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Abstract

Harmonic analysis comes into limelight at this contemporary world as a result of pro-
liferation of non-linear loads producing waveform distortions in power systems. It has 
apparently outshined other important phrases such as power outage, power factor and 
so on which are known for their devastating impacts. The emergence of distorted wave-
form has adverse effects which could be slow or rapid damage of key apparatus and 
equipment, namely power transformers, electric motors and other sensitive computer 
as well as communication facilities. In fact, it is very easy to assess the menace of power 
outage or power factor since both the utility and consumers keep watchdog on their bill-
ings/operating costs in case of power factor or the economic losses when there is outage. 
Unfortunately, the detection of harmonics could only be analysed using high-tech power 
systems harmonic analysers and there is a need to provide stakeholders in the industry 
compendium of computational tools for fast harmonic analysis. Thus, the harmonic data 
acquired were used to train an artificial neural network (ANN) implemented on MATrix 
LABoratory (MATLAB 8) software platform to facilitate accurate prediction of harmonic 
distortions.

Keywords: artificial neural network, harmonic emulator

1. Introduction

In the present era of utility deregulation and competition, the impact of harmonics as well 

as interharmonics on equipment and system operations has been raising serious concerns. 
Nowadays, it is well known that harmonics have adverse effects on the whole power systems 
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such as misoperation of important control and protective equipment, overheating of trans-

formers and overloading of other power apparatus [1–4]. On the other hand, interharmonics 

cause lighting flickers, erroneous firing of thyristor apparatus and display or monitor image 
fluctuation [5–7].

Power quality (PQ) problems are primarily due to voltage distortion in form of flat-topping. 
Harmonic currents create voltage distortion as they pass through the impedance of a power 

system. A high impedance system can create very high voltage distortion. However, when 
the voltage distortion becomes very severe, it can cause problems with connected equipment 
such as premature failure, reduced ride-through capability and other power quality problems. 
Harmonic distortion of voltages and currents can be generated either external or internal to 
an industrial or commercial facility, while at times, it can be exported to the utility network 
in an interconnected system. Power utility’s consumers feel their effects and the end results 
of harmonics, therefore, are distorted waveforms in power outlets that supply very sensi-

tive computer-based equipment. These devices have their useful lives reduced besides being 
unable to function correctly [8]. More so, power utility consumers cannot be exonerated. They 
are equally contributing negatively to the present menace of power waveform distortions 
due to use of non-linear loads, which inherently produce harmonics. By drawing currents 
in pulses rather than in pure sinusoidal forms, these devices, such as computer equipment, 

generate harmonic currents and the harmonic currents produced can then create overheating 

and power quality problems if left uncontrolled.

Generally, harmonics may be initiated in a power system from the following sources:

1. power electronic devices;

2. transformers, reactors, AC arc furnaces and fluorescent lamps; and

3. synchronous and induction motors.

Harmonic power distortion phenomenon was recognized by Utilities in the early 1920s and 
1930s when distorted voltage and current waveforms were observed in transmission lines 
[9, 10]. Harmonics are high-frequency steady-state power involving multiple frequencies of 

50/60 Hz flowing along with the fundamental frequency on a power network which may 
adversely affect the system performance. Over the past two decades in modern power systems, 
significant effort and advancement have been made to standardize the power system harmonic 
analysis, component models and simulation procedure for harmonic studies. The procedure for 

analyzing the harmonic problem could be classified into frequency domain [11, 12] and time-

domain [13, 14], which are followed up with flexible control strategy adopted in recent time 
[12, 15]. Indeed, power system components such as overhead lines and underground cables, 
transformers, rotating machines and other non-linear loads on the system must be accurately 
modeled ever more than before, to determine their vulnerability to harmonic power flow. In 
harmonic power flow analysis, parameters of the system are specified in phasor domains and 
solutions are invoked by iterative methods. Time-domain methods, on the other hand, utilize 
time representation for the system components and other harmonic-producing devices to arrive 

at steady-state solutions.
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Power system harmonic analysis is a tool for assessing the impact of harmonic producing 

