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Abstract

Cardiopulmonary resuscitation (CPR) consisting of chest compressions and assisted ven-
tilation is crucial to treat out-of-hospital cardiac arrest (OHCA). It is well reported that 
quality of manual ventilations, in terms of rate and volume, is suboptimal, with a high 
incidence of hyperventilation, which is linked to poor outcomes. The lack of a noninva-
sive technology to monitor ventilations during out-of-hospital CPR precludes feedback 
on ventilations to the rescuer, and it handicaps the evaluation of the effect of ventilations 
on the outcome of the patient. This chapter addresses the possibilities and challenges 
of monitoring the quality of manual ventilations in current defibrillators. Methods are 
proposed to monitor ventilations based on the thoracic impedance and the capnogram. 
These methods can be integrated in defibrillators used in both basic and advanced life 
support. The algorithms are described, and the accuracy of the methods to monitor the 
ventilation rate and the quality metrics of the ventilations is reported using real OHCA 
episodes. The accuracy and limitations of the methods as well as the implications of inte-
grating them in the treatment of patients in cardiac arrest are discussed.

Keywords: manual ventilation, cardiopulmonary resuscitation, out-of-hospital cardiac 
arrest, thoracic impedance, capnogram

1. Introduction

Sudden cardiac arrest is the sudden cessation of effective blood circulation due to heart fail-
ure. If not treated promptly, cardiac arrest can lead to sudden cardiac death within minutes 

[1]. Sudden cardiac death is one of the leading causes of death in the industrialized world [2, 3].  

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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Although the overall incidence depends on the definition and inclusion criteria applied by 
each study, it is documented that it ranges from 150,000 to 530,000 person-year in the United 

States, and about 275,000 in Europe [1, 2, 4].

Most cardiac arrest occur in the out-of-hospital setting [5]. There are two levels of treatment 

for out-of-hospital cardiac arrest (OHCA), basic life support delivered by emergency medi-

cal technicians and advanced life support (ALS) with the intervention of clinicians. Despite 

important progress in epidemiology, profiling and treatment of OHCA in the last decades, 
the survival rates to hospital discharge are dismally low, with rates between 8.4 and 10.7% 

[2, 6].

In OHCA, the first minutes are crucial as the chances of the patient to survive decrease about 
10% per minute [7]. The chain of survival defines the key steps to treat a person in cardiac 
arrest. Two of the most important links of the chain are early defibrillation and early cardio-

pulmonary resuscitation (CPR). Defibrillation is delivered either by an automated external 
defibrillator (AED) or by more advanced monitor defibrillators used by ALS clinicians. The 
objective of CPR is to maintain a minimum oxygenated blood flow to the heart and brain until 
advanced care is available.

Quality of CPR is a key factor for the survival of OHCA patients. The 2015 resuscitation guide-

lines recommend that chest compression are provided with a rate of at least 100 compressions 

per minute and a depth of 5 cm [8]. During CPR, two ventilations may be given between series 

of chest compressions before intubation. Lay rescuers should open the airway using a head-

tilt-chin-lift maneuver and blow steadily into the mouth while watching for the chest to rise, 

as shown in Figure 1 [9]. The time taken to give a ventilation should be around 1 s, with no 

more than 5 s for two ventilations. After intubation, the resuscitation guidelines recommend 

CPR including continuous bag-mask ventilation with and without supplementary oxygen, as 
shown in Figure 2. The recommended ventilation rate is about 1 breath every 5–6 s, or about 

10–12 breaths per minute [11]. However excessive ventilation, either by rate or tidal volume is 

Figure 1. Head-tilt-chin-lift maneuver to provide ventilations. Extracted from [9].

Noninvasive Ventilation in Medicine - Recent Updates42



common during resuscitation [12–16]. Several analyses on OHCA episodes report rates rang-

ing from moderate (14 min−1) to severe (>20 min−1) hyperventilation.

The negative effect of hyperventilation during CPR is well known: it increases intrathoracic 
pressures, reshapes the oxygen dissociation curve (increasing oxygen affinity) and behaves as 
a cerebral vasoconstrictor [17, 18]. Many studies have also proven that it contributes to a lower 
coronary perfusion pressure and to hemodynamic deterioration in animals [19, 20]. All these 

factors decrease the probability of survival of a patient in cardiac arrest, so the monitoring and 

evaluation of ventilation during CPR.

