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Abstract

Mounting temperature impedes the conversion efficiency of photovoltaic systems. 
Studies have shown drastic efficiency escalation of PV modules, if cooled by nanofluids. 
Ability of nanofluids to supplement the efficiency improvement of PV cells has sought 
attention of researchers. This chapter presents the magnitude of improved efficiency 
found by different researchers due to the cooling via nanofluids. The effect of factors 
(such as, nanoparticle size, nanofluid concentration, flowrate of nanofluid and geom-
etry of channel containing nanofluid) influencing the efficiency of PV systems has been 
discussed. Collective results of different researchers indicate that the efficiency of the 
PV/T systems (using nanofluids as coolant) increases with increasing flowrate. Efficiency 
of these systems increases with increasing concentration of nanofluid up to a certain 
amount, but as the concentration gets above this certain value, the efficiency tends to 
decline due to agglomeration/clustering of nanoparticles. Pertaining to the most recent 
studies, stability of nanoparticles is still the major unresolved issue, hindering the com-
mercial scale application of nanofluids for the cooling of PV panels. Eventually, the envi-
ronmental and economic advantages of these systems are presented.

Keywords: PV systems, Nanofluids, efficiency, concentration, Flowrate, stability

1. Introduction

Exceeding energy demands and swiftly eliminating conventional energy resources have com-

pelled the researchers to find the alternative means of power generation. To date, only 14% 
of the world’s power demands are being met via renewable energy means. Sun is the most 
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vital source of energy, almost  1.8x  10   11  MW  energy from the sun intercepts the earth’s surface 
[1]. According to the estimate of International Energy Agency (IEA), quarter of world’s power 
demands could be fulfilled by solar energy by 2050 [2]. Silicon-based photovoltaic cells are 
used to convert the solar radiations into electricity. But the issue with these PV solar cells 
is that almost 85% of the solar energy reaching the surface of the PV unit is either reflected 
or absorbed as heat energy [3]. Al-shamani et al. [4] reviewed that only 5–20% of the solar 
radiation reaching to the PV cell surface is converted into electrical energy. Whereas, rest of 
the radiations are either reflected back or absorbed by the cell in the form of heat. Absorbed 
heat can increase its temperature up to   70   °  C . Oruc et al. [5] found that the electrical efficiency 
of PV module drops by 0.5% with every unit degree increment in the temperature of the 
module above 25      °  C  due to the contraction of the band gap and increased number of carriers. 
Increased number of carriers cause the saturation current to increase whereas the open circuit 
voltage to decrease thus lowering the electrical power output. Cooling of PV units depicts 
electrical efficiency enhancement as per the experimental results obtained by the researchers. 
Underdeveloped countries like Pakistan, with hot and sunny days throughout the year, are 
well suitable for power production via solar energy. According to research, during summer, 
temperature of the module can elevate in a devastating way (about   20   °  C  higher), in turns 
destructing the conversion efficiency of PV modules [6, 7]. Bashir et al. [8] reported that cool-
ing of PV modules via water minimized heat losses and module’s temperature elevation, 
thus, improving the efficiency by 13% and 6.2% for monocrystalline and polycrystalline PV 
modules respectively. Ali et al. [9] experimentally showed that cooling of PV modules by 
using micro-channels increased the efficiency of PV modules by 3%.

There are several methods of PV cooling such as, air cooling (natural air circulation and 
forced air circulation), water cooling, heat pipe cooling, cooling with Phase Change Materials 
(PCMs) and cooling via nanofluids [10, 11]. A PV/T system consists of PV module coupled 
with a heat absorbing unit in which a liquid (water or nanofluid) is circulated to absorb the 
heat of PV unit to improve the efficiency. The researches show that a PV/T system performs 
way better than conventional PV systems [12, 13]. Lelea et al. [14] investigated the effect of 
cooling via   Al  2    O  

3
    on the performance of concentrated PV/T system. The results showed a 

decrement in the temperature of module, when cooled by nanofluid and water.

Mixture of solid particles (metallic oxides, metals or carbon nanotubes) of less than 100 nm 
size at least in one dimension (nanoparticles) disseminated in the liquid fluids like water and 
polyethylene glycol etcetera (base fluid), is known as nanofluid. Nanofluids can be employed 
as a coolant as well as optical filters within PV/T systems [15]. PV/T system using nanofluid 
as coolant can produce far better results than the water cooled system. Al-Waeli et al. [16] con-

ducted an experimental study and they found that cooling of PV module via SiC increased the 
electrical efficiency by 24.1%, thermal efficiency by 100.19% and overall efficiency by 88.9% 
as compared to the water-cooled PV/T system. Xu and Kleinstreuer [17] suggested nanofluid 
based silicon PV/T systems as a useful option for domestic applications as its overall efficiency 
reached up to 70% (11% electrical efficiency and 59% thermal efficiency).

This chapter reviews the efficiency of PV systems being cooled by various nanofluids. The 
common ways of cooling PV system via nanofluids are stated in detail along with the param-

eters influencing the efficiency of the PV/T systems such as irradiance, concentration and 

Microfluidics and Nanofluidics36



flow rate of nanofluid, size of nanoparticles and geometry of micro-channels. Impact of other 
factors such as the type of nanoparticles and base fluid on the system efficiency are discussed. 
Eventually, economic and environmental advantages are described.

2. Methods of cooling of PV systems via nanofluids

There are several methods of extracting heat from the PV units via nanofluids. The most com-

mon ways are, employing heat collector at the rear end of the panel and using nanofluid as 
a liquid in spectral splitting filter joined on the front surface of PV module. Sometimes, both 
methods are used simultaneously in order to increase the efficiency.