loads on a power system. Harmonic analysis has been widely used for system planning, 
system performance and evaluation, equipment design, troubleshooting and verification of 
standard compliance [16]. A rigid power system, comprising linear system impedance and 
harmonic source with constant and characteristics harmonic currents may be solved efficiently 
using the iterative harmonic power flow method. However, the presence of non-linear and 
time-varying elements in the system can significantly change the manner by which harmonic 
currents and voltages propagate through the network. As a consequence, the simplest sys-

tem model using harmonic power flow by way of superposition of harmonic sources within 
the system may be invalidated thereby yielding inaccurate results. Therefore, researchers 
are now adopting new techniques to overcome the dynamic phenomena by invoking time-
domain modeling and simulation or probabilistic modeling and simulation.

A general purpose time-domain simulation tool such as Electromagnetic Transient Programme 
(EMTP) and Simulation Program with Integrated Circuit Emphasis (SPICE) could be used to 
obtain steady-state solution of non-linear circuits by letting the simulation to run while start-
ing from some initial conditions. This method is applicable to small-scale network but some 
practical cases of systems with low damping factor or widely far apart time constant (i.e. a 
stiff system) could prolong the simulation time or may even make the simulation not to con-

verge at all [17]. Therefore, the time-domain method is still at its developmental stage and 

accordingly, the approach is only limited to simulation of simple networks.

In order to further reinforce the modeling techniques, harmonic distortion indices need to 

be accurately measured and detected early enough so as to proffer appropriate mitigation 
measures against its adverse effects. Also, any variation in the monitored waveforms that 
might be due to unpredictable activities within the substation network outlay should be 
recorded over long period of time. In Ref. [18], it was suggested that monitoring periods 

should be carried out at least 2 days or more. Thus, for adequate measurement of harmon-

ics at distribution reticulations, it is prudent to monitor and record voltage and current 
harmonics at the customer’s metering point using portable spectrum analysers that have 
facilities to acquire harmonic voltages and currents for the recommended periods. The 

data could be collected to help in the correlation of the load cycle patterns of non-linear 
loads with distortion indices such as THD

V
, THD

I
, the 3rd, 5th and 7th harmonic mag-

nitudes. In this context, therefore, the chapter presents the measurement procedure for 
harmonic studies in distribution infrastructures.

Figure 1 summarizes the framework that could be adopted. It comprises three major har-

monic studies, namely harmonic modeling, simulation and measurement techniques. The 

harmonic modeling includes harmonic current source models, non-linear voltage–current 

methods, power electronic converter models, high-frequency source models and rotating 

machine harmonic models. The simulation techniques entail the frequency scan method, 

harmonic current penetration method and harmonic power flow method. The measurement 
techniques consist of pre-measurements, measurement and post-measurement stages. Using 

Figure 1 as a typical framework, the harmonic modeling stage could employ software such as 

PCFLO, PSCAD or MATLAB.
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The measurement procedure may not be economically viable as it may involve several 
single-site dedicated data acquisition systems. In order to reduce cost, traditional heuristic 

approaches (HA) could be used to identify potential stations most vulnerable to harmonic 
problems using network historic harmonic data available at limited locations and durations 
and the artificial neural network (ANN) techniques applied to develop the harmonic power 
propagation patterns. However, detailed network loading analysis can ensure that power 
facilities are being utilized within safe limits and not be subjected to damage.

The distribution system is commonly broken down into three components: distribution sub-

station, distribution primary and secondary feeders. At the substation level, the voltage is 
reduced and power is distributed in smaller amount to the customers from primary and sec-

ondary distribution networks. Consequently, one substation will supply many customers 
with power. Thus, the number of feeders in the distribution systems outnumbers that of the 
transmission systems. Furthermore, most customers are connected to only one of the three 
phases in the distribution network infrastructure. The power flow in each of the phases is 
different giving rise to an adverse effect referred to as ‘unbalanced system’. This is undesir-

able and needs to be accounted for in harmonic power flow studies related to distribution 
networks.

With the increasing awareness for the use of comprehensive monitoring facilities, remote ter-

minal units (RTUs) are introduced at distribution levels. This is intended to provide automa-

tion of power network resources so as to ensure that the network is being operated within the 
safe margin in terms of operating parameters such as load, duty and harmonic distortions. 