The real-time monitoring of the instantaneous ventilation rate during OHCA would enable 

feedback to the rescuers, so they could adhere to current guidelines. Furthermore, retrospec-

tive evaluation of the ventilation rates may help in debriefing to improve the quality of CPR 
provided by emergency medical services. Unfortunately, no commercial systems are avail-

able for BLS or ALS defibrillation equipment that give real-time feedback to the providers, 
and no automatic methods are available for debriefing on the quality of ventilation. Several 
quality metrics have been proposed to monitor quality of ventilations in OHCA [21], such as 

the mean value of ventilations delivered per minute and the fraction of minutes with hyper-

ventilation (FMH), that is ventilation rates above 15 min−1.

The automated computation of those ventilation quality values requires ventilation detec-

tion algorithms based on signal processing of the biomedical signals recorded by commer-

cial equipment. Nowadays, equipment to monitor gas exchange during ventilations is not 
routinely used in OHCA, in contrast to the ubiquitous mechanical ventilators used in-hos-

pital. In the BLS scenario, the biomedical signals recorded by AEDs through the defibrilla-

tion pads (see Figure 3) are most frequently the electrocardiogram (ECG) and the thoracic 

impedance (TI). Ventilations are visible in the TI as fluctuations in the waveform with every 
insufflation of oxygen into the chest of the patient. For more advanced monitor-defibrilla-

tors, as the ones used by medical experts in ALS, additional modules like the capnogram 
are available. Capnography monitors the partial pressure of the CO

2
 in the respiratory gas-

ses, and reflects high concentration during the exhalation phase of every ventilation.

Figure 2. Bag-mask ventilation. Extracted from [10].
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In this chapter, the feasibility of monitoring the ventilation rate is analyzed using first the TI 
and then the capnogram. Automatic methods to detect ventilations are described, and their 

accuracy reported with OHCA datasets. The performance of the algorithms is reported in 

terms of sensitivity (SE), the percentage of correctly detected ventilations, and positive predic-

tive value (PPV), the percentage of detected ventilations that are true ventilations. The valid-

ity of those methods to monitor the instantaneous ventilation rate and to evaluate the quality 

of ventilation is also analyzed. Finally, this chapter concludes with a discussion of several key 

points to be considered before these methods could be integrated into commercial equipment.

2. Thoracic impedance for ventilation monitoring

The TI is measured though the defibrillation pads of a defibrillator attached to the chest of the 
patient in the anterolateral position, as shown in Figure 3. A high frequency excitation cur-

rent (20–100 kHz at 1–5 mA) is applied through the pads and the resulting surface potential 

measured to compute the impedance by applying Ohm’s law. The TI may show different 
components:

• Baseline component: a baseline impedance value of 50–120  Ω  depending on the position of 

the pads and on the patient’s sex, chest size and body mass [22].

• Chest compression component: chest compressions cause variations in the cross-sectional area 
of the chest [23] and mechanical disturbances in the defibrillation pads that are reflected in 
the TI as fluctuations of amplitudes between 0.15 Ω and several ohms [24, 25].

• Ventilation component: ventilations produce variations in the cross-sectional area of the 
thorax [23]. Inflation of the lungs causes an increase in impedance because air is a poor 
conductor of electric current [25]. The TI shows a fluctuation from 0.1 Ω to 8 Ω with each 
ventilation [26, 27].

• Circulation component: the impedance shows a small fluctuation (<100  mΩ ) with each effec-

tive heartbeat [26, 28, 29].

• Additional noise and artifacts: other noise and artifacts due to movement, electrode-skin con-

tact, and so on can be present in the impedance [30].

Figure 3. Automated external defibrillator with electrode pads attached to a patient.
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All these components can be observed in Figure 4. From top to bottom, the ECG, TI, the 
compression depth (CD) of the chest compressions and the capnography are depicted. The TI 

shows a baseline around 105 Ω and fluctuations due to chest compressions (around 1 Ω), ven-

tilations (0.5–1 Ω), and circulation (0.1 Ω). There is a perfect match between (1) compressions 
in the CD signal and fluctuations due to compressions in the TI signal, (2) the capnogram 
and fluctuations due to ventilations in the TI, and (3) effective heartbeats in the ECG and the 
circulation component in the TI. Two ventilations are visible in the TI, the fluctuations around 
14 and 18 s, which correlate with increases of the CO

2
 expired in the capnogram.