2.1. Rear end cooling

In rear-end cooling a thermal collector is coupled at the back end of the PV module to extract 
the heat. Nanofluid is set to flow through the collector thus taking up the heat of the cells 
and increasing its own temperature. Nanofluid gets warmed and its heat is further employed 
for useful purposes. Nanofluid is able to extract major part of the heat energy because of 
its improved thermophysical properties. The most important thermophysical property is the 
thermal conductivity. A schematic display of such an arrangement is depicted in the Figure 1.

Energy balance of such PV/T systems is evaluated by the following equation by [19].

    E   ̇   
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Overall efficiency of the system is found by the following formula.
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Figure 1. Schematic setup of rear end cooling of PV panel via Nanofluid. (a) [18], (b) [16].
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Here,”r” is the packing factor.

  r =   
 A  
pv

  
 ___ 

 A  
c
  
    (3)

Here,       "    A  
c
     "   is the collector area and  "   A  

pv
     "   is area of PV cells.

Area of PV to produce a certain amount of electrical power is calculated by the following 
formula.

   A  
p
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Here,       "    E  
out,1 m   2 

     "   is output electrical power per unit area and       "  R   E  
out,max

     "   is the required output power.

Thermal output energy is found by the following equation.
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Here,       "    m  
f
     "   is the mass flowrate of the fluid through the collector,       "    C  

pf
     "   is the fluid’s specific heat 

and       "    T  
in
     "   and       "    T  

o
     "   depicts the fluid’s inlet and outlet temperature respectively. The formulas to 

determine       "    C  
pf
     "   are given in Ref [20].

Electrical efficiency is found by the following formula.

   η  
el
   =   

  E   ̇   
el
  
 ___ 

  E   ̇   
in
  
   =   

 V  
oc
   ×  I  

sc
   × FF 
 _______________ 

 G  eff  
    (6)

Here,       "    V  
oc
     "   is the open circuit voltage,       "    I  

sc
     "   is the short circuit current, and       "    G  eff     

"   is the effective 
absorbed solar irradiation by the PV module. “FF” represents the fill factor and it is defined 
as the maximum power conversion efficiency.

  FF = f ×  (  
 V  
oc
  
 ___ 

T
  )   (7)

Using the aforementioned formulas, the efficiency of a PV/T system is determined.

Radwan et al. [20] examined the cooling effect of   Al  
2
    O  

3
   , SiC nanoparticles and water on the per-

formance of concentrated PV system. Pertaining to the results, SiC-water nanofluid produced 
better impact as compared to   Al  

2
    O  

3
    and water. It was observed that at higher concentration 

ratio (area of aperture/area of cell) and smaller Re, higher electrical efficiency was found. 
Using the pure water at CR = 40, the cell temperature reached a maximum of   68   °  C . Were as, 
for 4vol% SiC, the maximum temperature of the cell was found to be   60   °  C .

2.2. Optical filter cooling

Extensive work has been carried out on efficiency improvement by using nanofluid flow-

ing through optical filters [21, 22]. Silicon-based Photovoltaic cells can generate electricity by 
absorbing the part of solar radiation with 400 nm to 1200 nm wavelength. Rest of the solar 
radiation’s part is either reflected back or absorbed by the PV cells as heat. In optical filter 
cooling, an optical filter containing nanofluid is held above the front surface of cells to split 
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the spectrum of radiation. Nanofluid-based optical filters separate the part of solar radiation 
for the PV cells from the radiation part that is more useful for heat generation. There are two 
kinds of proposed configurations of these systems.

1. Single Pipe System

2. Two Pipe System

In single pipe system, there are two sections of pipe; primary section and secondary sec-

tion. Primary section is set underneath the rear surface of the Photovoltaic module having 
aluminum sheet in between. Primary section further elongates above the upper surface of PV 
module. Nanofluid enters from the inlet of primary section, thus, absorbing heat of the mod-

ule. Heated nanofluid further passes over the PV’s upper surface, in turns filtering the solar 
radiation. Part of radiation having wavelength equal to silicon bandgap is filtered and rest of 
the section is absorbed by the nanofluid flowing in the secondary channel which gets out of 
the secondary pipe at secondary outlet. Air exists between upper surface of PV module and 
secondary channel section. As the air gets hot, it flows in upward direction and the cool air 
still remains in contact with PV surface. It is assumed that no convection current is produced 
in the air. The results indicated, 83% and 80% overall and 76.5% and 74% thermal efficiency 
for Ag/water and Cu/water nanofluid respectively for above configuration [23]. Schematic 
diagram of such system is shown in the following Figure 2.

Wei An et al. [24] designed a spectral splitting Polypyrrole nanofluid based PV/T system in 
order to impede thermal losses and escalate the system’s efficiency. Nanofluid used in spectral 
splitting filter is capable to absorb the part of solar radiations that cannot be utilized by PV 
cell and converts it into medium temperature thermal energy. The efficiency of PV/T system 
was found to be 25.2% for nanofluid based spectral splitting filter whereas, its value was 13.3% 
when there was no filter employed. Hjerrild et al. [25] worked on the cooling of PV system 
by the help of optical filters, they used Silver as nanoparticle (50 nm diameter) with coating 
of Silica. The results showed that, base fluid absorbed the ultraviolet part of solar radiation 
thus decreasing the heat losses whereas, nanoparticles absorbed visible portion of radiation, in 
turns increasing the overall efficiency of the system. Water showed highest electrical efficiency 
(85% higher than unfiltered PV) whereas highly diluted nanofluid ( Ag −  SiO  