Figure 1. Framework of harmonic power flow studies.
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Evaluation and simulation of planned operations using historic data will help to avoid dam-

age to sensitive equipment due to these operations. From this standpoint, United Kingdom 
(UK) distribution network operators (DNO) have installed 60% of this RTU at their distribu-

tion reticulations to monitor the network conditions during different phases of operations [19]

while the implementation of such automation by distribution company (DISCO) are envis-

aged for weak power systems.

2. Need for harmonic studies

The harmonic distortion needs to be accurately measured due to its adverse effects that 
include overheating, radio noise generation/interference, premature failure of sensitive 

equipment such as computers, hospital equipment and communication facilities. It is neces-

sary to detect any variation in the monitored waveforms that might be due to unpredictable 
activities; such as system faults, customer non-linear loading, switching and so on, within the 

substation network outlay so as to keep the entire system safe and secure. On the other hand, 
the modern distribution networks are so diverse permitting the integration of New Energy 
Technologies (NETs), intertie AC/DC power transmission and domestic load-leveling devices 
as well as novel technical tools and monitoring equipment that may require new appraisal. 

There is a need to develop harmonic framework from the point of view of tripartite platform: 
modeling, simulation and prediction. This constitutes the motivation for the development of 

this monograph project to facilitate the documentation of pattern of harmonic distortion in 
some selected distribution reticulations and proffer appropriate remediation.

More importantly, the trends of harmonic studies have not satisfactorily determined whether 
harmonic-induced problems should be restricted to large industrial customers like roll-
ing mills/process industries or should such harmonic monitoring framework be extended 
to commercial and domestic networks. This is simply accentuated due to the fact that such 

industries are equipped with direct current (DC) arc furnace known as major producers of 
harmonics. However, it may become apparent that the harmonic benchmarks set by exist-
ing standards such as IEEE519-1992, IEC 610000 need to be reviewed to capture emerging 
harmonic sources such as digital equipment, cell phone chargers, compact fluorescent lamps, 
PV inverters. This essentially represents contributions from commercial and domestic loads.

In pursuance of some specific objectives, the need for development of accurate computational 
engines that can replace the on-site harmonic survey and modeling of system is indispens-

able in modern emerging distribution systems. This is because the basic transmission net-
work tools such as monitoring programme, contingency analysis and modern control systems 

aimed at improving system automation, reliability and integrity are still at developmental 
stages in distribution systems. More specifically, the field monitoring that is used to improve 
the knowledge of prevalent system operating conditions may not be cost effective at the dis-

tribution levels. It is also well known that the direct application of these techniques in the 
distribution systems is hampered by its unique nature, such as highly distributed and diverse 
loads, unbalanced phases and high R/X ratio. The high R/X ratio often requires the application 
of special distribution power flow solution. The unbalanced phases may need the solution 
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of multiphase power flow and distributive loads may necessitate the deployment of several 
monitoring sites alongside the use of state estimation techniques on operating variables of 
the networks for realistic assessment of the networks. As a result, detailed distribution sys-

tem analysis may not be reliably carried out especially in the development and evaluation 
of distribution system harmonic problems. On the other hand, it may be possible to achieve 
fast resolution of harmonic problems with the application of neural network, expert systems 
and other computational intelligence tools. These tools have the potential of minimizing the 

cost of multiple on-site harmonic monitoring and field recording and the rigorous harmonic 
modeling of the system in its entirety. Table 1 summarizes the phase sequence pattern for 
harmonic orders up to 11th individual harmonic in power system.

3. Modeling of harmonic sources

It often requires serious research efforts to realistically qualify and model aggregate harmonic 
sources in a power system because some harmonics are non-characteristic, such as the even 
harmonics in transformer in-rush currents while others are non-deterministic, erratic and 

probabilistic in nature. Arc furnace load is one distribution load components can produce 
non-deterministic harmonic characteristics. Over the past two decades, significant efforts and 
meaningful progress have been made in the area of power system harmonic modeling. More 
so extensive specialized literatures are produced from time to time. In this context, the devel-
opment of techniques for harmonic evaluation is often emphasized. However, according to a 

source [20], the tools for power system harmonic analysis are very few and as such the impact 

of harmonics on power quality degradation have not been fully explored.