The TI has become a very useful signal in an OHCA in the last two decades and it is recorded 

by every commercial defibrillator, either AED or monitor/defibrillator. In 2002, Pellis et al. first 
suggested that ventilations (respirations) cause measurable fluctuations in the TI signal [27].  

In an experiment with anesthetized male pigs, they found out that TI measurement at fre-

quencies between 0.1 and 2 Hz showed fluctuations that were time coincident with the venti-
lations in the capnography signal.

Later in 2006, Losert et al. analyzed the feasibility of monitoring the ventilation character-

istics during CPR using the TI signal acquired by the defibrillation pads of an AED [26]. 

They analyzed the correlation between the amplitude of the TI fluctuation due to ventila-

tion and the tidal volume (400–1000 mL) given by a ventilator. They concluded that the TI 

Figure 4. From top to bottom, the ECG, TI, CD and capnography signals are represented. Two ventilations are visible in 
the TI around 14 and 18 s.
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allows to  compute ventilation rates, inspiration and expiration times, but the amplitude of 
the TI fluctuation was not valid for exact tidal volume estimation. More recently, Roberts 
et al. also investigated the relationship between tidal volume and TI amplitude fluctua-

tions but in mechanically ventilated children and using the TI acquired for two different 
placements of the defibrillation pads, anterior-apical and anterior-posterior positions [31]. 

The ventilations in the TI were detected as fluctuations above 0.4 Ω. The study concluded 
that although the linearity between tidal volume and TI fluctuation was high for each indi-
vidual, it was not feasible to derive the exact tidal volume from the TI fluctuation for the 
pediatric population as a whole. The study also showed that the TI acquired via defibril-
lation pads could be used to accurately detect ventilations if delivered according to the 

guidelines (7–10 ml/kg tidal volume), with no significant differences between pad positions 
for ventilation detection. Nevertheless, for smaller volumes (<7 ml/kg), the sensitivity for 
ventilation detection decreased, suggesting that shallow ventilations during CPR might not 

be detected in the TI.

These evidences motivated Risdal et al. to propose a ventilation detector during CPR based 

on the TI signal [32]. After a preprocessing stage, the fluctuations in the TI due to chest 
compressions were suppressed using an adaptive filtering scheme [33]. The ventilation 

detector was based on a neural network classifier. The classifier decided whether each TI 
segment (1.4 s) analyzed was an expiration onset (maximum peak of the fluctuation in 
the TI) in the basis of waveform features extracted from the analyzed segment. This was a 
novel and complex approach to detect ventilations with excellent performance (SE/PPV of 
90.4%/95.5%). However, ventilations were manually annotated in the TI signal and used 
as gold standard to evaluate the performance of the ventilation detector. Therefore, still 

there was the need for a more reliable validation using a robust independent gold stan-

dard. Furthermore, the complexity and computational burden of the method limited its 
application.

More recently, Edelson et al. developed two different ventilation detection algorithms, one 
based on the TI and other based on the capnography signal [34]. They hypothesized that cap-

nography would be superior to TI for measuring ventilation rate, and that a combined algo-

rithm would be more accurate than one based on a single signal. They obtained slightly better 
results in terms of SE/PPV for the capnography-based detector: 78%/87% for the TI-based 
detector, and 82%/91% for the capnography-based detector. As hypothesized the combination 
of both algorithms showed better performance. The lack of a gold standard (spirometry, flow 
or volume of the ventilations) independent of the signals used to develop the detectors might 

have affected the results.

