
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



Chapter 3

Nonlinear Optical Effects at Ferroelectric Domain Walls

Xin Chen, Wieslaw Krolikowski and Yan Sheng

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.77238

Abstract

Ferroelectric materials tend to form macroscopic domains of electric polarization. These
domains have different orientations and coexist in the medium being separated by
domain walls. In general, symmetry and structure of ferroelectric domain walls differ
from their parent materials and consequently lead to abundant physical properties. In this
book chapter, we review the nonlinear optical effects which are bundled with ferroelectric
domain walls or whose properties can be significantly enhanced by the presence of
domain walls. In particular, we have reviewed Google Scholar articles from 2008 to 2018
using the keywords “nonlinear Čerenkov radiation from ferroelectrics”. We show that the
spatially steep modulation of the second-order nonlinear optical coefficient across the
domain wall leads to strong emission of the Čerenkov second harmonic in bulk materials.
This feature also enables an effective nondestructive method for three-dimensional visu-
alization and diagnostics of ferroelectric domain structures with very high resolution and
high contrast.

Keywords: ferroelectric domain wall, second harmonic generation, nonlinear Čerenkov
radiation, nonlinear diffraction, optical imaging

1. Introduction

The ferroelectric phenomenon was discovered in 1921 by J. Valasek during an investigation of

the anomalous dielectric properties of Rochelle salt, NaKC4H4O6 � 4H2O [1]. During the last

few decades, the group of ferroelectric materials has been extended to over 250 pure materials

and many more mixed crystal systems. They are intensively investigated because of a wide

range of actual and potential applications of ferroelectric in critical fields such as electronics,

nonvolatile memories, photonics, photovoltaics, etc. [2–8]. The ferroelectric materials generally

consist of small uniform regions in which the spontaneous polarization points to the same

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



direction, called ferroelectric domains. The interfaces separating different domains in a crystal

are called domain walls. For example, there are “180� walls” separating domains with oppo-

sitely orientated polarizations and “90� walls” separating regions with mutually perpendicular

polarizations. The ferroelectric domain walls have symmetry and structure different from their

parent materials and consequently possess many various physical properties including huge

conductivity and anomalous dielectric responses [4–7].

Lithium niobate (LiNbO3) is a ferroelectric crystal with important photonics applications

thanks to its excellent electro-optic, acousto-optic, and nonlinear optical properties. The crystal

supports two distinct orientations of the spontaneous polarization along its optical (z) axis, i.e.,

only 180� domains exist in LiNbO3 crystals. Most importantly for nonlinear optical applica-

tions, the ferroelectric domains in LiNbO3 crystal can be periodically aligned by using external

stimuli such as external electric field [9] or intense light field [10–13]. The alternative orienta-

tions of spontaneous polarization amounts to a spatial modulation of the second-order

nonlinear coefficient of the crystal, an essential condition of the so-called quasi-phase-matching

(QPM) technique, where the phase mismatch of a nonlinear optical process is compensated by

one of the resulting reciprocal lattice vectors induced by the nonlinearity modulation. In the

simplest case of second harmonic generation (SHG) in the medium, the quasi-phase-matching

condition (which is equivalent to conservation of the momentum of interacting waves) can be

expressed as , where k2 and k1 represent wave vectors of the second harmonic and

fundamental waves, respectively. G is the magnitude of the reciprocal vector of the

nonlinearity grating.

It has been recently reported that efficient second-order nonlinear optical effects can also occur

in an extreme case where only a single-domain wall was involved [14–16]. In fact the steep

change of the second-order (χ2) nonlinearity across the domain wall gives rise for the appear-

ance of the so-called nonlinear Čerenkov radiation, whose emission angle is defined by the

longitudinal phase-matching condition [17]. In case of frequency doubling via the Čerenkov

second harmonic generation (ČSHG), the second harmonic signal is observed at the angle

defined as [see Figure 1(a)]. The nonlinear Čerenkov interaction has been

intensively investigated recently to fully understand all aspects of this fundamental

Figure 1. (a) The phase-matching diagram of Čerenkov-type second harmonic generation, where the harmonic emission

angle is determined by the longitudinal phase-matching condition, i.e., . (b) Illustration of an

experimental observation of the Čerenkov second harmonic generation at a single ferroelectric domain wall. FB, funda-

mental beam, and SH, second harmonic; represent the second-order nonlinear coefficient of the material [15].
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phenomenon and also because of a number of important actual and potential applications in

nonlinear optical microscopy [18, 19], ultrashort pulse characterization [20], high harmonic

generations [21], and functional materials analysis [22].