Generally, there are four major approaches currently used for modeling of harmonics in 
power systems. They include:

Harmonic order Positive Negative Zero

1. Yes No No

2. No Yes No

3. No No Yes

4. No Yes No

5. Yes No No

6. No Yes No

7. Yes No No

8. No Yes No

9. No No Yes

10. No Yes No

11. Yes No No

Table 1. Summary of harmonic phase sequence pattern.
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• frequency scan analysis;

• harmonic analysis using simple current source models;

• harmonic analysis considering fundamental frequency power flow results; and

• harmonic power flow.

Harmonic studies may also be undertaken to evaluate the effects of harmonic-producing 
devices predictably noticed in arc furnace, large adjustable speed drives, static VAR compen-

sators, HVDC rectifiers, flexible AC transmission systems (FACTS) devices and other equip-

ment in the system using power quality analyser such as Fluke 435 and Fluke VR1710. Herein, 
the two Fluke equipment shown in Plates 1 and 2 were used as the major monitoring device 
to measure and analyse power quality events in real time as well as logging the harmonic 

data based on preset requirements of the findings. Then, post-processing tools that could be 
harnessed include the Fluke 435 inbuilt DFT, MATLAB and Excel software.

Plate 1. Voltage quality recorder (VR1710) logging data. (sources: (a) installation manual of fluke VR1710 (b) at a 
residential power outlet in Bauchi).
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4. Neural network as harmonic computational tool

The mathematical expression formulated with respect to Figure 2 is given in Eq. (1) which is 
similar to that of Ref. [21].
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    and   v  
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  ,  v  
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    that will offer tolerable error margin. The rest of work is to reuse the trained 

network weights for a reliable determination of unfamiliar input patterns of similar processes.

The error values in Figure 2 can be used to directly adjust the tap weights. If the system out-
put is y, and the desired system output is known to be d, the error signal can be defined as in 
Eq. (2):

  g (e)  = d − y  (2)

The error-correction learning algorithms attempt to minimize the error signal for all itera-

tions. The most popular learning algorithm for use with error-correction learning is the gradi-

ent descent algorithm. The gradient descent algorithm is employed used to minimize an error 

function g(e), through the manipulation of a weight vector   w ¯   . The cost function should be a 
linear combination of the weight vector and an input vector x. The algorithm is as follows:

Plate 2. Monitoring equipment for PQ data collection at a substation with fluke 435.
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here, η is known as the step-size parameter and affects the rate of convergence of the algo-

rithm. If the step size is too small, the algorithm will take a long time to converge. If the 

step size is too large, the algorithm might oscillate or diverge. The gradient function, g(.), 
in gradient descent algorithm, works by taking the gradient of the weight space to find the 
path of steepest descent as shown in Figure 3. By following the path of steepest descent 
and finding a minimum at each iterative step, the algorithm would not diverge especially 
if the weight space is infinitely decreasing. However, when a minimum is found, there is 
no guarantee that it is a global minimum. Hence, there is need for a more robust algorithm 
such as backpropagation technique to achieve global minimum. The backpropagation 
algorithm, in combination with a supervised error-correction learning rule (i.e. gradient 
descent algorithm), is one of the most popular and robust tools in the training of artificial 
neural networks. According to Ref. [22], backpropagation is used to find a local minimum 
in the error function. It passes the error signals backwards through the network during 
training to update the weights of the network. When talking about backpropagation, it 
is useful to define the term interlayer to be a layer of neurons, and the corresponding 
input tap weights to that layer. A superscript denotes a specific interlayer, and a subscript 
denotes the specific neuron from within that layer. These are expressed mathematically as 
in Eqs. (4) and (5).
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where x
i
l − 1 are the outputs from the previous interlayer (the inputs to the current interlayer), 

w
ij
l is the tap weight from the i-input from the previous interlayer to the j element of the cur-

rent interlayer. Nl − 1 is the total number of neurons in the previous interlayer.    x  
j
     l   is the output 

of the previous layer (l − 1) which is now an input to current layer (l).