2.1. An automated ventilation detector based on the TI

In this section, we present a study carried out to overcome the main limitations of the works 

described earlier and to cast some light on the reliability and accuracy of the TI to compute 

ventilation metrics. The study is aimed at (1) developing a simple ventilation detector based 

on the TI that might be incorporated into current commercial defibrillators; and (2) comput-
ing the CPR quality metrics related to ventilations in order to evaluate their accuracy against 

a robust gold standard.
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The dataset used to carry out the study consisted of OHCA episodes recorded through the 

Philips MRx monitor/defibrillator between 2006 and 2009 by the Tualatin Valley Fire and 
Rescue in Portland, OR, USA. Each episode contained concurrent TI and capnography signals 

for at least 30 min. The capnogram was considered the gold standard for the instants of venti-

lations which were manually and independently annotated by three experienced biomedical 
engineers. Intervals where the ventilation pattern was not clearly recognizable were excluded 
from the analysis. A total of 2575 min were analyzed, which included 17,586 ventilations. 

Episodes were randomly allocated to training and test sets, 32 and 31 episodes respectively. 

Figure 5 shows an epoch of an episode included in the dataset of the study where capnogra-

phy and TI signals are depicted, and the instants of ventilations are marked as black dotted 
lines on the capnogram.

The ventilation detector was developed using the training set and consisted of three different 
stages. First, a preprocessing stage where the TI was low-pass filtered at a cutoff frequency of 
0.6 Hz to suppress fluctuations due to chest compressions as well as high frequency noise. In 
a second stage, the preprocessed TI signal, pTI, was analyzed to detect the local maxima and 
minima. Each local maximum and minimum were characterized by its time of occurrence,   t  

 max  
i
  
    

or   t  
 min  

i
  
   , and amplitude,   Z  

 max  
i
  
    or   Z  

 min  
i
  
   , respectively as shown in Figure 6.

Each detected local maximum was a potential ventilation. To decide whether a maximum 
corresponded to a ventilation, the inflation amplitude ( A =  Z  

 max  
i
  
   −  Z  

 min  
i
  
   ) and inflation time ( d =  

t  
 max  

i
  
   −  t  

 min  
i
  
   ) were first computed. Then, in the third stage, a decision algorithm decided if a local 

maximum was a ventilation based on A and d. Three were the requirements for a potential 

ventilation to be classified as ventilation. The value of d should exceed a minimum static 
threshold (  d  

min
   = 0.5  s); the inflation amplitude, A, should be above a dynamic threshold (  Th  

v
   ) 

that represents the weighted average of the minimum amplitude of the last 17 ventilations, 

and finally, the time interval between the actual fluctuation and last detected ventilation 
should exceed a refractory period (  T  

ref
   = 1.4  s).

This ventilation detector was used to detect the instants of ventilations, and these instants 

were used to compute the instantaneous ventilation rate, which is reported every 15 s as 

the ventilation rate provided in the last minute. The global quality metrics of every episode 

Figure 5. A segment of an episode of the dataset. From top to bottom, the capnogram and the TI. The black dotted lines 
represent the ventilations annotated in the capnogram.
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were also computed, namely the mean ventilation rate and the FMH, the latter to evaluate 
hyperventilation.

2.2. Evaluation of the ventilation detector

The feasibility and accuracy of the TI signal as a surrogate of the capnogram to measure 

ventilation metrics was evaluated using the test set. Distributions for each metric obtained 

from the TI and from the capnogram were analyzed independently applying the one sample 

Kolmogorov-Smirnov normality test. For normal distributions, the two-sample t-test was 

performed to test for equal means, and for not normal distributions, the Mann-Whitney U 
test was used to test for equal medians. The limits of agreement (LOA) between the values 

obtained from the TI and from the capnogram were analyzed using Bland-Altman plots for 

each metric.

The ventilation detector showed a median (interquartile range) SE of 92.2% (87.4–95.8), and a 

median PPV of 81.0% (67.2–90.5). These scores are similar to those reported by other authors 

as Risdal et al. [35] and Edelson et al. [34]. Nevertheless the proposed method was tested with 

an independent gold standard, annotated in the capnogram, and it requires a much simpler 

processing which would permit an easier integration in an AED.

Table 1 is a summary of the ventilation quality metrics computed from the TI and compared 

to those obtained from the capnogram. Data are presented as mean (standard deviation). The 

distributions of the FMH obtained from the TI and capnogram were not normal, although 
they did have equal medians (p = 0.66). Mean and instantaneous ventilation rates came from 
normal distributions. The mean ventilation rate and the FMH obtained from TI and capno-

gram showed equal means, with mean errors of 1.54 min−1 and 1%. That was not the case 

for the instantaneous ventilation rate, with different mean (p < 0.001) and a mean error of 
3.30 min−1.