In this chapter we review the latest research achievements in both experimental and theoretical

studies of the nonlinear Čerenkov interactions that are closely associated with the existence of

ferroelectric domain walls. In particular, we discuss two situations, namely, the nonlinear

effects arising from a single ferroelectric domain wall and those coming from the multiple

domain walls. We solve nonlinear coupled equations for the second harmonic generation and

show how the efficiency of these nonlinear interactions depends on the structures of ferroelec-

tric domain patterns and conditions of fundamental wave. These results are important for

better understanding of second-order nonlinear optics and inspire optimizing the process for

practical applications.

2. Approach and methodology

The authors of this book chapter have been active in the field of nonlinear Čerenkov radiation

from domain-engineered ferroelectric crystals for many years. Their latest research outcomes

constitute the main body of this review. More details about these research works are available

in the authors’ publications, which have been correctly cited in the “References.” Meanwhile,

the authors have also reviewed other research groups’ Google Scholar articles on this topic and

have included some milestones in this chapter. These research progresses are organized into

two categories according to the number of ferroelectric domain walls involved in the interac-

tion, namely, the nonlinear Čerenkov radiations from a single-domain wall and those from

multiple walls. In each category, not only experimental research but also theoretical treatment

(using, e.g., the standard fast Fourier-transform-based beam propagation method) have been

presented.

3. Čerenkov-type second harmonic generation from a single ferroelectric

domain wall

The experimental generation of the Čerenkov second harmonic is schematically illustrated in

Figure 1(b). The fundamental beam (FB) generally propagates along a ferroelectric domain

wall. A pair of beams at doubled frequency, i.e., the second harmonic (SH), is observed in the

far field. Their emission angle agrees with that defined by the longitudinal phase-matching

condition, i.e., as , where and are refractive indices of the

fundamental and second harmonic waves, respectively. It is clear that the Čerenkov angle

depends strongly on material properties. It is worth noting that the efficiency of Čerenkov

harmonic generation in a single-domain (homogeneous χ(2)) crystals is low and its experimen-

tal observations have been scarce. As we show below, the emission of Čerenkov signal can be

strongly enhanced by the presence of ferroelectric domain wall in the beam illuminated area.
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For a better understanding of the Čerenkov-type second harmonic generation at a single

ferroelectric domain walls, the nonlinear optical interactions from a material system consisting

of semi-infinite regions with different quadratic nonlinear responses and , as shown in

Figure 2(a), are treated both numerically and analytically. We assume the fundamental Gauss-

ian beam (wavelength and beam width w) propagates along the boundary separating both

media. To avoid any possible influence of the discontinuity in the linear polarization, the

refractive index of the system is assumed to be homogenous.

The interaction of the fundamental and second harmonic waves in the nonlinear optical

medium is described by the following system of coupled wave equations [23]:

ð1Þ

In these equations and are the fundamental and SH frequencies, respectively. We

assumed that the field can be decomposed into a superposition of these two frequencies, with

stationary envelopes and fast oscillating term:

ð2Þ

Here only the contributions from the diffraction and the quadratic nonlinearity are included,

and no transient behavior or interface enhanced linear and/or nonlinear effects are considered.

We numerically solve the Eq. (1) by using the standard fast-Fourier-transform-based beam

propagation method. We use the dispersion data of LiNbO3 crystal [24] in simulations. In

Figure 3, we depict the far-field SH distributions versus the propagation distance, calculated

with the fundamental beam propagating along two types of boundary in nonlinear media.

Figure 3(a) shows the SHG when the nonlinearity changes its sign across the boundary, i.e.,

. The strong emission of Čerenkov SHG is observed around 28.6� for the

Figure 2. Schematic of the simulation with second harmonic generation in optical media containing two layers of

different nonlinear optical responses: .
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fundamental wavelength in a good agreement with the calculatedČerenkov angle

for the LiNbO3 [24]. It is clearly seen that the Čerenkov signal grows monotonically with the

interaction distance, which is a typical feature of the longitudinally phase-matched nonlinear

interactions. This simulation represents the experimental generation of nonlinear Čerenkov

radiation on a single ferroelectric domain wall, across which the second-order nonlinear coeffi-

cient alters its sign. In Figure 3(b), we show the calculated SHG in a homogenous medium,

i.e. . In this situation only the phase-mismatched, forward second harmonic

signal is present. There is no trace of noncollinear Čerenkov harmonic signal. Compared with

results shown in Figure 3(a), we confirm the presence of a sharp spatial variation of the

nonlinearity forms a sufficient condition for efficient nonlinear Čerenkov radiation.