Figure 2. Input–output one hidden layer perceptron ANN.
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The backpropagation algorithm specifies that the tap weights of the network are updated 
iteratively during training to approach the minimum of the error function. This is done via 

Eqs. (6) and (7):

    w  
ij
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   (n − 1)  + δ (  w  

ij
     l  (n) )   (6)
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The relationship between this algorithm and the gradient descent algorithm should be imme-

diately apparent. Here, η is known as the learning rate, not the step-size, because it affects the 
speed at which the system learns (converges). The parameter μ is known as the momentum 
parameter. The momentum parameter, μ, forces the search to take into account its movement 
from the previous iteration. By doing so, the system will tend to avoid local minima or saddle 
points, and tends to approach the global minimum. The parameter δ is what makes this algo-

rithm a ‘backpropagation’ algorithm. This is given by Eq. (8):
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The δ function for each layer depends on the δ from the previous layer. For the special case of 
the output layer (the highest layer), Eq. (9) can be used instead:
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In this way, the signals propagate backwards through the system from the output layer to the 
input layer. The next section presents the development of algorithmic framework for ANN 
harmonic predictor.

Figure 3. Iterative model for setting absolute error of ANN using gradient descent method. (a) 3-dimensional view of 
gradient descent. (b) 2-dimensional transform of gradient descent.
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5. Development of ANN harmonic predictor

Operators of an electric power system must be able to accurately quantify the level of har-

monic distortion across the system. Harmonic distortion is a system-wide problem which can-

not be modelled only with an integral part of the power system. It will therefore be difficult 
to determine which variables are best used for ANN models. According to Ref. [23], adaptive 

predictive techniques generally have some implementation problems. First, how to determine 
the number of input signal may pose some challenges, and second, the determination of con-

vergence factor may be done subjectively. More specifically, the harmonic distortion prob-

lem is so complicated that conventional methods do not work so well for its prediction [24].  

This is apparently due to non-linearity associated with harmonic components alongside with 

its random-like behaviour for very short terms and a periodicity for a fairly long term.

Figure 4. Flow chart for a MATLAB-based ANN function fitting and n-step-ahead prediction. (a) Training state of volt 
THD. (b) Performance of ANN THD

V
 tracking. (c) Tracking volt THD with ANN-Day1. (d) Tracking volt THD with 

ANN-Day3.

Compendium of Computational Tools for Power Systems Harmonic Analysis
http://dx.doi.org/10.5772/intechopen.77182

111



Three types of samples are presented to ANN, namely training, validation and testing sam-

ples. For the training data set, samples are presented to the network during this stage and the 
network is adjusted according to its error. In the validation regime, sample data are used to 
measure network generalization, and to halt training when generalization stops improving. 

Testing is used for generalization and has been said to have no effect on training performance 
but it is often used to provide an independent measure of network performance during and 
after training.

In the development of the ANN harmonics predictor, attempts were made to select the correct num-

ber of inputs for the network, optimum division of data into training, validation and testing regimes 
as well as their convergence indices according to acceptable best practices in the evaluation stage.

In this chapter, the ANN inputs are the RMS voltages, the RMS currents and frequency moni-
tored in the two distribution reticulations. The outputs are the voltage or current THD and 
principal component indices like 3rd, 5th and 7th harmonic orders for short term comprising 
few seconds logged time of data up to 24 h, the long terms for daily data up to 1 week data. 
In the last scenario, a preconditioned non-linear harmonic network data under experimental 
set-up was also selected as input to ANN. The flow chart shown in Figure 4 is proposed for 

the entire work in the application of neural network-based prediction technique.

The model predictor is used to train a neural network to track the harmonic data appropri-

ately preprocessed outside the MATLAB environment with database software (POWERLOG 
and EXCEL). The POWERLOG is platform on which Fluke 435 power quality meter stored 
data into PC. However, MATLAB M-file works very well with EXCEL, serving as an interface 
hetween POWERLOG and ANN MATLAB programme. The ANN thus generates needful 
results presented in section 6. The predicted outputs of ANN are the responses/error output 
divided into three sub-model outputs; the training, validation and test errors. These errors are 
compared with the best practice error indices and fed to output evaluation unit.