Figure 7 shows the Bland-Altman plots for each ventilation quality metric, and the corre-

sponding 95% LOA depicted with horizontal lines. For the quality metrics, both the mean 

Figure 6. A short segment showing how preprocessing reveals the fluctuation caused by a ventilation. The inflation 
amplitude, A, and inflation time, d, are depicted as well as the local maximum and minima.
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ventilation rate and the FMH showed minor errors, with small LOAs. These results support 
the use of the TI to accurately evaluate the ventilation metrics when debriefing resuscitation 
episodes.

The Bland Altman plot for the instantaneous ventilation rate showed large LOAs, in the 

range of −8 to 5 ventilations per minute. These results question the accuracy of the method 
based on the TI to monitor the ventilation rate every 15 s.

Metric Gold standard TI Error p

Mean ventilation rate (min−1) 9.54 (2.94) 10.87 (2.68) 1.54 (1.44) 0.07

FMH (%) 11.39 (18.35) 10.09(16.88) 1.29 (2.59) 0.66*

Instantaneous ventilation rate (min−1) 10.23 (4.29) 13.09 (4.52) 3.30 (2.88) <0.001

*The p-values obtained from the t-test and Mann–Whitney U test are expressed for each metric.

Table 1. Mean (SD) values computed from the gold standard and from the TI for each ventilation quality metric and 
the error.

Figure 7. Bland-Altman plots for mean ventilation rate, FMH, and instantaneous ventilation rate are represented in a, b, 
and c panels respectively. The 95% LOA is depicted in black dashed lines.
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3. The use of capnography to monitor ventilation rate

Capnography is a noninvasive monitoring technique that shows the partial pressure of the 

exhaled CO
2
 of the patient over the time [36]. The initial use of the capnography signal (or 

capnogram) was for anesthesia monitoring, but its use has expanded to other fields such as 
emergency medicine as it provides information about CO

2
 production levels, lung perfusion 

and alveolar ventilation among others [37]. Current resuscitation guidelines recommend the 

use of capnography to confirm endotracheal intubation, detect return of spontaneous circula-

tion, monitor the effectiveness of chest compressions and monitor ventilation rate [8].

Advanced monitor/defibrillators used by medical personnel include modules that show the 
capnogram of the patient during CPR. In current commercial equipment, two main acqui-

sition techniques are used: mainstream and sidestream capnography [38]. The mainstream 

technology has an infrared light sensor which is placed directly in the main way of expired 
flow to measure the absorption of CO

2
. In sidestream, the expired gases are continuously aspi-

rated from a 1–2 m long sampling tube, and the sensor is placed at the end. Figure 8 shows the 

general structure of both acquisition technologies.

The capnogram shows the evolution of the CO
2
 expired during the ventilations provided to 

the patient in cardiac arrest, where the cycle of every ventilation is visible. Four phases are 

visible in the cycle of each ventilation [39], as illustrated in Figure 9: the inspiration baseline 
(phase I), the expiration upstroke (phase II), the expiratory plateau (phase III) and the expira-

tion down stroke (phase IV). The maximum value observed in the third phase is the so-called 
EtCO

2
 (End-tidal CO

2
). In hemodynamically stable patients, the value is about 35–45 mmHg, 

similar to the partial pressure of the CO
2
 in the blood [37, 41]. During cardiac arrest, the 

elimination of CO
2
 is reduced and it is accumulated in the tissues. This is because an abrupt 

Figure 8. General schemes of mainstream and sidestream technologies to acquire the capnogram.
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decrease in cardiac output implies a reduced CO
2
 transportation from the tissues to the lungs, 

and therefore EtCO
2
 values decrease almost to zero. Effective chest compressions or recover-

ing pulse make this value increase [42, 43].

During CPR, chest compressions may induce artifacts that corrupt the capnogram. Idris et al. 

