactly known,

including all their sub-activities.

The basis for using CPM is to create a project model that includes:

• the list of all activities needed to complete the project,

• the time duration of each activity that is constant,

• the dependencies between the project activities,

Figure 3. Symbolic representation of PNTS [PNTS1, PNTS2,…, PNTSn].SYNC(pi, po, ti, to, af1,…, afn, ti1,…, tin, tio).
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A critical path is then a designation for a sequence of activities whose time duration directly

affects the time duration of the entire project. The activities that make up the critical path are

then referred to as critical activities. There may be several critical paths in the project. When

managing the project, a sequence of activities within a given network chart describing this

project that increases the longest total time duration of a project is called its critical path. The

critical path within the network chart can be used to determine the shortest time required to

complete the project. The application of the CPM method can therefore determine which

activities within the studied project are “critical” (i.e., activities on the longest path in the

network chart describing the project) and which activities may be delayed in the execution of

the project without increasing its total time.

The special class CPNET ⊂ PNTS of PNTS is introduced in the following paragraphs to

represent network chart used in the CPMmethod through PNTS. Special unary operator JOIN

that is required in the definition of the class CPNET is introduced first.

Definition 10. The function JOIN: PNTS ! PNTS of net transition joining is defined as

follows: if PNTS1 := (P1, T1, A1, AF1, TP1, TI1, IP1, OP1, RP1) be the arbitrary PNTS, p ∉ P1 be

the arbitrary place, t1 and t2 be the arbitrary transitions, (t1 6¼ t2) ∧ (t1 ∈ T1) ∧ (t2 ∈ T1), ti ∈ N0,

then PNTS := PNTS1.JOIN(p, t1, t2, ti), where PNTS PNTS := (P, T, A, AF, TP, TI, IP, OP, RP)

fulfills the following:

i. P := P1 ∪ {p},

ii. T := T1,

iii. A := A1 ∪ {(t1, p), (p, t2)},

iv. AF := AF1 ∪ {((t1, p), 1), ((p, t2), 1)},

v. TP := TP1 ∪ {(t, 1)},

vi. TI := TI1 ∪ {(t1, p), ti)},

vii. IP := IP1,

viii. OP := OP1,

ix. RP := RP1. □

Symbolic representation of the unary operator JOIN application over the PNTS PNTS1 can be

seen in Figure 4.

Definition 11. Let PNTS1 := (P1, T1, A1, AF1, TP1, TI1, IP1, OP1, RP1), PNTS2 := (P2, T2, A2, AF2,

TP2, TI2, IP2, OP2, RP2), …, PNTSn := (Pn, Tn, An, AFn, TPn, TIn, IPn, OPn, RPn), where n ∈ N, be

the arbitrary PNTSs, ∀i, 1 ≤ i ≤ n, ∀j, 1 ≤ j ≤ n: i 6¼ j) PTSNi ∠ PTSNj. The class CPNET ⊂ PNTS

then contains the following PNTSs:

i. if p be an arbitrary place, p ∉ (P1 ∪ P2 ∪ … ∪ Pn), then PNTS BASEp ∈ CPNET, where

BASEp := ({p}, ∅, ∅, ∅, ∅, ∅, p, p, ∅},
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ii. if PNTS1 ∈ CPNET, PNTS2 ∈ CPNET, t be an arbitrary transition, where (t ∉ T1) ∧ (t ∉ T2),

ti ∈ N0, then also [PNTS1, PNTS2].COMP(t, ti) ∈ CPNET,

iii. if PNTS1, PNTS2,…, PNTSn ∈ CPNET, pi and po be the arbitrary places, (pi ∉ P1 ∪ P2 ∪… ∪

Pn) ∧ (po ∉ P1 ∪ P2 ∪… ∪ Pn) ∧ (pi 6¼ po), ti and to be the arbitrary transitions, (ti ∉ T1 ∪ T2 ∪

… ∪ Tn) ∧ (to ∉ T1 ∪ T2 ∪… ∪ Tn) ∧ (ti 6¼ to), ti1 ∈ N0, ti2 ∈ N0,…, tin ∈ N0, tio ∈ N0, then

also PNTS PNTS ∈ CPNET, where

PNTS≔ PNTS1;PNTS2;…;PNTSn½ �:SYNC pi; po; ti; to; 1;…; 1; ti1; ti2;…; tin; tioð Þ,

iv. if PNTS1 ∈ CPNET, p ∉ P1 be an arbitrary place, t1 and t2 be the arbitrary transitions,

