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Abstract

Recent advances in experiments and models of thermo-induced shape memory polymers
(TSMPs) were reviewed. Some important visco-elastic and visco-plastic features, such as
rate-dependent and temperature-dependent stress-strain curves and nonuniform temper-
ature distribution were experimentally investigated, and the interaction between the
mechanical deformation and the internal heat generation was discussed. The influences
of loading rate and peak strain on the shape memory effect (SME) and shape memory
degeneration of TSMPs were revealed under monotonic and cyclic thermo-mechanical
loadings, respectively. Based on experimental observations, the capability of recent devel-
oped visco-elastic and visco-plastic models for predicting the SME was evaluated, and the
thermo-mechanically coupled models were used to reasonably predict the thermo-
mechanical responses of TSMPs.

Keywords: shape memory polymers, thermo-mechanical coupling, constitutive models,
glassy transition, relaxation

1. Introduction

Thermo-induced shape memory polymers (TSMPs) are one of most widely applicable shape

memory polymers (SMPs) at present, which exhibit the shape memory effect (SME) by

changing the ambient temperature. TSMPs are different from the traditional polymers; some

of their important features related to the SME were summarized by Lendlein et al. [1] and

Hager et al. [2] as follows: (1) a phase presents the rubber-like state in a wide temperature

range above the glassy transition temperature (Tg) and has a stable strength to deform; (2) a

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



phase presents the glass-like state in a wide temperature range below Tg and has a stable

strength to ensure that the internal stress is not be released in storage; (3) The two separable

phases are the structural basis of SME and the suitable ratio between the two phases should

be existent. The molecular mechanism of TSMPs was presented by Behl et al. [3], as shown

in Figure 1. There are three parts in TSMPs, including the netpoint, the relaxed switch-

ing segment, the elongated and fixed switching segment (i.e., the transition phase, it can

transform between the netpoint and the relaxed switching segment with the change of

temperature).

The popular topics focus on the fabrications, the analysis of mechanisms and applications of

TSMPs [3–5]. The constitutive models describing the glassy transition mechanism of TSMPs

are summarized and they can be divided into two types according to different deformation

mechanisms, including the thermo-visco-elastic rheology model and the meso-mechanical

model [6]. The thermo-visco-elastic model can describe the mobility of chain segments and

relaxation with temperature by introducing the relaxation time and the temperature-

dependent modulus. The meso-mechanical model adopted a mixture rule of rubber and

glassy phases by the volume fractions of frozen and active phases. For considering the

interaction between the internal heat generation and mechanical deformation, the thermo-

mechanically coupled models were developed by introducing different dissipation mecha-

nisms.

In this chapter, recent advances in experiments and models of TSMPs are reviewed. According

to experimental observations, some deformation mechanisms and features of TSMPs are sum-

marized. The capability of two types of models in predicting the mechanical responses and the

SME of TSMPs are evaluated, and some interesting issues and further developments of TSMPs

were discussed in the end.

Figure 1. The molecular mechanism of the SME of TSMPs [3].
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2. Experiment observations

2.1. Mechanical performances

The mechanical properties of TSMPs are strongly sensitive to the ambient temperature and the

loading rate and can be obtained from tensile experiments at different temperatures and

loading rates, as shown in Figure 2.

It is found from Figure 2 that the high-stress responses at low temperature is a typical feature

of amorphous polymers, and the low stress responses at high temperature is a typical feature

of visco-elastic polymer. The yield peak gradually disappears when the temperature goes

beyond the glassy transition temperature Tg.

The thermo-mechanical properties can be obtained from the dynamic mechanical analysis

(DMA) [7]. As shown in Figure 3, the storage and loss moduli obtained from DMA are found

as functions of temperature. The glassy transition temperature, where the ratio of loss modulus

and storage modulus (tan δ) dramatically changes, can be obtained from the DMA results, and

the glassy transition temperature increases with the frequency [8]. In addition, the glassy

transition temperature can be also obtained from the differential scanning calorimeter (DSC)

test [9].