The behavior becomes even clearer if we analytically deal with the frequency conversion

process assuming the undepleted fundamental beam. In this case from Eq. (1), we can obtain

the following formula to describe the strength of the nonlinear Čerenkov signal [15]:

ð3Þ

in which kc represents the transverse component of the Čerenkov second harmonic wave vector.

According to Eq. (3) the amplitude of the Čerenkov signal is defined by the Fourier transform of

the product of nonlinearity distribution function and the spatial distribution of the

squared amplitude of the fundamental wave . Eq. (3) takes large value as long as its

kernel undergoes a fast spatial variation. There are two ways to satisfy this condition. The first is

to employ a spatial variation of the second-order nonlinearity in the transverse direction, e.g.,

propagating the fundamental wave along a ferroelectric domain wall [as shown in Figure 3(a)].

The other is to impose a strong spatial confinement to the fundamental beam, namely, to create

Figure 3. Far-field intensity of the second harmonic generation in composite media with fundamental beam propagating

(a) along ferroelectric domain wall and (b) in a homogeneous medium.
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a spatially confined . This agrees with the presence of Čerenkov harmonic signal with

an assumption of the well-defined rectangular profile of the fundamental beam in [25]. Similar

effect was also reported in [26], which shows that a non-diffracting Bessel fundamental beam

can lead to nonlinear Čerenkov radiation in a homogeneous crystal.

3.1. Nonlinear diffraction from multiple ferroelectric domain walls

When the fundamental beam is wide enough to cover multiple ferroelectric domain walls, the

second harmonic shows more complicated far-field intensity distribution. In fact each domain

wall can contribute toward its own Čerenkov second harmonic, and these harmonics will

interfere with each other, leading to the so-called nonlinear diffraction [27]. As shown in

Figure 4(a), the second harmonic pattern in this case generally consists of two types of spots

[15]: (i) peripheral Čerenkov harmonic spots, situated relatively far from the fundamental

beam at both sides of the diffraction pattern (top and bottom pairs in the figure), and (ii)

central diffraction spots, grouped around the pump position, which is called nonlinear

Raman-Nath diffraction, because of its close analogy to the linear Raman-Nath diffraction

from a dielectric grating.

In fact Eq. (3) can still be used to calculate the Čerenkov second harmonic from multiple ferro-

electric domain walls, except that the is now a periodic function of spatial variable [28]. For

1D periodic domain pattern, the function can be expressed as the following Fourier series:

ð4Þ

Here is the primary reciprocal lattice vector (Λ is the modulation period of

grating), the coefficients and with D being the duty

cycle defined by the ratio of the length of the positive domains to the period of the

structure. Considering a fundamental Gaussian beam, i.e., (with a being

the beam width and x0 denoting the central position of the beam), the integral in Eq. (3) can

be evaluated as

Figure 4. (a) Scheme of Čerenkov SH emission in a 1D periodically poled LiNbO3 crystal. The right inset shows

experimentally recorded far-field second harmonic image. The SH spots at small angles (θRN) represent the Raman-Nath

emission, while the spot at bigger angles θC is the Čerenkov second harmonics [15]. (b) The phase-matching diagram of

the nonlinear Raman-Nath diffraction, which satisfies only the transverse phase-matching condition .
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ð5Þ

According to the definition of the Čerenkov second harmonic generation, the variation of the

fundamental wavelength leads to the harmonic emission at different angles, i.e. the spatial

frequency kc in Eq. (5) changes. As a result, the intensity of the Čerenkov second harmonic

signal varies as well considering the fact that different kc corresponds to different Fourier

coefficients . In Figure 5, we show the wavelength response, i.e., the value of the

Čerenkov SH generated by the fundamental Gaussian wave with different beam widths (a).

When a wide fundamental beam is used, for instance, a = 60 μm, the strength of the Čerenkov

signal is very sensitive to the wavelength, showing a series of intensity peaks [see Figure 5(a)].