6. Sample results of ANN emulator

The fitting functions established the THD for voltage and THD for current, being cumulative, 
using the set of input data based on selected daily harmonic data. The simulation results are as 
shown in Figures 5 and 6 for harmonic estimation techniques using Malaysian university power 
quality (PQ) data while Figures 7 and 8 for a Nigerian university PQ data. Each plot in these 
figures has three lines, because the seven inputs representing three-phase voltage and current 
RMS as well as nominal frequency and one target vector (output distortion index) are randomly 
divided into three sets as earlier stated. For all cases, 70% of the vectors were used to train the 
network and 15% of the matrices were used for validation whilst the remaining 15% used for 
testing. As a stopping criterion, the network is made to memorize the training pattern after six 
validations, otherwise the training is terminated. This technique has been adopted to avoid the 
problem of over fitting commonly  experienced in the backpropagation type of optimization and 
learning algorithm using early stopping as observed in Figures 5a, 6a, 7b, 8b. Finally, after the 
validation was accomplished, the last 15% of the data matrix provided an independent test of net-
work generalization process. The family of plots in Figures 5c–d, 6c–d, 7c–d, 8c–d, respectively, 

show sample results for snap-short emulators of volt and current THD in the two networks.
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Figure 5. Field harmonic data and tracking of volt THD with ANN in Malaysia. (a) Training state of current THD.  
(b) Performance of ANN THD

I
 tracking. (c) Tracking THD

I
 with ANN-Day1. (d) Tracking THD

I
 with ANN-Day3.

Figure 6. Field harmonic data and tracking of current THD with ANN in Malaysia. (a) Training state of volt THD.  
(b) Performance of ANN THD

I
 tracking. (c) Tracking THD

I
 with ANN-day 2 early morning (EM). (d) Tracking THD

I
 

with ANN-Day2mid day (MD).
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Figure 8. Field harmonic data and tracking of volt THD with ANN in Nigeria. (a)Training State of Current THD  
(b) Performance of ANN THD

I
 Tracking (c) Tracking THD

I
 with ANN-day 2 early morning (EM) (d) Tracking THD

I
 with 

ANN-Day2mid day (MD)

Figure 7. Field harmonic data and tracking of volt THD with ANN in Nigeria. (a) Training state of current THD.  
(b) Performance of ANN THD

I
 tracking. (c) Tracking THD

I
 with ANN-day 2 early morning (EM). (d) Tracking THD

I
 

with ANN-Day2mid day (MD).
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7. Conclusion

The results have facilitated the classification of tools into simple, semi-advanced and advanced 
types. It also buttressed further the need for periodic investigation and harmonic assessment 
in a plant at least on frequency of one quarter (Q1), two quarters (Q2), three quarter (Q3) or 
four quarter (Q4), especially with the installation of new non-linear loads. Based on the enu-

merated procedures the selection of needful tools can be accomplished.

Author details

Abdullahi Lanre Amoo*, Usman O. Aliyu and Ganiyu Ayinde Bakare

*Address all correspondence to: alabdullahi@atbu.edu.ng

Abubakar Tafawa Balewa University, Bauchi, Nigeria

References

[1] Biswas S, Chatterjee A, Goswami SK. An artificial bee colony-least square algorithm for 
solving harmonic estimation problems. Applied Soft Computing. 2013;13:2343-2355

[2] Amoo A, Said D, Yusuf A, Mohd Zin A. Harmonic power flow in Nigerian Power system 
with PV site. In: IEEE 7th International Power Engineering and Optimization Conference 
(PEOCO); 2013. pp. 319-323

[3] Amoo AL, Bappah AS, Aliyu UO. Virtual Platforms for Teaching Harmonic Load Flow 
to Technical and Engineering Students in Nigeria. In: Proceeding of IEEE, NIGERCON; 
November 14-16, 2013. Vol. 2. pp. 98-107

[4] Swiatek B, Rogoz M, Hanzelka Z. Power system harmonic estimation using neural net-
works. In: 9th International Conference on Electrical Power Quality and Utilisation, 
2007. EPQU 2007. pp. 1-8