2.2. Thermo-mechanical coupling behaviors

The thermo-mechanical coupling behaviors are divided into two types here, one is that the

mechanical behavior changes with the ambient temperature, that is, SME; the other is the

temperature changes induced by the internal heat generation.

Figure 2. Stress-strain curves of monotonic tension at (a) different temperatures and (b) loading rates.
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2.2.1. Shape memory effect

As shown in Figure 4, a typical SME process includes four stages, that is, Step1: deforming at

high temperature above Tg; Step2: cooling to the storage temperature (room temperature in

general); Step3: unloading at the storage temperature and the shape is fixed; Step4: heating to

the recoverable temperature above Tg, the deformed shape returns to the initial undeformed

shape.

Figure 4. The illustration of SME of TSMPs.

Figure 3. The curves of storage modulus, loss modulus, and tanδ versus temperature.
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The SME process can be divided into stress-controlled (stress-free recovery) and strain-

controlled (strain-constraint recovery) modes during strain recovery by heating, respectively.

Two parameters are usually used to character the SME, including the shape fixity ratio Rf and

the shape recovery ratio Rr [10, 11] as shown in Eqs. (1) and (2).

Rf ¼
εu

εm
� 100 (1)

Rr ¼
εm � εr

εm
� 100 (2)

where εm, εu and εr denote the peak strain, fixed strain and residual strain, respectively.

Besides, the recoverable glassy transition temperature in the stress-free recovery, the maximum

recovery stress in the constraint recovery and the recoverable temperature at the maximum

recovery stress are also used to quantify the SME [10–13].

The experimental results of TSMPs sheet (MM4520) at different strain rates and peak strains

are shown in Figure 5.

It is found from Figure 5 that the maximum stress at the cooling stage decreases with the

increase of loading rate, and the shape recovery ratio of TSMPs in the stress-free recovery

decreases with the increase of peak strain and the decrease of strain rate, which is similar with

shape memory experiments of TSMPs sheet (MS4510) [14]. It is the reason that the viscosity

increases with the increase of strain rate and the damage in chain segments increases with the

increase of peak strain. The correlation between the loading rate and the shape recovery ratio

can be explained, as the relaxation of the stored elastic energy is easier at low loading rate than

at high loading rate. However, the SME in the stress-free recovery is independent on the peak

strain; the recovery maximum stress increases with the increase of peak strain for the aliphatic

polyether urethane [13].

In the molecular level, a prior orientation of switching chain segments of thermoplastic TSMPs

improves with the increase of macroscopic deformation; once these chain segments return to

the random coil-like conformation, the maximum recovery stress increases in the strain-

constraint recovery. However, the peak strain has almost no influence on the SME for the

Figure 5. Stress-strain-temperature curves at different (a) strain rates, (b) peak strains, and (c) shape recovery ratio versus

peak strain at different strain rates.
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thermoset TSMPs [12, 15] since the thermoset TSMPs have a more stable molecular structure

than the thermoplastic TSMPs.

Hu et al. [14] found that TSMPs film (MS4510) exhibits an excellent SME at the temperature

range from Tg to Tg + 25�C, and the shape recovery ratio decreases beyond the temperature

range. To obtain better SME in practical applications, the TSMPs film should be cooled to its

frozen state as soon as possible after being deformed at high temperature. Cui and Lendlein

[13] found the switching temperature of shape recovery in the stress-free recovery, the maxi-

mum recovery stress and the corresponding temperature in the strain-constraint recovery

increase with the increase of deformation temperature. The start temperature of shape recov-

ery can be controlled by adjusting the cooling temperature during unloading [16].