The emission is quite strong at these peak wavelengths (e.g., at λ1 = 1.108 μm) but falls

dramatically at the others (e.g., at λ1 = 1.038 μm). Such a sensitive dependence of the Čerenkov

second harmonic intensity on the fundamental wavelength is a typical characteristic of light

interference in the case of multiple domain walls. It is very interesting to see that, depending

on the value of beam width a, the wavelength tuning shows weaker dependence on the

wavelength, namely, the less contribution from the interference effect. Finally when the width

of the fundamental beam becomes so narrow that it covers only a single-domain wall (e.g., a =

2 μm), all second harmonic peaks disappear, and the Čerenkov intensity exhibits monotonic

dependence on wavelength.

Figure 5. The spectral response of the Čerenkov SHG for different beam widths [28]. From (a) to (d), the beam widths of

the fundamental wave are 60, 10, 5, and 2 μm, respectively. The plots are normalized to their individual maximum value.
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In contrast to the Čerenkov emission defined by the fulfillment of the longitudinal phase-

matching condition, the other group of the second harmonic diffraction spots (central spots

located close to the pump in Figure 4(a)) only satisfies the transverse phase-matching (TPM)

conditions, i.e., , for the mth diffraction order, m = 1,2,3… The external angles

are then determined as follows:

ð6Þ

where is the SH wavelength. This is a generic condition that holds for any periodic

structure and does not depend on its refractive index.

The intensity of the nonlinear Raman-Nath second harmonic diffraction depends strongly on the

duty cycle of the grating [29]. In fact the impact of the duty cycle on the nonlinear Raman-Nath

diffraction is very similar to that in linear diffraction on dielectric grating. The duty cycle directly

determines the Fourier coefficient in Eq. (4), so it will cause the variation of the efficiency of

nonlinear Raman-Nath diffraction. The detailed influence of duty cycle on the Raman-Nath dif-

fraction from a periodic ferroelectric domain structure is shown in Figure 6. Agreeing

quite well with the equation of Fourier coefficient , the first-order

Raman-Nath harmonic diffraction (m = 1) takes the maximum intensity at duty cycleD = 0.5, while

the second-order (m = 1) exhibits two equal maxima at D = 0.25 and 0.75, respectively.

We consider now the influence of the structure randomness of ferroelectric domain patterns on

the Raman-Nath harmonic diffraction. It is well known that the fabrication process of periodic

domain patterns in ferroelectric crystals often introduces some degree of randomness in other-

wise fully periodic domain structure. For the collinear quasi-phase-matching frequency con-

version processes, the randomness generally has a negative impact because it reduces

frequency conversion efficiency. The situation becomes more complicated when it comes to

the nonlinear Raman-Nath diffraction. As we show in Figure 7, the randomness of the domain

pattern not only affects the efficiency of nonlinear diffraction but also leads to appearance of

Figure 6. The effect of duty cycle on the strengths of nonlinear Raman-Nath diffraction [29].

Ferroelectrics and Their Applications28



new emission peaks. We choose an average period m and consider that the domain

width fluctuates randomly around its mean value. We consider four different degrees of

randomness. From Figure 7(a)–(d), the randomness degree increases from 0 to 60%, which is

defined by with representing the largest dispersion of the ferroelectric domain

width. In the figure, we show the normalized harmonic strengths with respect to that of the

first-order nonlinear Raman-Nath diffraction without any randomness, namely, . As

shown in Figure 7(a), two intensity maxima, which correspond, respectively, to the first- and

second-order Raman-Nath resonances, appear for the perfect periodic structure. They are

marked as RN1 and RN2 in the figure, respectively. Increasing leads to the weakening of these

two emission peaks and at the same time appearance of a few new ones, marked with indices

N1, N2, and N3 in Figure 7(b)–(d). These new emitted signals become stronger and stronger

with , and finally their strengths can exceed those of the original emission resonances.

In Figure 8, we display the calculated dependence of the nonlinear Raman-Nath diffractions

on the interaction distance. As the Raman-Nath interactions suffer from the phase mismatch in

the longitudinal direction, their intensity oscillates with the interaction distance inside the

crystal. Obviously the smaller the phase mismatch, the longer the oscillation period. With the

parameters used in our calculation (fundamental wavelength = 1.545 m, beam width

a = 60 μm, duty cycle D = 0.35), the largest oscillation period takes place at the fifth-order

diffraction (m = 5).