[5] Testa A, Langella R. Considerations on probabilistic harmonic voltages. In: Power 
Engineering Society General Meeting, 2003. IEEE, 2003. Vol. 2. pp. 1159

[6] Srivastava S, Gupta J, Gupta M. PSO & neural-network based signature recognition for 
harmonic source identification. In: IEEE Region 10 Conference TENCON; 2009. pp. 1-5

[7] Sexauer JM, Mohagheghi S. Voltage Quality Assessment in a Distribution System With 
Distributed Generation – A Probabilistic Load Flow Approach. IEEE Transactions on 
Power Delivery. Vol. 28; 2013. pp. 1652-1662

[8] Dugan RC, Key TS, Ball GJ. Distributed resources standards. Industry Applications 
Magazine. IEEE; 2006. Vol. 12. pp. 27-34

[9] Al-duaij EOS. Harmonics Effects in Power System. International Journal of Engineering 
Research and Applications. 2015;5:01-19

Compendium of Computational Tools for Power Systems Harmonic Analysis
http://dx.doi.org/10.5772/intechopen.77182

115



[10] Mayoral EH, López MAH, Hernández ER, Marrero HJC, Portela JRD, Oliva VIM. Fourier 
Analysis for Harmonic Signals in Electrical Power Systems. In: Fourier Transforms-
High-tech Application and Current Trends. InTech; 2017

[11] Cespedes M, Sun J. Impedance modeling and analysis of grid-connected voltage-source 
converters. IEEE Transactions on Power Electronics. 2014;29:1254-1261

[12] Rygg A, Molinas M, Zhang C, Cai X. A modified sequence-domain impedance definition 
and its equivalence to the dq-domain impedance definition for the stability analysis of 
AC power electronic systems. IEEE Journal of Emerging and Selected Topics in Power 
Electronics. 2016;4:1383-1396

[13] Bairamkulov R, Ruderman A, Familiant YL. Time domain optimization of voltage and 
current THD for a three-phase cascaded H-Bridge inverter. In: IEEE International Power 
Electronics and Motion Control Conference (PEMC); 2016. pp. 227-232

[14] Wang J, Liang J, Gao F, Dong X, Wang C, Zhao B. A closed-loop time-domain analy-

sis method for modular multilevel converter. IEEE Transactions on Power Electronics. 
2017;32:7494-7508

[15] Guo X, Liu W, Zhang X, Sun X, Lu Z, Guerrero JM. Flexible control strategy for grid-
connected inverter under unbalanced grid faults without PLL. IEEE Transactions on 
Power Electronics. 2015;30:1773-1778

[16] Wilsun X, Xian L, Yilu L. An investigation on the validity of power-direction method for 
harmonic source determination. IEEE Transactions on Power Delivery. 2003;18:214-219

[17] Li W, Kuo-Hua L. A study on randomly varying harmonic currents and total harmonic 
distortion of currents in power systems. In: International Conference on Future Power 
Systems; 2005. pp. 5

[18] Grady M. Understanding power system harmonics. Department of Electrical & 
Computer Engineering, University of Texas at Austin; 2012

[19] PPA and Capula Ed. Distribution Network Visibility (Report UK Power Networks. LCN 
Fund Tier 1 Close Down; 2013

[20] Kuhlmann V, Dewe M, Arnold C. Some aspects of precise synchronisation of data acqui-
sition for power systems harmonic analysis

[21] Bullinaria J. Introduction to neural computation. Notas de aula. Disponível em:< http://
www. cs. bham. ac. uk/~ jxb/inc. html>. Acesso em; 2010. Vol. 15

[22] Rojas R. Neural networks: a systematic introduction. Springer Science & Business Media; 
2013

[23] Ibrahim WA, Morcos MM. Artificial intelligence and advanced mathematical tools for 
power quality applications: a survey. IEEE Transactions on Power Delivery. 2002;17: 
668-673

[24] Riad AM, El-Bakry HM, Mastorakis N. Fast harmonic current/voltage prediction by 
using high speed time delay neural networks. In: Proceedings of the 3rd International 
Conference on Communications and information technology; 2009. pp. 245-272

Compendium of New Techniques in Harmonic Analysis116