Besides, many factors can remarkably affect the shape recovery ratio, for example, the shape

recovery ratio decreases with the increase of holding time after deformation since the increase

of holding time causes a large relaxation of the stored elastic energy [17, 18]. The shape

recovery ratio increases with the increase of finish recovery temperature since the mobility of

chain segments is more active at high temperature [14, 18]. If the recovery temperature is

higher than the deformation temperature, the inactive chain segments during the deforming

stage can be activated to increase their mobility. The shape recovery ratio increases with the

decrease of heating rate since the heat conduction of TSMPs requires enough time. If the

holding time increases after approaching the finish recovery temperature, the effect of heating

rate on the shape recovery ratio can be eliminated [15].

According to the experiment results, the mobility of chain segments, visco-elasticity, stress

relaxation and structural relaxation of TSMPs also have influences on the SME. These influen-

tial factors change with temperature and can be utilized to optimize the SME.

2.2.2. Internal heat generation induced by deformation

TSMPs are sensitive to the temperatures, including the temperature caused by the internal heat

generation and ambient temperature. According to the thermo-mechanically coupled experi-

ments [8, 19, 20], an infrared camera is used to measure the surface temperature of TSMPs for

indicating the interaction between mechanical deformation and temperature. It is concluded

that TSMPs are very sensitive to the temperature and loading rate, and the temperature

localization is related to the strain localization, as shown in Figures 6–8. The temperature

firstly decreases during the elastic deformation stage and then increases during visco-plastic

deformation stage in tension, which implies that the internal heat generation is contributed by

two parts, that is, the decreased temperature due to the thermo-elastic effect and the increased

temperature due to the visco-plastic dissipation. It is noted from Figure 7 that the temperature

variation increases with the increase of loading rate and it can be explained as with the increase

of loading rate in tension, the resistance of the slipping of chain segments increases, which

results in a larger dissipation caused by the friction of disentanglement of chain segments.

The stress-strain curves and temperature variations of TSMPs subjected to loading-unloading

mechanical cycles were obtained by Pieczyska et al. [20], as shown in Figure 9. It is found that

the residual strain accumulates and the amplitude of temperature variation decreases with the
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increase of number of cycles. It is the reason that the decreased stress at peak strain due to the

stress relaxation and the accumulated residual strain after unloading result in a narrower and

narrower hysteresis loop, that is, decreased visco-plastic dissipation with the increase of

number of cycles.

2.3. Shape memory degradation

When the TSMPs are subjected to thermo-mechanical cyclic loadings (i.e., repeated shape

memory cycles), the shape memory degradation can be characterized by the strain recovery

rate Rrate [11, 21] and strain recovery ratio Rratio [22], respectively, as below:

Figure 6. (a) Curves of stress-strain and strain-temperature variation; and (b) temperature field distribution.

Figure 7. Curves of temperature versus position corresponding to Figure 6(b).
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Rrate Nð Þ ¼
εu Nð Þ � εr Nð Þ

εu Nð Þ � εr N-1ð Þ
� 100 (3)

Rratio Nð Þ ¼
εm � εr Nð Þ

εm

� 100 (4)

where εm denotes the peak strain during loading, εu Nð Þ and εr Nð Þ denote the fixed strain and

residual strain after unloading in the N-th cycle, respectively.

The experimental results subjected to shape memory cycles are shown in Figure 10 [11, 22]. It

is found that the strain recovery rate gradually increases with the decrease of peak strain and

the increase of number of cycles and rapidly approaches 100% after several cycles. However,

the recovery strain ratio depends on the peak strain, for example, it increases with the increase

of peak strain; however, it decreases when the peak strain is up to 150%.

The shape memory degeneration also depends on the deformable temperature, recovery

temperature and mechanical training [22–25]. For example, as shown in Figure 11, the strain

Figure 9. Stress and temperature change of TSMPs subjected to loading-unloading cycles versus (a) true strain and (b)

time [20].

Figure 8. (a) Stress-strain curves; (b) curves of average temperature variation versus strain; and (c) curves of maximum

temperature variation versus strain.
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recovery ratio of TSMPs can be improved by undergoing previous mechanical cycles since the

mechanical training can eliminate the heterogeneous structure of chain segments [24]. How-

ever, the previous mechanical cycles have almost no influence on strain recovery rate.