Figure 7. The influence of structure randomness of the ferroelectric domain patterns on the nonlinear Raman-Nath

diffraction [29]. We take an average domain period m and consider four different degrees of structure random-

ness ranging from 0 to 60%. All emission strengths are normalized to that of the first-order Raman-Nath diffraction

without randomness, namely, RN1 in (a).
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4. Application of Čerenkov harmonic generation to 3D imaging of

ferroelectric domain patterns

High-quality visualization of ferroelectric domain structures plays a key role in understanding

material property and better control of domain inversion process. However, due to the equal-

ity of antiparallel 180� ferroelectric domains in linear optical properties, the common imaging

techniques do not apply to the detection of these domains. Currently the selective chemical

etching [30] based on the different etching rates of antiparallel domains in hydrofluoric acid is

still the most common method used for this purpose. Not only this is a destructive technique,

but moreover, it is ineffective in revealing the internal domain structures hidden deep inside

the crystals. To overcome some of these drawbacks, a large number of alternative approaches

have been adapted to imaging ferroelectric domains, such as advanced electron microscopy

[31] and piezo-forced microscopy [32]. However, most of these methods also fail in visualiza-

tion of deep internal domain structures, which can be diverse and more complex than those on

the surface [33]. For example, the inverted domains undergo sidewise expansion with depth

[34], transform to preferred shapes depending on the crystallographic symmetry [35, 36], and

sometimes merge to form a bigger structures [37]. The details about these domain formation

processes such as when, where, and how they occur are very little known due to the lack of

reliable techniques for three-dimensional visualization of domain patterns.

It has been shown in Section 2 that when a femtosecond laser beam is tightly focused to

produce a focus that is narrow enough to cover a single ferroelectric domain wall, a pair of

Čerenkov second harmonic beams will be generated. The Čerenkov signal disappears if the

laser beam is moved away from the domain wall. In this way, by recording the second

harmonic strengths at different positions inside the crystal, one can obtain a three-dimensional

Figure 8. Multi-order nonlinear Raman-Nath SHG as a function of crystal thickness (or interaction distance) [29].
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image reflecting the spatial distribution of ferroelectric domain walls (and subsequently

domains) inside the crystal. This is a nondestructive imaging method and can offer sub-

micrometer resolution because of its nonlinear optical mechanism [18]. This is a 3D optical

method as it also enables one to reveal the details of inverted domains beneath the surface.

Figure 9 displays a schematic illustration of the nonlinear Čerenkov second harmonic imaging

system. The fundamental femtosecond laser beam is provided here by a titanium-sapphire laser

(Mai Tai, Spectra Physics, 80 MHz repetition rate and up to 12 nJ pulse energy). It is known that

in the regime of a tightly focused fundamental beam, the Čerenkov process is insensitive to the

wavelength of the fundamental wave. Therefore, this imaging system can operate at a wide

range of wavelength limited only by the absorption edge of second harmonic and the total

reflection condition. The latter condition means the Čerenkov harmonic emission angle has to

be smaller than its total reflection angle so that the Čerenkov signals can get out from the sample

for detection. For traditional nonlinear optical ferroelectric materials, such as LiNbO3 and LiTaO3

crystals, the Čerenkov angle becomes larger at shorter wavelength, so the fundamental wave-

length used for the visualization cannot be shorter than the critical wavelength.

The main part of this imaging system is a commercial laser scanning confocal microscope

(Zeiss, LSM 510 + Axiovert 200). The femtosecond laser beam is coupled into the confocal

microscope and then illuminates the sample after being tightly focused by an objective

lens (Plan Apochromat, NA = 1.46). A pair of galvanometric mirrors is used to adjust the focus

position in the X-Y plane, and a motorized stage is used to move the objective lens in the Z

direction. To collect and detect the emitted second harmonic signal, a condenser lens and a

Figure 9. Schematic of the Čerenkov harmonic imaging system for visualization of ferroelectric domain patterns in a

nonlinear photonic crystal (NPC) [18].
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photomultiplier are employed, respectively. Short-pass filters are used to prevent the transmit-

ted fundamental beam from entering the detectors.

The advantages of this nonlinear Čerenkov imaging system include:

4.1. High contrast and high spatial resolution

A typical two-dimensional image of a ferroelectric domain structure obtained by the Čerenkov

second harmonic microscope is shown in Figure 10(a). The quasi-periodic domain patterns,

where the bright boundaries represent ferroelectric domain walls which facilitate stronger

Čerenkov harmonic emissions, were clearly seen. Obviously the Čerenkov second harmonic

microscope is capable of imaging ferroelectric domains with high contrast.