2
   ) showed highest 

Figure 2. Schematic diagram of Nanofluid based spectral splitting filter PV/T system (reproduced) [23].
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overall efficiency as well as greatest merit function. Hassani et al. [26] numerically investigated 
the effect of cooling on PV performance. The results revealed that PV system with optical 
filter (containing Ag-Water nanofluid) held above the PV surface along with thermal receiver 
(containing CNTs) at the rear end of PV, performed best in terms of high-grade energy as com-

pared to conventional PV, PV being cooled by water only, PV being cooled by CNTs and PV 
being cooled by CNTs at rear end and optical filter containing water held at upper surface of 
the panel. Optical filter containing nanofluid was able to absorb both UV and IR spectrum and 
it only allowed the radiation in range of PV absorptivity spectrum (400-1200 nm). Whereas, 
optical filter containing water could only absorb IR spectrum. Saroha et al. [27] tested the 

effect of silver and gold based nanofluid working as optical filters in PV/T system. The results 
revealed that unwanted wavelengths were more absorbed by silver as compared to gold based 
nanofluid. Silver/water nanofluid based PV/T system approached 9.6% electrical, 67.8% ther-

mal and 78.4% overall efficiency. Whereas, gold/water nanofluid based PV/T system achieved 
9% electrical, 67.6% thermal and 76.6% overall efficiency. Jin et al. [28] investigated the effect 
of liquid optical filter based on magnetic electrolyte nanofluid for PV/T system. Electrolyte 
nanofluid is prepared by dispersing Fe

3
O4 nanoparticle in 50% water and 50% EG solutions 

containing methylene blue or copper sulfate, in this way they obtained two stable ENF filters. 
By adjusting the volume fraction of nanoparticles and molar fraction, more optimized ENF is 
produced. This ENF presents more better results compared to the simple liquid filters. Merit 
function of this newly developed ENF is found to be much more than the conventional liquid 
optical filter.

An arrangement in which nanofluids flows in separated channels outperforms the single 
channel through which the nanofluid is set to flow. In this arrangement a channel is placed 
underneath the rear surface of PV panel whereas, a separate channel is held above the front 
surface of the module. Upper channel nanofluid is made to achieve high liquid filter perfor-

mance whereas the nanofluid flowing beneath the surface achieves higher thermal perfor-

mance (working as a coolant). This technique achieved 8.5% higher electrical efficiency as 
compared to the double pass channel in which fluid flows in a single channel [29].

3. Efficiency improvement using nanofluid

Integrating the heat receivers with the conventional PV system is found to elevate both electrical 
and thermal efficiencies. Several fluids such as water or nanofluids can be used in these receiv-

ers to remove heat so as to improve the efficiency of the system. Studies have proved that nano-

fluid based PV/T system outperforms conventional PV system and water-based PV/T system. 
Soltani et al. [30] used five different methods for PV cooling (natural cooling, forced air cooling, 
water cooling,   SiO  

2
   -water nanofluid cooling and   Fe  

3
    O  

4
   -water nanofluid cooling) to improve the 

performance. They found that   SiO  
2
   -water nanofluid cooling increased the efficiency by 3.35% 

and   Fe  
3
    O  

4
   -water nanofluid cooling increased the efficiency by 3.13% as compared to the natural 

cooling. Hussien et al. [31, 32] found enhancement in the thermal and electrical efficiency of 
PV/T system by application of  A  l  

2
    O  

3
   / water  nanofluid as a coolant. Experimentation was carried 

out at constant flow rate of 0.2L/s and nanoparticles concentration of 0.3%. Results showed 
the increase in thermal and electrical efficiency when temperature was decreased from 79.1 to 
42°C. Thermal and electrical efficiency of system enhanced up to 34.4% and 12.1% respectively 
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using nanofluid. Ebaid et al. [33] used   TiO  
2
    water-polyethylene glycol nanofluid and   Al  

2
    O  

3
    water 

cetyltrimethylammonium bromide nanofluid (with 0.01, 0.05, and 0.1 wt% concentration at a 
flowrate of 500–5000 ml/min) to test the efficiency enhancement of PV module via the cooling 
process. Pertaining to the results,   Al  

2
    O  

3
    nanofluid decreased the cell temperature by 13.83% and   

TiO  
2
    reduced the temperature by 11.2% at 5000 ml/min relative to water cooling. The best perfor-

mance was witnessed in case of   TiO  
2
    nanofluid cooling, it produced 50% more average efficiency 

compared to the water cooling (0.82% for   TiO  
2
    and 0.48% for water cooling compared with no 

cooling). Karami and Rahimi [34] performed experiments to investigate the enhancement in 
the efficiency of PV module being cooled by the Boehmite (AlOOOH-x  H  

2
   O ) based nanofluid 

flowing inside microchannel at the rear end of the PV module. The results showed that the 
maximum increase in the electrical efficiency due to cooling as compared to the without cooling 
power output was found to be 27.12% at a concentration ratio of 0.01 wt.% and 300 ml/min flow-

rate. Similarly, Sardarabadi et al. [64] observed as much as 9.75% electrical efficiency increment 
for silica/water nanofluid based PV/T system as compared to uncooled system. Figures 3 and 4 

depict the maximum efficiencies of PV/T systems obtained by different researchers.

Figure 3. Maximum efficiency for obtained by researchers with Nanofluid cooling.

Figure 4. Maximum efficiency improvement by Nanofluid cooling compared to conventional PV.

Application of Nanofluids for Thermal Management of Photovoltaic Modules: A Review
http://dx.doi.org/10.5772/intechopen.74967

41



Authors Nanoparticle Base Fluid Concentra- 

tion

Flowrate Module  

Type,  

Irradiation  

(W/m2)

Ambien 

Temp

Module 

Temp

Electrical 

Efficiency
Thermal 

Efficiency
Overall Efficiency

Energy Exergy

Al-Waeli et al. 