[44] analyzed 210 patients and they detected artifacts in the capnography signal in 154 of 210 

episodes, an incidence of 73.3%. More recently, Leturiondo et al. [45] reported an incidence of 

42% (99 of 232 episodes showed artifacts). The source and level of the corruption is not well 

defined yet, and depends on both the patient and the way CPR is performed. Bottom panels 
of the cases represented in Figure 10 show examples of the capnogram for four patients, 
uncorrupted in panels a and c, and corrupted by chest compression artifact in panels b and d. 

The interference caused by chest compressions complicate the design of automatic ventilation 

detection algorithms based on the capnogram that would permit the monitoring of ventila-

tion rate and the retrospective debriefing of resuscitation episodes.

The first algorithm to automatically detect ventilations during CPR in the capnogram was 
proposed by Edelson et al. [34]. They used both the capnogram and the impedance signal to 

detect the ventilation instants, combining two finite-state-machines. The capnogram-based 
algorithm provided SE/PPV of 82%/91%. A similar algorithm was proposed by Leturiondo 
et al. [45] based exclusively on the capnogram with SE/PPV above 95% for uncorrupted 
intervals, and the accuracy decreased during chest compressions. Both proposals [34, 45] 

developed the algorithm using as ground truth the ventilations annotated manually in 

the impedance signal. As it can be observed in Figure 10 the impedance signal is highly 

affected by the CPR artifact, and the amplitude of the fluctuations caused by ventilations 
is not constant, it has been reported to be nonlinear with the tidal volume for all the popu-

lation [31]. Both factors question the reliability of the ground truth used to evaluate the 

algorithms.

Figure 9. Basic waveform of the capnography signal during a cycle of ventilation. Four phases of the cycle and the 

features for automatic ventilation detection are shown. Adapted from [40].

Noninvasive Monitoring of Manual Ventilation during Out-of-Hospital Cardiopulmonary…
http://dx.doi.org/10.5772/intechopen.77172

51



3.1. An automated ventilation detector based on the capnogram

This section describes an algorithm developed using the gas exchange flow measured by a 
ventilator to annotate the ground truth for the ventilations instants [40]. To the best of our 

knowledge, this is the only ventilation detector tested with the most reliable ground truth.

Two datasets were used to develop and test the algorithm: an In-Hospital Dataset (IHD) 
and Out-of-Hospital Dataset (OHD). A total of 83 episodes (62 in-hospital and 21 out-of-

hospital) were considered with a duration of 4880 min. The episodes included 16,899 and 

29,841 ventilations, with a percentage of 38 and 8% of the time with compressions for the 

OHD and the IHD, respectively. The general characteristics of both datasets are summa-

rized in Table 2. Each episode of the IHD contained the capnogram, and the airflow and air 
volume signals provided by the ventilator; the instants of the ventilations were annotated 
based on the volume of the flow signal, as shown in Figure 10. Chest compression intervals 

were identified by medical annotations and abrupt increases in arterial blood pressure. The 
cases in the OHD included the capnogram, the TI and the CD signals. The CD was used to 

identify chest compression intervals, while TI and CD were the ground truth to mark ven-

tilations manually. Figure 10 shows epochs of episodes included in both datasets. For each 

panel, the top figure shows the independent gold standard (volume signal for IHD and the 
thoracic impedance signal for OHD), and in the bottom the capnography. The ventilations 

Figure 10. Examples of the capnogram (bottom) and the signal used to annotate the gold standard ventilations (top) are 
shown for the OHD (panels a and b) and for the IHD (panels c and d). For the OHD, the raw impedance signal (blue) 

and the filtered impedance signal (black) are shown, and for the IHD the volume signal. In both cases, black vertical lines 
show the annotated ventilations in the gold standard, and red vertical lines the detected ventilations in the capnogram.
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marked in the gold standard are depicted with black dashed lines. Both gold standards 

show fluctuations concurrently with the capnography signal for each ventilation. A total 
of 37 episodes randomly selected from the OHD dataset were used to design and train the 

algorithm; the test set was conformed with the remaining 25 cases of the OHD and the 21 
IHD cases.

The method relies on the computation of the values corresponding to the features shown in 

Figure 9. First, the signal is preprocessed with a low-pass filter with a cutoff frequency of 
10 Hz; then values of the waveform below 5 mmHg are set to zero. Potential ventilations are 
detected between the start of inspiration, t

insp
 (insufflation during ventilation), and the start of 

expiration, t
exp

 (deflation during ventilation). Both instants are computed based on the posi-
tive and negative peaks in the first difference of the signal. Then the following six features, 
depicted in Figure 9 are computed:

• Duration of inspiration baseline, D
insp

.