(t1 6¼ t2) ∧ (t1 ∈ T1) ∧ (t2 ∈ T1), ti ∈ N0 and af ∈ N, then also PNTS ∈ CPNET, where PNTS

:= (P, T, A, AF, TP, TI, IP, OP, RP), such that:

• PNTS := PNTS1.JOIN(p, t1, t2, ti),

• ⌐(∃ x1 x2… xn ∈ CIRCUITSPNTS: (x1 ∈ T) ∧ (xn ∈ P) ∧ (n ∈ N)). □

Four simple PNTSs BASEP1
, CPNET1, CPNET2 and CPNET3 that are the members of the class

CPNET can be seen in Figure 5, where:

• CPNET1 := [[BASEP2
, BASEP3].COMP(T2, 2), BASEP4].COMP(T3, 5),

• CPNET2 := [[BASEP6, BASEP8].COMP(T6, 2), BASEP7]

.SYNC(P5, P9, T5, T7, 1, 1, 1, 6, 3),

• CPNET3 := [ANET2, ANET3, BASEP1
].SYNC(IP, OP, T1, T8, 1, 1, 1, 4, 1, 8, 2)

.JOIN(P10, T3, T5, 4).

.JOIN(P11, T3, T6, 5).

Note also that the PNTS CPNET3 does not contain any circuit as it is required in the (4) of

Definition 11.

Lemma 4. Let PNTS ∈ CPNET be an arbitrary PNTS. Then PNTS is pure-formed PNTS.

Figure 4. Symbolic representation of PNTS PNTS := PNTS1.JOIN(p, t1, t2, ti).
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Proof. Clear, it directly follows from Definition 5, Definition 7, Definition 10 and Definition 11

and from the fact that any PNTS ∈ CPNETdoes not contain any resource place (i.e., if the given

PNTS is proper-formed PNTS, then it is also immediately well-formed and pure-formed

PNTS). Furthermore, it is also clear that if we allow the existence of a circuit within the PNTS

PNTS (see (iv) of Definition 11), there is always the danger of a deadlock in such a PNTS and

PNTS is in this case neither a proper-formed PTSN. See, for instance, PNTS CPNET4 in its

entry state Se in Figure 6, where CPNET4 := CPNET3.JOIN(P12, T7, T2, 6). It is true that

CPNET4 ∉ CPNET because there exists for instance the circuit.

T2 P3 T3 P10 T5 P6 T6 P8 T7 P12∈CIRCUITSCPNET4:

It is also clear that after the firing of the transition T1 in the entry state Se of the PNTS CPNET4

no one transition will be enabled for any value of the net time τ in this PNTS (i.e., there exists

the deadlock marking in this PNTS) and thus the CPNET4 is not even proper-formed PNTS.□

Definition 12. The class CPPNET ⊂ PPNTS contains all the PPNTSs PPNTS := (PNTS, Se)

where PNTS ∈ CPNET and Se := ((1, 0,…, 0), (<0>, <>,…, <>), 0). □

An example of a simple process is presented in the following paragraphs the characteristics of

which will be studied with using of the PPNTS from the CPPNET class. The studied process is

described in the following table of activities (see Table 1):

The CPM chart of the abovementioned process comprising the activities listed in Table 1 is

shown in Figure 7 where:

Figure 5. PNTSs BASEP1, CPNET1, CPNET2 and CPNET3.
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• selected activity of the studied process and its duration is associated with each edge of the

CPM chart,

• each node of the CPM chart is associated with its serial number (indicated in the upper

half of the node), the earliest possible activation time of the given node (shown in the

Figure 6. PNTS CPNET4 in its entry state Se.

Activity Duration Previous activities

A 2 —

B 3 —

C 4 —

D 2 C

E 6 B, D

F 5 A

G 5 C

H 3 E, F

Table 1. Table of activities and their dependencies of studied process.
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lower left quarter of the node) and the possible latest activation time of the given node

(shown in the lower right quarter circle of the node),

• the desired links of the individual activities are expressed through the oriented edges and

their associated nodes in the CPM chart,

• the critical path of the CPM chart passes through its nodes where the earliest possible

activation time is equal to the latest possible activation time, that is, through nodes 1, 2, 3,

5 and 6, and it is thus formed by A, D, E and H activities (these activities are represented

by dashed line graphs in the CPM chart) with a total duration of 15 time units.