[16]

SiC Deionized  
Water

3 wt% — — — — 100.19% 
Increase 
compared to 

Water Cooled 
PV System

24.1% 
increase 

compared 

to Water 

Cooled PV 
System

88.9% 
increase 

compared  

to conven-

tional PV

—

Sardarabadi 

et al. [19]

No Cooling — — — 845.42,  
Monocry- 
stalline

— — — — 10.90%

— Deionized  
Water

— — — — — — 12.23%

ZnO Deionized  
Water

— — 10°C 
Reduction 

compared to 

conventional 
PV

— — — 12.29%

— PCM +  
Deionized  
water

— — 6°C 
Reduction 

compared to 

conventional 
PV

— — — 13.17%

PCM + ZnO Deionized  
Water

— — — — — — 13.42%
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Authors Nanoparticle Base Fluid Concentra- 

tion

Flowrate Module  

Type,  

Irradiation  

(W/m2)

Ambien 

Temp

Module 

Temp

Electrical 

Efficiency
Thermal 

Efficiency
Overall Efficiency

Energy Exergy

Soltani et al. 

[30]

— Water — — Silicon 
Crystalline 
PV Module

— — — — 3.051% 
increase 

compared 

to natural 
cooling

—

Fe
3
O4 Water 0.5 wt.% — — — — 3.13% 

increase 

compared 

to natural 
cooling

—

SiO2 Water 0.5 wt.% — — — — 3.35% 
increase 

compared 

to natural 
cooling

—

Hussien  

et al. [32]

— — — — 1000,  
Monocry- 
stalline

— 79.1 °C 8% — — —

Al2O3
Water 0.30wt.% 0.2 L/s 42.2 °C 12.10% 34.40% — —

Ebaid  

et al. [33]

— Water — 5000 ml/
min

750,  
Monocry 

stalline

— 16.58% 
Decrease 

compare to 

conventional 
PV

.61% Increase 
compared to 

conventional 
PV

— — —

Ti2O3
Water-

polyethylene 
glycol

0.1 wt% 5000 ml/
min

22.9%% 
Decrease 

compare to 

conventional 
PV

0.82% Increase 
compared to 

conventional 
PV

— — —
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Authors Nanoparticle Base Fluid Concentra- 

tion

Flowrate Module  

Type,  

Irradiation  

(W/m2)

Ambien 

Temp

Module 

Temp

Electrical 

Efficiency
Thermal 

Efficiency
Overall Efficiency

Energy Exergy

Karami  

and  

Rahimi  

[34]

ALOOH-
XH2O

Water 0.01 wt.% 300 ml/
min

1000  
Monocry- 
stalline

25°C Decrease 

from 62°C to 
32.5°C

27.12% Increase 
compared to 

conventional 
PV

— — —

Sardarabadi 

et al. [37]

No Cooling — — — 855,  
Monocry 

stalline

33°C — — — 11%, 11.53%

— Deionized 
Water

— 30L/h — 8.2% Increase 
compared to 

conventional 
PV

35.60% 47.20% 13.54%

SiO2 Water 1 wt% — — 9.01% Increase 
compared to 

conventional 
PV

— 49.80% 13.85%

SiO2 Water 3 wt.% — — 9.75% Increase 
compared to 

conventional 
PV

— 52.40% 14.02%

Sardarabadi 

and 

Passandideh. 

[40]

TiO2 Deionized 
Water

0.2 wt.% 30 kg/h 917  
Monocry 

stalline

33.4 °C 11.48°C 
Reduction as 

compared to 

Conventional 
PV

6.54% Increase 
compared to 

conventional 
PV

— — —

ZnO 0.2 wt.% 30 kg/h 11.85°C 
Reduction as 

compared to 

Conventional 
PV

6.46% Increase 
compared to 

conventional 
PV

— — —

Al2O3
0.2 wt.% 30 kg/h 11.03°C 

Reduction as 

compared to 

Conventional 
PV

6.36% Increase 
compared to 

conventional 
PV

— — —
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Authors Nanoparticle Base Fluid Concentra- 

tion

Flowrate Module  

Type,  

Irradiation  

(W/m2)

Ambien 

Temp

Module 

Temp

Electrical 

Efficiency
Thermal 

Efficiency
Overall Efficiency

Energy Exergy

Abd-Allah 

et al. [42]

Boehmite 
(ALOOH-
xH2O)

Water 0.1 wt.% 200 ml/
min

— — 21.6°C 
Reduction 

compared 

to without 

cooling

21.87% 
Increase 
compared 

to without 

cooling

— — —

Sathieshkumar 

et al. [46]

No cooling — — — Monocry 

stalline
–

–

–

— 11.31% — — —

— Water — 0.02 kg/s — 12.42% 18.43% — —

CuTiO2 Water 0.2 wt.% 0.02 kg/s — 12.87% 19.50% — —

Hasan et al. [48] — Water — 0.167 kg/s 1000  
Polycry 

stalline

30 °C Decreased 

from 87–57°C
11.40% — — —

SiC Water 1 wt.% 0.167 kg/s Decreased 

from 87–41°C
12.75% 85% 97.75% —

TiO2 Water 1 wt.% 0.167 kg/s Decreased 

from 87–45°C
12.30% — — —

SiO2 Water 1 wt.% 0.167 kg/s Decreased 

from 
87–50 °C

11.80% — — —

Maadi et al. [54] Al2O3
Water 10 wt% 30 kg/h Monocry 

stalline
— — 6.23% Increase 

compared to 

pure water

— — —

TiO2 Water 10 wt% 30 kg/h — — 6.02% Increase 
compared to 

pure water

— — —

ZnO Water 10 wt.% 30 kg/h — — 6.88% Increase 
compared to 

pure water

— — —

SiO2 Water 10 wt.% 30 kg/h — — 5.77% Increase 
compared to 

pure water

— — —
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Authors Nanoparticle Base Fluid Concentra- 

tion

Flowrate Module  

Type,  

Irradiation  

(W/m2)

Ambien 

Temp

Module 

Temp

Electrical 

Efficiency
Thermal 

Efficiency
Overall Efficiency

Energy Exergy

Sahini at el. 