• Mean value of the signal during plateau, A
exp

.

• Area of the first second of the expiratory plateau, S
exp

.

• Relative increase of the signal, computed as:

   A  
r
   =   

 A  exp   −  A  
insp

  
 ________ 

 A  exp  
  ,  (1)

where A
insp

 is the mean amplitude of the signal during inspiration baseline.

• Interval between actual potential ventilation and the last detected ventilation, t
ref

.

The algorithm discriminates real ventilations based on fixed thresholds for D
insp

 and t
ref

, and 

adaptive thresholds for A
exp

, S
exp

 and A
r
. The adaptation for the kth ventilation was computed 

based on the last p ventilations according to the following equation:

   Th  
k
   =   w __ p     ∑ 

n=k−p
  

k

     x  
n
  ,  (2)

Parameter OHD IHD

Number of episodes 62 21

Total duration (min) 2545 2335

Total number of ventilations (% with CPR) 16,899 (38) 29,841 (8)

Instantaneous ventilation rate (min−1) 9.9 (8.7–13.1) 14.3 (12.6–18.2)

Minutes with hyperventilation per episode (%) 10 (2–35) 14 (0–88)

The instantaneous ventilation rate and minutes with hyperventilation are given per episode as median (interquartile 

range).

Table 2. Characteristics of both out-of-hospital (OHD) and in-hospital (IHD) datasets.
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where w is a weighting factor between 0 and 1 and x
n
 represents the value of the feature for 

ventilation n. A more detailed description of the algorithm can be found in [40]. Figure 10 

shows examples of the algorithm performance. The black dashed lines represent the manual 
ventilation annotations in the gold standard, and the red dashed lines correspond to the ven-

tilations detected by the algorithm.

As for the TI-based detector, the detected ventilations were used to compute the instanta-

neous ventilation rate, and the global ventilation metrics per episode.

3.2. Evaluation of the ventilation detector

The algorithm showed overall SE and PPV values above 99% and 97%, respectively. For the 

OHD, the median (interquartile range) SE and PPV per patient were 99.1 (96.9–99.8)% and 

97.0 (95.9–98.9)%. When only the intervals with chest compressions were considered the SE 
and PPV were 99.0 (95.7–100)% and 97.6(94.8–100)%. For the IHD, SE and PPV were 100 (99.8–

100)% and 100 (99.8–100)%. During compressions the performance dropped slightly to 99.8 

(98.7–100)% and 98.3 (92.9–100)%, respectively.

The concordance correlation coefficient on ventilation rate measured as proposed in [46] 

was higher than 0.98 for both datasets, even during chest compressions. Figure 11 shows the 

Figure 11. Bland-Altman plots for the instantaneous ventilation rate computed for the OHD (panels a and c) and for 

the IHD (panels b and d). The limits for the 95% level of agreement are depicted, in 1.82 and 1.8 min−1 (during chest 

compressions) for the OHD, and in 0.55 and 1.50 min−1 (during chest compressions) for the IHD.
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Bland-Altman plots and the 95% LOA between the gold standard and the algorithm, which 

was lower than 1.85 in any case. These results show that this capnogram-based method reli-

ably estimates the instantaneous rate.

The detailed results for the ventilation quality metrics are shown in Table 3. It can be observed 

that the mean ventilation rate and the FMH showed equal distributions (p > 0.05) when com-

pared to the ground truth for both the OHD and IHD episodes. The unsigned errors were 

close to zero for both metrics and for both datasets. These results support the use of this 

method to retrospectively debrief resuscitation episodes.

4. Discussion and conclusions

In this chapter, the monitoring of ventilations provided during out-of-hospital CPR was 

addressed with two objectives. First, giving feedback on the instantaneous ventilation rate to 

rescuers. Second, to allow retrospectively evaluation of ventilation rates and hyperventilation 

metrics during resuscitation episodes.