2.4. Novel experimental observations on SME

Conventional experimental methods limited within uniaxial tension or compression were

discussed in Sections 2.1–2.3. Recently, many advanced experimental methods and complex

loading modes were developed to investigate the SME of TSMPs. For example, the nano-

indentation technology was used to examine the SME of TSMPs, and the indentation can be

recovered by heating the sample to above the glass transition temperature [26]; this research

provides a foundation to explore the nano-mechanical behavior of TSMPs.

Figure 10. Curves of (a) the strain recovery rate [11] and (b) the strain recovery ratio [22] with number of cycles.

Figure 11. The influences of previous mechanical cycles on the strain recovery rate and strain recovery ratio [25].
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The shear deformation and its recovery behavior were investigated through a double lap joint

arrangement at below and above Tg [27]. Torsional shape memory tests were carried out to

characterize the SME, and a torsional device with a CCD camera was used to quantify the

parameters of the SME [28]. A series of tension, compression, bending and twisting experi-

ments of TSMPs were performed to indicate the SME; it is shown that the heating rate has an

obvious influence on the start temperature of shape recovery [29].

These experimental findings provide an experimental guidance for future applications, includ-

ing aerospace, automotive, robotics, and smart actuator, and so on. Some novel experiments and

protocols are expected to be designed for characterizing the SME of smart structures in future.

3. Constitutive models

Constitutive models of TSMPs, including shape memory model describing the SME and the

thermo-mechanically coupled model describing the internal heat generation caused by

mechanical deformation, are commented on in this section.

3.1. Shape memory model

Based on the different deformation mechanisms, different models were constructed to describe

the SME of TSMPs, including the rheologymodel considering themobility and relaxation and the

meso-mechanical model considering the phase transition between the frozen and active phases.

3.1.1. Rheology model

The mobility of chain segments is a classical mechanism to describe the SME, which remark-

ably depends on ambient temperature. Tobushi et al. [21] think that the shape of TSMPs can be

fixed due to the decreased mobility of chain segments with the decrease of temperature, and

the shape can be recovered due to the increased mobility of chain segments with the increase of

temperature. Therefore, a rheological model was proposed by introducing a slip element into a

three-element standard linear visco-elastic model, as shown in Figure 12, and the mobility of

chain segments can be expressed as the exponential functions between material parameters

and temperature, as shown in Eq. (5).

x Tð Þ ¼

x Tlð Þ T ≤Tlð Þ

xg exp ax
Tg

T
� 1

� �� �

Tl ≤T ≤Thð Þ

x Thð Þ T ≥Thð Þ

x ¼ E;μ;λ;C; εl
� �

8

>

>

>

<

>

>

>

:

(5)

where, σ, ε and εl denote the stress, strain and irrecoverable strain, E is elastic modulus. μ and

λ are viscosity and retardation time, respectively. C is a coefficient of irrecoverable strain. T, Tl,

Tg, Th and ax denote the current temperature, low temperature, glassy transition temperature,

melting temperature and proportional coefficient, respectively.
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To describe the nonlinear behaviors of TSMPs, a one-dimensional nonlinear visco-elastic

model was extended from a linear visco-elastic version [30]. However, the extended model

provides an overestimation of the responded stress at large strain, and thus the linear model

was further modified to reasonably simulate the SME of TSMPs at large strain by introducing

new nonlinear evolution equations with stress threshold values into the cooling modulus and

irrecoverable strain [31].

It is noted that, even though the mechanical responses at large strain were simulated, the

abovementioned models were established at small deformation. Therefore, Diani et al. [32]

developed a thermo-mechanical model of TSMPs at finite deformation based on the three

element standard linear visco-elastic model [21]. The total deformation gradient is decomposed

into elastic and viscous parts. The total Cauchy stress includes the stresses caused by the

entropy change and internal energy change, respectively.