[58]

— Deionized 
Water

— 0.026 kg/s Polycry 

stalline PV 
Module

— — 8.5% Increase 
compared 

with 

conventional 
PV system

— — —

Silver with 
1 vol.% 
potassium 

oleate 
surfactant

Deionized 
Water

0.5 vol.% 0.026 kg/s — — 0.9% Increase 
compared to 

water cooled 
system

— — —

Sardarabadi 

et al. [61]

No Cooling — — — 917  
Monocry 

stalline

34.42°C — 12.73% — 12.73% 10.29%

— Water 0.2 ey% 30 kg/h 11% decrease 
compared to 

conventional 
PV

13.41% 34.12% 47.53% 11.56%

ZnO Water 0.2 wt% 30 kg/h 11.85% 
decrease 

compared to 

conventional 
PV

13.59% 46.05% 59.64% 12.17%

TiO2 Water 0.2 wt% 30 kg/h 11.48% 
Decrease 

compared to 

conventional 
PV

13.63% 44.34% 57.97% 11.93%

Al2O3 Water 0.2 wt% 30 kg/h 11.03% 
Decrease 

compared to 

conventional 
PV

13.44% 36.66% 50.10% 11.88%
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Authors Nanoparticle Base Fluid Concentra- 

tion

Flowrate Module  

Type,  

Irradiation  

(W/m2)

Ambien 

Temp

Module 

Temp

Electrical 

Efficiency
Thermal 

Efficiency
Overall Efficiency

Energy Exergy

J.J. Michael and 

S. Inyan. [62]

No Cooling — — — — — — 8.98% — — —

— Water — 0.01 kg/s Without 

Glazing
— — 8.77% 19.36% — —

— — 0.01 kg/s With Glazing — — 6.40% 21% —

CuO Water 0.05% 0.01 kg/s Without 

Glazing
— — 7.62% 28.22% — —

Water 0.05% 0.01 kg/s With Glazing — — 6.18% 30.43% — —

Al-Waeli et al. 

[63]

— — — — — 25°C 68.3°C 7.11% — — —

— Water — 0.175 kg/s — 45.22°C 9.92% 35.40% — —

— PCM +  
Water

— 0.175 kg/s — 42.22°C 12.32% 50.50% — —

PCM + SiC Water — 0.175 kg/s — 39.52°C 13.70% 72% — —

Hamdan and 

Kardasi [65]

No Cooling — — — — — 46.9 10.04% — — —

— Water — — — 25.47 11.20% — — —

Al2O3
0.4 wt.% — — 22.67 12.06% — — —

No Cooling — — — 48.49 12.57% — — —

— — — — 24.93 11.39% — — —

CuO 0.6 wt.% — — 22.13 10.23% — — —

Table 1. Effect of Nanofluids on PV/T System’s performance.
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Gangadevi et al. [35] experimentally examined that the electrical, thermal and overall efficiency 
of PV module being cooled by Al2O3

/water nanofluid got increased by 13%, 45% and 58% respec-

tively as compared to water based and 1 wt% Al2O3
 nanofluid based cooling. Mustafa et al. [36] 

numerically tested the effect of mass flowrate and concentration of nanofluid (TiO2/water) on the 
efficiency of PV/T system. As per the results, electrical and thermal efficiency of this system is lin-

early proportional to mass flowrate. Best results are obtained at low concentration of nanofluid.

Electrical, thermal and overall efficiencies of the various PV/T systems working with different 
nanofluids is expressed in the Table 1.

Efficiency enhancement of PVT systems being cooled by the nanofluids is due to the enhanced 
thermal conductivity of the nanofluids. Increase in thermal conductivity is dependent on con-

centration, size and type of the nanoparticle [4].

4. Factors affecting efficiency of nanofluid-based PV/T systems

Various factors such as the concentration of nanofluid, flowrate of nanofluid, size of the nanopar-

ticle, geometry of microchannel, type of base fluid and irradiance influence the efficiency of 
nanofluid-based PV/T system. Effects of these factors are discussed in the subsequent sections.

4.1. Irradiance

Increase in irradiance cause the module temperature to escalate as more heat reaches the sur-

face. Khanjari et al. [2] investigated environmental parameters that affect the efficiency of a 
PV/T system cooled by nanofluids (  A  l  

2
    O  

3
   / water )     via CFD simulation. As the absorbed solar radia-

tion increased from 200  W /  m   2  k  to 800  W /  m   2  k  the electrical efficiency of system decreased from 
11.41% to 10.12% for pure water and 11.4% to 10.23% for alumina nanofluid whereas, thermal 
efficiency increased from 65–79% for pure water and 76–91% for alumina nanofluid. As the 
absorber plate temperature increased from 291 K to 324 K the electrical efficiency decreased 
from 11.1% to 9.4% for water and 11.2% to 9.5% for alumina nanofluid whereas, the thermal 
efficiency did not change with increasing inlet temperature of fluid after reaching a primary 
value. Similarly, the system efficiency was found to escalate with decreasing irradiation i.e. the 
maximum overall efficiency of the system was found to increase from 78.60% to 80.58% and 
73.58% to 75.93% for 1 wt% and 3 wt% respectively, when the irradiation value decreased from  
1100  W ⁄ m   2      to  600  W ⁄ m   2     [37]. Effect of irradiance found by Al-Waeli et al. [38] has been presented in 
Table 2.