The analysis focused on the feasibility of the TI acquired by the defibrillation pads, and 
the capnogram to accurately report feedback on ventilation. Methods based exclusively 
on each of the signals were proposed and statistically evaluated. These methods could be 

integrated in commercial defibrillation equipment, the TI-based algorithm in any AED or 
monitor/defibrillators, and the capnogram-based algorithm in any equipment that includes 
capnography.

Several aspects deserved attention in the development of the algorithms. In the setting 
of the procedure, the gold standard was carefully selected. In the case of the TI, manual 

annotations were defined in the capnogram, as a result of the consensus of three experts. In 
the case of the capnogram, the independent signal used as gold standard was the gas vol-

ume exchanged measured by an external ventilator. In both cases, the gold standard was 

Gold standard Algorithm p

OHD

Mean ventilation rate (min−1) 11.74 (10.34–15.47) 12.11 (10.56–15.37) 0.88

FMH (%) 2.56 (0–34.77) 2.50 (0–34.51) 0.94

Instantaneous ventilation rate (min−1) 9.07 (12.44–17.28) 9.23 (12.56–17.31) 0.79

IHD

Mean ventilation rate (min−1) 14.02 (12.53–17.70) 14.02 (12.48–17.77) 1

FMH (%) 5.49 (0–81.08) 5.48 (0–80.39) 1

Instantaneous ventilation rate (min−1) 13.98 (12.98–18.98) 13.98 (12.98–18.98) 0.52

All p values were calculated using Mann-Whitney U test.

Table 3. Median (interquartile range) values computed from the gold standard and from the capnogram for each 
ventilation quality metric.
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annotated using an independent signal, including the gas exchange information, which is, 
in our opinion, the most reliable signal. This is a key factor when evaluating the accuracy 

and reliability of the methods.

In any case, the simplicity of the method was a priority. The algorithms proposed do not 

rely on complicated or computationally intensive signal processing techniques, so they could 

be integrated in current defibrillation equipment without much increase of computational 
requirements.

The scores obtained for the TI-based method are similar to those previously reported in terms 

of SE (around 90%), and slightly below for PPV. For the capnogram-based method, SE/PPV 
was both above 97% in any dataset, even when chest compressions were provided.

Both methods are valid to be integrated in the software provided to retrospectively review 

the quality of the ventilations. Errors below 2 min−1 in the mean rate and about 1% in the 

FMH for both the TI and the capnogram are sufficient for an accurate retrospective evalu-

ation. The integration of these methods in the revision software provided by commer-

cial equipment would permit debriefing on ventilation after cardiac arrest. The American 
Heart Association emphasizes the post-even analysis of the data, which contributes to the 

continuous quality improvement, closing the gap between the ideal and the actual perfor-

mance of OHCA resuscitation. Excessive ventilation rates are often observed during CPR 
both out- and in-hospital cardiac arrest [14], and code team debriefing with audiovisual 
feedback has been associated with a decrease in mean ventilation rates from 18 to 13 min−1 

[34, 47].

For the audiovisual feedback to the rescuer, the instantaneous rate should be provided to the 

rescuers, associated, if necessary with hyperventilation alarms. The instantaneous rate, as 

computed in the methods proposed, would permit feedback every 15 s, which is a reasonable 

compromise to follow the feedback and adhere to the recommendations of the guidelines. The 

method proposed on the capnogram was very reliable with errors below 2 min−1 for any data-

set even during chest compressions. That was not the case for the TI, as the mean error for the 

instantaneous rate was above 3 min−1. Two are the reasons that make difficult the automated 
detection of ventilations in the TI. First, the fluctuations caused by ventilations are very vari-
able, even for the same patient, so adaptive thresholding is required for the algorithm. Panel 

a in Figure 10 shows clear examples in which similar ventilation cycles in the capnogram 
appear with very different amplitudes in the impedance waveform. Therefore, it is very dif-
ficult to define a universally valid TI amplitude threshold for the detection of ventilations. 
Second, artifacts caused by chest compressions and other noise make difficult to automati-
cally detect every ventilation.

Finally, it should be stated that the results and conclusions presented in this chapter are lim-

ited by the specific characteristics of the data used. Using the TI or the capnogram from other 
equipment, with different electronic circuitry and defibrillation pads, may require readapting 
the values and thresholds of the algorithms and may result in different values of the perfor-

mance metrics.
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