Nguyen et al. [33] developed a thermo-visco-elastic model to describe the time-dependent and

temperature-dependent deformations of TSMPs by incorporating structural relaxation and

stress relaxations. The model can reproduce the strain-temperature response, rate-dependent

stress-strain response and some important features of temperature dependent shape memory

responses. In the model, a fictive temperature Tf is used to describe the structural relaxation

behavior and the structural relaxation time is obtained from the WLF equation, as shown in

Eq. (6). The stress relaxation adopts the form of visco-elasticity in the glass transition region

and rubbery state, and the modified WLF equation is introduced into the Eyring equation to

obtain a modified visco-plastic flow rule for describing the visco-plastic deformation, includ-

ing the glassy state and rubbery state, see Eq. (7).

τR T;Tf δ
neq

� 	� 	

¼ τRg exp � C1

log e

C2 T � Tf

� �

þ T Tf � Tref
g

� 	

T C2 þ Tf � Tref
g

� 	

0

@

1

A

2

4

3

5 (6)

_γv ¼ sy
ffiffiffi

2
p

η
ref
sg

T

Qs

exp
C1

log e

C2 T � Tf

� �

þ T Tf � Tref
g

� 	

T C2 þ Tf � Tref
g

� 	

0

@

1

A

2

4

3

5sinh
Qs

T

sneqk k
ffiffiffi

2
p

sy

 !

(7)

Figure 12. Four-element model.

Experiments and Models of Thermo-Induced Shape Memory Polymers
http://dx.doi.org/10.5772/intechopen.78012

85



where τR and τRg are the structural relaxation time and relaxation time at a reference temper-

ature Tref
g , respectively; C1 and C2 are material constants using in the WLF equation. δ

neq

denotes the nonequilibrium part of the isobaric volumetric deformation. _γv and sy denote the

effective viscous shear stretch rate and yield strength. Qs is a thermal activation parameter and

s
neq is the nonequilibrium part of the deviatoric component of Cauchy stress.

Based on the model proposed by Nguyen et al. [33], Li et al. [7] also developed a thermo-

visco-elastic-visco-plastic model considering the structural relaxation and stress relaxation.

The model was used to predict the nonlinear SME of TSMPs programmed by cold-

compression below the glassy transition temperature. Chen et al. [34] performed parameter

studies on the SME in the conditions of the stress-free recovery and strain-constrained recovery

with different loading parameters, including the cooling rate, heating rate, strain rate, anneal

time and temperature. The results show that the SME is affected by different mechanisms,

including the thermal expansion, structural relaxation and stress relaxation. Chen et al. [35]

developed a rheological model by introducing the thermal expansion, structural relaxation

and stress relaxation into a standard linear visco-elastic model; the Mooney-Rivlin function

and Newton fluid assumptions were used to describe the hyper-elasticity of rubbery state and

flow behavior of glassy state during the process of the glass transition, respectively.

Recently, the multibranch models considering the stress relaxation were developed to reasonably

capture the SME of TSMPs [16, 36–38]. For considering more complex shape memory behaviors,

Xiao et al. [39] proposed a thermo-visco-plastic model at finite deformation to describe the

multiple SME and temperature memory effect by introducing the structural relaxation and stress

relaxation [39]. Besides, for the purpose of the structural analysis, the linear visco-elastic model

[21] was extended to three-dimensional version and was implemented into ABAQUS by using

the user material subroutine UMAT to simulate the SME of structures [40–43].