4.2. Concentration

Researchers have found contradictory results when it comes to concentration enhancement of 
nanofluids. Manikandan and Rajan [39] harnessed sand for the cooling of PV/T system in order 
to enhance the efficiency. They tested 0.5, 1 and 2 vol% concentration and the collection effi-

ciency ratio for these concentrations was found to be 3.6%, 11.2% and 26.9% whereas the solar 
collection efficiency increased by 9% and 16.5% for 0.5% and 2% respectively. Sardarabadi and 
Fard [40] also examined that increasing the mass fraction of nanoparticles from 0.05 to 10 wt%, 
the thermal performance of the system increased by four times. Wei An. [24] examined the 
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effect of nanofluid concentration in spectral splitting filter based PV/T system. They observed 
that increasing the concentration of the nanofluid increased the nanofluid temperature and 
system’s electrical efficiency, but the thermal efficiency gets decreased in this way.

The maximum overall efficiency of the system was found to be 75.93% and 80.58% when 
the ferrofluid concentration was increased from 1 wt% to 3 wt% respectively [37]. Khanjari 
et al. [41] observed that increasing volumetric concentration of the nanoparticle (from 1–5%) 
increased the heat transfer coefficient and thus the overall efficiency (from 1.33% to 11.54% for 
silver and 0.72% to 4.26% for alumina). Radwan et al. [20] observed efficiency escalation with 
increasing concentration. But some researchers witnessed contradictory results. Karami and 
Rahimi [34] examined that increasing concentration of nanoparticles reduces the efficiency 
because of agglomeration or clustering of the suspended particles. Abd-Allah, [42] found best 
results at 0.1 wt% amongst (0.01, 0.1, 0.5 wt%).

Cieslinski et al. [43] found no impact of nanoparticle concentration on the performance of the 
PV/T system. They observed that 1 wt% of  A  l  

2
    O  

3
   / water  rather decreased the thermal efficiency 

compared to the distilled water and 3 wt% and 3 wt% did not change the thermal efficiency 
as compared to the distilled water thermal efficiency. Whereas, the overall efficiency of the 
system reached up to 80%.

In order to obtain best results, there is always a need to determine the optimum concentration 
of nanoparticles in base fluid instead of using high volume fraction of nanofluid [43, 44]. 
However, instead of increasing the concentration of the same kind of nanoparticle, blending 
a different kind of nanoparticles can help improve the efficiency of PV module in a more 
efficient way [45].

4.3. Flowrate

Sathieshkumar et al. [46] concluded that both electrical and thermal efficiency of the PV/T 
system increases with increasing flow rate but after a certain flowrate magnitude the efficien-

cies of the system start to decline. Overall energy efficiency is found to be higher in turbulent 
regime whereas overall exergy efficiency is higher in laminar regime [47]. Mustafa et al. [36] 

numerically tested the effect of mass flowrate and concentration of nanofluid (TiO2/water) on 
the efficiency of PV/T system. As per the results, the electrical and thermal efficiency of this 
system was found to be linearly proportional to mass flowrate.

Hasan et al. [48] observed that increasing the mass flowrate increased the cell efficiency lin-

early. As the mass flowrate increased from 0 to 1.666 kg/s the electrical efficiency of the cell 
increased from 8% to 16.5% at  500 W /  m   2   solar irradiance in case of SiC-water nanofluid. Mean 
photovoltaic temperature decreased from   87   °  C  to   41   °  C  as the mass flowrate changed from 0 
to 1.666 kg/s at 1000  W /  m   2   solar irradiance in case of SiC. Karami and Rahimi. [34] observed 
that temperature of the module decreased from 62      °  C  to 32.5      °  C  when the flow rate increased 
from zero to 300 ml/min. Khanjari et al. [41] observed that increase in inlet fluid velocity (from 
0.05 m/s to 0.23 m/s) increase the first law (energy) efficiency but decreases the second law 
(exergy) efficiency (from 15.40% to 12.50% for silver). Lelea et al. [14] observed lower maxi-
mum module temperature for nanofluid based cooling as compared to water cooling at lower 
Re number. Whereas, at higher Re (Re > 1000) the maximum module temperature overlaps for 
nanofluid based cooling and water-based cooling of PV module.
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PV/T system in laminar regime outperforms turbulent regime. More PV efficiency can be 
achieved in turbulent regime but it requires higher pumping power thus making the overall 
system efficiency lesser [15]. Although heat transfer in case of higher Reynolds numbers is 
seemed to increase because of greater Brownian motion of particles but too high a Reynolds 
number requires higher pumping power which eventually reduces the overall performance of 
the microchannels containing nanofluids [49]. Xu and Kleinstreur [50] concluded that increased 
concentration elevates the system efficiency when cooled by Al2 O3

/water nanofluid. Higher inlet 
Reynolds number yields higher cell efficiency but too high a Reynolds number is not favorable. 
Low inlet temperature of nanofluid is capable to produce pronounced cooling effect. Height of 
channel containing nanofluid is also of much consideration, slight variation in channel height 
varies the required pumping power and significant change in entropy generation rate.