Figure 10(b) depicts the image of ferroelectric domain patterns obtained in an as-grown

Sr0.28Ba0.72Nb2O6 crystal, which process naturally random domain structures in two dimen-

sions. It is seen that the Čerenkov method offers an exceptional spatial resolution and even

domain boundaries separated by less than 250 nm can be easily resolved. This is below the

diffraction limit for the excitation laser wavelength of 820 nm, owing to the mechanism of

nonlinear optical interaction, i.e., the Čerenkov second harmonic signal can only be excited in

the very central part of the laser beam’s focus.

4.2. Applicability to a wide range of materials

The imaging principle of the Čerenkov SHG microscope lies in the sensitivity of the Čerenkov

emission on the existence of the spatial variation of the second-order nonlinearity . There-

fore, it can apply to any transparent materials with sharp variations. For example, in our

experiment we have obtained high-quality images of ferroelectric domain patterns in LiNbO3,

LiTaO3, KTiOPO4, and Sr0.28Ba0.72Nb2O6 crystals, as shown in Figure 11.

Figure 10. Domain structures imaged by Čerenkov SHG, taken with the focal plane of the fundamental beam located 10

mm inside the corresponding materials: (a) congruent LiNbO3 with 2D quasi-periodic domain structure and (b) as-grown

Sr0.28Ba0.72Nb2O6 crystal.
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Figure 11. The Čerenkov SHG microscopy applies to a wide range of ferroelectric materials [18]. (a) Congruent LiNbO3

with 2D short-range-ordered domain structure [38]. (b) Stoichiometric LiTaO3 with 2D quasi-periodic domain structure

[39]. (c) KTiOPO4 with 1D periodic domain structure [40]. (d) z-cut as-grown Sr0.28Ba0.72Nb2O6 crystal with naturally

random domain structure at X-Y plane [41].

Figure 12. Three-dimensional visualization of inverted ferroelectric domains inside congruent LiNbO3 crystal by Č-

erenkov-type second harmonic generation laser scanning microscopy. (a) Domain distribution in the nonlinear photonic

structure. (b) Transformation from the initially circular to hexagonally shaped domains. (c) Formation of a defect during

the domain growth. (d) Merging of two initially separated ferroelectric domains. The ImageJ software was used to create

these images.
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4.3. Capability for 3D imaging

As we described above, the scanning of laser focus in the X-Y plane enables us to obtain two-

dimensional images of ferroelectric domains. Then if we stack a series X-Y plane images

recorded at different depths inside the material, we can produce 3D images of domains. This

is an advantage that cannot be met by the traditional domain imaging techniques. In Figure 12

we show a number of 3D images of ferroelectric domain patterns, which are formed in a

congruent LiNbOb3 crystal [38]. From these images we can see how the initially circular-

shaped domains transform to hexagons with depth [Figure 12(b)], how defects were formed

during the domain inversion process [Figure 12(c)], and how the neighboring domains merge

to form a bigger one [Figure 12(d)]. Revealing these details is essential for a full understanding

of domain inversion and growth processes. This is also very useful for improving the quality of

ferroelectric domain patterns, which is critical for a wide range of future applications.

5. Conclusion

We have investigated the nonlinear optical interactions that are strongly dependent on the

existence of ferroelectric domain walls, i.e., the spatial variation of the second-order nonlinear

coefficient In particular, we have discussed the so-called nonlinear Čerenkov radiation

focusing on two special cases including the signal generation from a single and multiple

ferroelectric domain wall(s). We have shown that the localized spatial change of nonlinearity

constitutes a sufficient condition for strong Čerenkov second harmonic generation. The

emitted Čerenkov signals arising frommultiple walls can interfere with each other, resulting in

the strong dependence of the strength of the overall Čerenkov beams on the wavelengths.

Furthermore, the emission from regular periodic domain pattern gives rise to another type of

nonlinear interaction, namely, the nonlinear Raman-Nath diffraction. We have derived analyt-

ical formulas that govern the emission process and discussed factors that influence the strength

of the nonlinear diffraction, including the duty cycle, thickness of the crystal, randomness in

domain size, as well as the beam width and wavelength of the fundamental wave. We also

utilized the effect of Čerenkov second harmonic generation from a single-domain wall for

direct 3D imaging of the antiparallel domains in ferroelectric crystals with sub-diffraction limit

resolution. Our studies are important for a better understanding of nonlinear diffraction from

ferroelectric domain structures. The nonlinear optical microscopy forms a very powerful tool

that will further inspire the design and development of new and sophisticated ferroelectric

domain structures for advanced photonic applications.
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