3.1.2. Meso-mechanical model

The meso-mechanical model was firstly proposed by Liu et al. [44] to describe the physical

mechanisms of the stress-free recovery and strain-constraint recovery at the pre-deformation

strain level of TSMPs. In the model, it is assumed that the TSMPs consist of two extreme phases,

including the frozen phase and active phase. The frozen phase is the major phase in the glassy

state, where the conformational motion is constrained. In contrast, the active phase exists in the

full rubbery state, and the free conformational motion potentially occurs. By changing the ratio

of these two phases, the glassy transition in a thermo-mechanical cycle is embodied and thus the

shape memory effect can be captured. To quantify the changes of mechanical properties with

temperature, the volume fraction of frozen phase is defined as Eq. (8) and can be obtained by

fitting the curve of recovery strain. It is assumed that the corresponding stresses in these two

phases are equal to σ (see Eq. (9)), and the total strain ε is defined as Eq. (10).

ϕf ¼ 1�
1

1þ cf Th � Tð Þn
(8)

σ ¼ ϕfσf þ 1� ϕf

� �

σa,σf ¼ σa ¼ σ (9)

ε ¼ ϕfεf þ 1� ϕf

� �

εa (10)
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where ϕf denotes the volume fraction of frozen phase; σ is the total stress; σa and σf are the

stresses in the active phase and frozen phase, respectively; ε is the total strain; and εa and εf are

the strains in the active phase and frozen phase, respectively.

Based on the meso-mechanical model [44], the thermo-elastic models [45, 46] were constructed to

simulate the SME of TSMPs at small deformation and large deformation, respectively. Qi et al.

[47] assumed that the TSMPs consist of three phases, including the rubbery phase, initial glassy

phase and frozen glassy phase. The volume fraction of each phase is assumed as the function of

temperature, as shown in Eq. (11). The volume fraction of rubbery phase ϕr is defined as Eq. (12)

during cooling and heating. The volume fraction of rubbery phase transforms into the volume

fraction of frozen glassy phase during cooling. It is assumed that the increments in the volume

fractions of the initial glassy phase ϕg0 and frozen glassy phases ϕT depend on their relative

volume fraction during reheating, as shown in Eq. (12). In the meantime, the corresponding

stresses in the three phases satisfy with the rule of mixture, see Eq. (13).

ϕg þ ϕr ¼ 1, ϕg0 þ ϕT ¼ ϕg (11)

ϕr ¼
1

1þ exp � T � Trð Þ=A½ �
,Δϕg0 ¼

ϕg0

ϕg0 þ ϕT

Δϕg,ΔϕT ¼
ϕT

ϕg0 þ ϕT

Δϕg (12)

T ¼ ϕrTr þ ϕg0Tg0 þ ϕTTT (13)

where T is the total stress. Tr, Tg0 and TT denote stress in the rubbery phase, frozen phase and

initial glassy phase, respectively.

Based on the abovementioned meso-mechanical method with a mixture rule, a three-

dimensional model was proposed for TSMPs [48], which distinguishes between two phases

presenting different properties. The model can reproduce both heating-stretching-cooling and

cold drawing shape-fixing procedures and was applied in the simulations from simple uniax-

ial and biaxial tests to complex loadings of biomedical devices.

3.2. Thermo-mechanically coupled model

Pieczyska proposed thermo-mechanically coupled models at finite deformation [8, 19] to repro-

duce the rate-dependent stress-strain curve and the strain localization behavior. However, this

model cannot describe the temperature variation induced by the internal heat generation since

the thermo-elastic effect and the visco-plastic dissipation are neglected. To reasonably describe

the influence of the internal heat generation on the mechanical behavior of TSMPs, the Helm-

holtz free energy ψ is decomposed into three parts, that is, the instantaneous elastic free energy

ψe, visco-plastic free energy ψvp and heat free energy ψT, and the stress-strain relationship is

derived from the Helmholtz free energy [49], as shown in Eqs. (14)–(17).