4.4. Nanoparticle size

Due to the smaller size, nanoparticles have large surface area which is attributed to higher 
heat transfer rates. Nanoparticles have high thermal conductivity, but heat capacity is low. 
Nanoparticles are stable in the base fluid at high temperatures and they do not agglomerate in 
the water as well [51]. Energy and exergy efficiency of the system can be increased by increas-

ing the size of the nanoparticle in the turbulent regime but in laminar regime the case is oppo-

site. Yazdanifard et al. [15] interestingly found no effect of particle size on the efficiency. They 
used Titanium dioxide nanofluid and Aluminum oxide nanofluid for the cooling purpose but 
no significant efficiency alteration was observed. Whereas, Al-Shamani et al. [4] observed that 
heat transfer of the nanofluid decreased with a decrease in size of the nanoparticle. Therefore, 
there is still a need for further experimentation to conclusively narrate the effects of nanopar-

ticle size on the efficiency of the solar systems.

4.5. Base fluid

Not only the type of nanoparticle affects the performance of the PV/T system but the type of 
base fluid is also of same significance while predicting the performance of the system. Using 
base fluids such as ethylene-glycol, polyethylene glycol, cetyltrimethylammonium bromide 
water mixtures instead of water can considerably elevate the cell efficiency [15]. Addition of 
surfactant and selection of suitable pH of nanofluid can display pronounced effects [44]. Rajeb 
et al. [52] examined both numerically and experimentally the effect of variation in concentra-

tion (0.1, 0.2 and 0.4 wt%), type of nanoparticle (Al2O3
 and Cu) and type of base fluid (water and 

ethylene glycol) on the efficiency of PV/T system being cooled by nanofluid. They observed 
that increasing the concentration of nanofluid increased the efficiency of the system. The sys-

tem best performed when water was used as base fluid as compared to ethylene glycol base 
fluid. According to the drawn results, maximum electrical and thermal efficiency was found 
to be 13.55% and 77% respectively for Cu/water nanofluid based PV/T system, at 0.4 wt%. 
Whereas, they found 13.54% electrical and 60% thermal efficiency for Cu/ethylene glycol 
based PV/T system, at 0.4 wt%. Conclusively, Cu/water nanofluid based system outperformed 
Al2O3

/water based system in terms of electrical and thermal efficiency. Hosseinzadeh et al. [53] 
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found that a PV system being cooled by water only, performed better than the systems cooled 
by either ethylene glycol only and water-ethylene glycol (50% water and 50% ethylene glycol).

4.6. Nanoparticle type

Maadi et al. [54] stated that for metalloids the viscosity of the nanofluids gets increased and 
the specific heat capacity is decreased, which is not favorable. This is because, at a given mass 
fraction the volume of the metalloid nanofluids is increased due to high density. Hasan et al. 
[48] observed that cooling the PVT by impinging SiC, TiO2, SiO2 nanofluids and pure water 
improved the maximum power output by 62.5%, 57%, 55% and 50% as compared to the con-

ventional PV module. Al-Shamani et al. [55] tested SiO2, TiO2 and SiC based nanofluid for the 
cooling purpose to analyze the efficiency betterment. Following the experimental results, SiC/
water nanofluid outperformed rest of the nanofluids. At 1000 W/m2 irradiance and 0.170 kg/s 
mass flowrate, SiC/water nanofluid based PV/T system showed 13.529% electrical efficiency 
whereas, TiO2/water and SiO2/water nanofluid based PV/T systems depicted 10.978% and 
10.302% electrical efficiency respectively. PV/T system utilizing water solely for cooling, 
approached 9.608% electrical efficiency.

Kolahan et al. [56] examined the entropy generation in PV/T system due to the addition of 
nanoparticles both numerically and experimentally. They used   Al  

2
    O  

3
   / water,  TiO  

2
   / water  and ZnO/

water by 0.2 wt% and SiO2/water by 1 wt% and 3 wt% nanofluids (along with acetic acid 
as a surfactant). Following the results, ZnO/water produced least frictional entropy,   SiO  

2
   / water  

produced maximum pressure drop and frictional entropy generation and   Al  
2
    O  

3
   / water   produced 

least thermal and total entropy generation. Thermal entropy generation was found to be 
maximum at inlet, turning points and outlet, due to high temperature differences. For metallic 
nanofluids, increase of mass fraction caused density and viscosity elevation. Increased mass 
fraction reduced the velocity which in turns reduced the frictional entropy generation. For met-
alloid nanofluids, reverse is the case. For ZnO the frictional entropy was decreased by 10.87% 
at 10 wt%, whereas, for   SiO  

2
   / water  the frictional entropy was increased by 0.94% compared to 

pure water. Addition of nanoparticles causes more prominent reduction in thermal entropy 
generation compared to the frictional entropy generation. Considering the entropy generation 
view point, metallic nanofluids produce better results than the metalloid nanofluids.

Extensive experimentation has been conducted to examine the effect of magnetic on the 
performance of nanofluids [66–70]. If the Ferro-nanoparticle is used in the system, employ-

ing alternating magnetic field around the channels can improve the efficiency of the system. 
Experimental results also depicted that the alternating magnetic field improved the system 
performance whereas, the constant field did not produce significant efficiency enhancement 
when compared with the no field condition. The system efficiency was found to be 71.91% 
when there was no field applied, whereas, the efficiency went up to 73.58% in the presence of 
alternating magnetic field (50 Hz) in case of 1 wt% and  1100  W ⁄ m   2     [37]. Shape of nanoparticle and 
type of magnetic field can influence the performance of nanofluid. Sheikholeslami et al. [66, 
67] numerically analyzed the effect of non-uniform magnetic field on Fe

3
O4 -H2O nanofluid 

flowing in a porous cavity. Following the results, platelet shape of nanoparticles depicted 
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highest Nusselt number (i.e. optimum heat transfer) under the influence of non-uniform mag-

netic field. In the presence of magnetic field, addition of nanoparticles can improve the heat 
transfer properties of nanofluids [68].