The pure-formed PPNTS PROC that represents the process comprising the activities listed in

Table 1 can be seen in Figure 8, where

• PROC := [PROC1, [BASEC, BASEG].COMP(T5, 5)].SYNC(IP, OP, T1, T7, 1, 1, 0, 4, 0),

• PROC1 := [[BASEA, BASEF].COMP(T3, 5), [BASEB, BASEE].COMP(T4, 6)]

.SYNC(P1, H, T2, T6, 1, 1, 2, 3, 3).

Places A, B, C, D, E, F, G and H of PNTS PROC represent individual activities of the studied

process and the appropriate values of the time interval function TI then express the time

durations of relevant activities (i.e., for instance, the time duration of the activity A is

represented by the value of TI(T2, A) = 2, etc.).

In order to find the critical path of the process represented by PPNTS PROC, we first perform

the association of each place and transition of the PPNTS PROC with the value of the critical

path function CP that is introduced in the following Definition 13.

Definition 13. Let PPNTS PPNTS := (P, T, A, AF, TP, TI, IP, OP, RP, Se), PPNTS ∈ CPPNET.

The critical path function CP: (P ∪ T)! N0 is defined as follows:

i. CP(IP) := 0,

ii. ∀p ∈ (P \ IP): CP(p) := CP(t) + TI(t, p), where t = •p,

iii. ∀t ∈ T: CP(t) := max({CP(p1), CP(p2), …, CP(pn)}), where •t = {p1, p2, …, pn}, n ∈ N. □

Figure 7. CPM chart of process activities listed in Table 1.
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The PPNTS PROCwhose each place and transition is associated with the value of the critical path

function CP can be seen in Figure 9 (where, for instance, CP(E) = CP(T4) + TI(T4, E) = 6 + 6 = 12,

where T4 = •E; CP(T4) = max({CP(B), CP(D)}) = max({3, 6}) = 6, where •T4 = {B,D}, etc.).

It follows directly from the Definition 4 that the value of the critical path function CP associ-

ated with any transition t ∈ T of the arbitrary PPNTS := (P, T, A, AF, TP, TI, IP, OP, RP, Se),

where Se := ((1, 0,…, 0), (<0>, <>,…, <>), 0), then represents the net time τ value when the given

transition t will be fired. The value of the critical path function CP associated with the output

placeOP (i.e., CP(OP)) then immediately indicates the total duration of the process critical path

(i.e., the net time τ value when the transition t = •OP will be fired). The algorithm for finding

the set of PPNTS nodes of which the project critical path is formed is then obvious and it is

expressed by the following pseudocode in PASCAL (the set of nodes forming the critical path

of the project is then contained in the CriticalPath variable):

Node := OP; CriticalPath := {OP};

WHILE (Node <> IP) DO

Figure 8. PPNTS PROC of process activities listed in Table 1.
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BEGIN

MaxValue := max({CP(X1), CP(X2), …, CP(Xn)}), where •Node = {X1, X2, …, Xn}, n ∈ N;

Node := Xi, where (Xi ∈ {X1, X2, …, Xn}) ∧ (CP(Xi) = MaxValue);

CriticalPath := CriticalPath ∪ {Node};

END;

The critical path of PPNTS PROC is after applying of the above algorithm represented by the

set CriticalPath := {IP, T1, C, T5, D, T4, E, T6, H, T7, OP} (see Figure 9). It is also clear that the

given PPNTS may contain more critical paths with the same total time duration.

5. Conclusions

Further research in the field of PNTSs is mainly focused on the definition of additional unary,

binary and n-ary PPPA operators preserving their specified properties, for instance, the binary

SUBST operator that performs the substitution of the given PNTS for the selected place of

another PNTS, and so on. In the field of the project management the research is focused on

Figure 9. PPNTS PROC with the associated values of critical path function CP.
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modeling complex processes, which individual activities can additionally share in parallel a

selected set of the resources. These resources are then represented in the given PNTS by

individual tokens located in the resource places of its selected net marking. Finding the time-

optimal critical path of such a process as well as verifying the properties of the given PNTS that

models such a process is generally a nontrivial problem and the use of PPPAs plays a crucial

role here.

Another class currently being studied is the class of multiprocess Petri nets with time stamps

that represents the generalization of the class of PNTS. The given multiprocess Petri net with

time stamps then represents the finite set of processes each of which is modeled by a separate

PNTS that share a common set of resources modeled by its individual resource places and their

tokens. Many of the studied properties of the multiprocess Petri nets with time stamps are

similar or identical to those of the PNTS class and they allow for a further generalization of the

concept of a critical path formed by a sequence of activities of the process modeled by the

given multiprocess Petri nets with time stamps.
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