ψ Ce;Bvp;Tð Þ ¼ ψe Ce;Tð Þ þ ψvp Bvp;Tð Þ þ ψT Tð Þ (14)

ψe Ee;Tð Þ ¼ G Tð Þ Ee
0

�

�

�

�

2
þ
1

2
K Tð Þ tr Eeð Þj j

2
� 3K Tð Þtr Eeð Þα T � T0ð Þ (15)
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ψvp λvp
;Tð Þ ¼ μR Tð ÞλL

2 λvp

λL

� �

xþ ln
x

sinh x

� 	

� �

, x ¼ L
�1 λvp

λL

� �

(16)

ψT Tð Þ ¼ c T � T0ð Þ � T ln
T

T0

� �� �

þ u0 � η0T (17)

where Ce, Bvp denote the elastic right Cauchy-Green tensor and visco-plastic left Cauchy-

Green tensor, respectively. Ee and Ee
0 are the Hencky’s logarithmic strain and its deviatoric

part, respectively. T0 is the initial temperature. λvp and λL denote the visco-plastic stretch and

limiting stretch, respectively. u0 and η0 denote the initial internal energy and initial entropy,

respectively. μR, G and K denote the temperature-dependent hardening modulus, shear mod-

ulus and bulk modulus, respectively. The parameter c denotes the specific heat, and the symbol

L
�1 denotes the inverse of Langevin function.

The heat equilibrium equation of the internal heat generation and heat exchange is derived

based on an average temperature filed along the sample, as shown in Eq. (18).

ceff _T ¼ ωΓeff þ
h T0 � Tð ÞS

V
(18)

where h is the heat exchange coefficient of ambient media, which is a constant if without forced

convection. ceff and Γeff are the equivalent specific heat and dissipation, respectively, S and V

Figure 13. Experimental and simulated stress-strain curves at different strain rates: (a) 1.4%/s; (b) 0.7%/s; and (c) 0.35%/s.

Figure 14. Experimental and simulated temperature variation at different strain rates: (a) 1.4%/s; (b) 0.7%/s; and (c)

0.35%/s.
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are the volume and surface of a specimen. The proportional factor n is introduced to reflect the

proportion of the work converting into heat.

Based on the abovementioned constitutive description, a thermo-elasto-visco-plastic model was

established at finite deformation to reasonably predict the rate-dependent stress-strain responses

and temperature variations, including the temperature drop due to the thermo-elastic effect and

the temperature rise due to the visco-plastic dissipation, as shown in Figures 13 and 14.

4. Conclusions and remarks

Recent advances in experiments and models of TMPs are reviewed, the main conclusions are

below:

1. The TSMPs exhibit rate-dependent and temperature-dependent mechanical responses, a

strong interaction between the internal heat generation and mechanical deformation is

observed and strain and temperature distributions are nonuniform in tension. The internal

heat generation is contributed by the decreased temperature due to the thermo-elastic

effect and the increased temperature due to the visco-plastic dissipation.

2. The SME of TSMPs in the conditions of the stress-free recovery and strain-constraint

recovery can be characterized by the shape recovery ratio, which decreases with the

increases of peak strain, holding time after deformation, heating rate and decrease with

the decreases of loading rate and finish recovery temperature.

3. The shape memory degeneration of TSMPs occurs under cyclic thermo-mechanical load-

ings and can be reflected by the strain recovery ratio, which gradually decreases with the

increase of number of cycles and also depends on the peak strain, deformable temperature,

recovery temperature and previous mechanical training.

4. Two types of models have been established, including the shape memory model which

describing the SME and the thermo-mechanically coupled model which describing the inter-

action between the mechanical deformation, internal heat generation and heat exchange.

5. As mentioned earlier, most experiments and models of TSMPs are limited within uniaxial

loading and the SME is performed by heating to a certain temperature. The experimental

observations on the proportional and nonproportional multiaxial mechanical responses and

the SME subjected to shapememory cycles are insufficient, themultiaxial thermo-mechanically

coupledmodel is necessary to be constructed for predicting the SMEmore accurate. Moreover,

the experimental and theoretical investigations on the deformationmechanisms of themultiple

SME and temperature memory effect are necessary to be addressed in future.
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