4.7. Channel geometry

Narrow channels offer higher enhancement in the heat transfer coefficient whereas the wide 
channels depict instabilities in lateral heat transfer. Roughness in the pipes also affects the mag-

nitude of heat transfer. Pipes with greater roughness magnitude offer greater heat transfer due 
to the increased contact surface. In order to achieve higher performance, the temperature distri-
bution inside the channel should be held uniform, the temperature should be kept low and the 
pressure drop should also be as minimum as possible [49]. Considering the Table 3, helical chan-

nel performs best because of greater surface contact of nanofluid with the rear surface of PV unit.

Intensity Cooling Fluid Electrical Efficiency Thermal Efficiency

200 SiC-Water 16.90% 8%

1000 SiC-Water 10.90% 48%

200 CuO-Water 16% 6%

1000 CuO-Water 10% 41%

200 Al2O3
-Water 13.50% 6%

1000 Al2O3
-Water 9.80% 41%

200 Water 11.90% 4%

1000 Water 8.40% 31%

Table 2. Effect of irradiance on efficiency [38].

Researcher Nanoparticle Base 

fluid
Concen- 

tration

Flowrate Channel 

Geometry

Effect on 
Temperature

Effect on Electrical 
Efficiency

Karami and 
Rahimi [34]

Boehmite Water 0.01 wt% 300 ml/min Straight Decreased from 
62°C to 32.5°C 
for flowrate 
0–300 ml/min

27.12% increase 
compared to 

Conventional PV 
System

Karami and 
Rahimi, [57]

Boehmite Water 0.1 wt% 200 ml/min Straight 18.33°C 
Temperature 
Reduction

20.57% increase 
compared to 

conventional PV 
System

Boehmite Water 0.1 wt% 200 ml/min Helical 24.22°C 
Temperature 
Reduction

37.67% increase 
compared to 

Conventional PV 
System

Table 3. Effect of channel geometry on efficiency.
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4.8. Circulation method

When cooling the PV module via nanofluid, the circulation method is also of much impor-

tance. If the circulation is done via passive method, the increasing intensity of light would 
cause a reduction in electrical efficiency and enhancement in thermal efficiency because natu-

ral convection is not that efficient. Thus, active convection cooling should be employed to 
obtain optimum results. Whereas, the elevation in thermal efficiency is due to the availability 
of enough time for the cooling fluid to exchange heat. However, the overall efficiency of the 
system gets increased if the cooling is employed. Pumping of nanofluid can further improve 
the efficiency compared to the passive cooling [38].

5. Advantages of nanofluid-based cooling

5.1. Environmental benefits

Fossil fuel based power plants emit tons of noxious gases that detriment the environment. 
Since the solar power plants are emission free, production of electricity via this method can 
eliminate the emission of 16,974,57 tons of CO2 [58]. Hassani et al. [26] evaluated that nano-

fluid based PV/T systems can omit the emission of 448 kg   CO  
2
      m   −2   yr   −1  .

5.2. Economic benefits

PV/T system can provide an economical solution for industrial and domestic power demands. 
Studies indicate a significant reduction in energy consumption produced from conventional 
resources due to the use of such system [23, 59]. Taylor et al. [60] also narrated that a solar 
thermal based power plant of 100 MW capacity can save about $3.5 million per annum if 
the nanofluid receiver is incorporated with it. Nanofluids need a smaller area for heat trans-

fer thus making the PV system compact and reducing the costs [51]. The economic analysis 
depicted that the cost of energy produced by nanofluid based PV/T system is 82% less than 
the current prices in Saudi Arabia [33]. Nanofluid system is predicted to takes only 2 years for 
pay-back [26]. Sardarabadi et al. [61] evaluated that size reduction by 21, 32,33 and 34 from 
energy viewpoint and 5,6,7 and 6 from exergy viewpoint for PVT/water, PVT/TiO2, PVT/ZnO 
and PVT/Al2O3

 respectively. By size reduction we mean the amount of material saved for the 
same required energy and exergy outputs at the same conditions.

6. Conclusion

Cooling of PV module by nanofluids significantly enhances electrical efficiency and thermal 
energy. Cooling causes the heat removal which in turns halts the development of thermal 
stresses, making the PV modules to last long and operate more efficiently. Employing nano-

fluids impedes entropy generation as well. Efficiency of this system escalates with increasing 
concentration of nanofluid up to a certain limit but as the concentration exceeds this optimum 
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limit, efficiency tends to decline because of the clustering and agglomeration of nanoparticles. 
Increasing flowrate of nanofluid increases the efficiency but as the flow gets into turbulent 
regime the instability issues arise and this also requires higher pumping power, in turns reduc-

ing overall system’s efficiency. Using helical microchannel can increase the heat transfer and 
thus overall efficiency gets elevated. Using surfactant in the nanofluid can also surge the system’s 
performance. Some of the measures that can refine the performance of these systems include,

1. Glazing can drastically improve the nanofluid based PV/T system’s performance [46, 47].

2. Simultaneously using optical filters over the surface and thermal collector at the rear end 
can also elevate performance.

3. Applying alternating magnetic field around the flow channel can supplement the perfor-

mance of system if the Ferro-nanoparticles are being used.

The unresolved challenges being faced by the researchers while using nanofluids include instabil-
ity, agglomeration, high pumping power, and erosions. Stability improvement is the most impor-

tant need of the hour in order to further proceed towards commercial use of nanofluids, as no 
perfect method of preparation and processing of stable nanofluid has been determined up-to-date.
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