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Abstract

The effect of substitution on the potential energy surfaces of RE13 ☰ PR (E13 = B, Al, Ga, In,
Tl; R = F, OH, H, CH3, SiH3, SiMe(SitBu3)2, SiiPrDis2, Tbt, and Ar* is studied using density
functional theory (M06-2X/Def2-TZVP, B3PW91/Def2-TZVP and B3LYP/LANL2DZ + dp).
The theoretical results demonstrate that all triply bonded RE13☰ PR compounds with small
substituents are unstable and spontaneously rearrange to other doubly bonded isomers. That
is, the smaller groups, such as R 〓 F, OH, H, CH3 and SiH3, neither kinetically nor thermo-
dynamically stabilize the triply bonded RE13☰ PR compounds. However, the triply bonded
R’E13☰PR´ molecules, possessing bulkier substituents (R´ = SiMe(SitBu3)2, SiiPrDis2, Tbt and
Ar*), are found to have a global minimum on the singlet potential energy surface. In partic-
ular, the bonding character of the R’E13☰PR´ species is well defined by the valence-electron
bonding model (model [II]). That is to say, R’E13☰PR´ molecules that feature groups are
regarded as R0-E13 P-R0. The theoretical evidence shows that both the electronic and the
steric effects of bulkier substituent groups play a prominent role in rendering triply bonded
R0E13☰PR0 species synthetically accessible and isolable in a stable form.

Keywords: phosphorus, group 13 elements, triple bond, substituent effects, valence
electrons

1. Introduction

Phosphorus is an interesting element, but many chemists have a poor comprehension of its

bonding properties. Even though phosphorus and nitrogen belong to the same group in the

periodic table, molecular nitrogen is a triply bonded diatomic molecule, but elemental white

phosphorus is a tetrahedral compound wherein each atom is connected by three single bonds

to the other atoms in the molecule. Phosphorus is usually connected to other elements by a

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



single chemical bond, which has been verified by lot of experimental evidences [1–14]. Also,

molecules that feature a phosphorus double bond have been the subject of many experimental

and theoretical studies of structure and reactivity [15–27]. However, little is known about the

molecules that feature a phosphorus triple bond [28–32]. In particular, whether it is possible to

anticipate the stability of the R-E13 ☰ phosphorus-R (E13 = B, Al, Ga, In, and Tl) species based

on the effects of substituents, since the R-E13 ☰ phosphorus-R systems are isoelectronic to the

R-E14 ☰ E14-R (E14 = C, Si, Ge, Sn, and Pb) compound from the valence electron viewpoints.

This study uses the heavier acetylene analogue, R-E13☰ P-R as a model molecule to determine

the possibility of generating stable RE13PR species that feature the E13 ☰ P triple bond. In

order to understand the effects of substituents on the stability of triply bonded RE13 ☰ PR

molecules, both small and bulky groups are chosen in this work. A better understanding of the

bonding character and the structure of triply bonded RE13☰ PR species will allow experimen-

tal chemists to discover novel and stable molecules that feature the E13 ☰ P triple bond.

1.1. General considerations

This section uses a simple valence-electron bonding model to demonstrate the bonding nature

of substituted triply bonded RE13☰PR compounds.

First, the RE13☰PR species is separated into two units: R-E13 and R-P. Figure 1 shows that

these two fragments represent two types of valence-electron bonding model (model [I] and

model [II]). Therefore, the R-E13 moiety and the R-P component have two and four valence

electrons, respectively. The computational results show that the ground states of these two

units are a singlet for R-E13 ([R-E13]1) and a triplet for R-P ([R-P]3). Therefore, model [I] in

Figure 1 is considered as [R-E13]1 + [R-P]1 ! [R-E13☰P-R]1 and model [II] is given as

[R-E13]3 + [R-P]3! [R-E13☰P-R]1.

If the excitation energy (ΔE1) from the triplet ground state to the singlet excited state for R-P is

smaller than that for R-E13, then model [I] can be used to interpret the bonding character of

RE13☰PR. That is, model [I] demonstrates that the triple bond in RE13☰PR is a single donor-

acceptor (E13! P) σ bond and two donor-acceptor (E13 P) π bonds. Therefore, the bonding

character of RE13☰PR can be viewed as RE13 PR. However, if the promotion energy (ΔE2) from

the singlet ground state to the triplet excited state for R-E13 is smaller than that for R-P, then

model [II] can be used to explain the bonding character of RE13☰PR. Namely, model [II] shows

that the triple bond in RE13☰ PR is a single traditional σ bond, a single traditional π bond and a

single donor-acceptor (E13 P) π bond, so its bonding character can be viewed as RE13 PR.

From model [I] and model [II] shown in Figure 1, two points need to be emphasized here.

First, it is experimentally known that the covalent radius decreases as: Tl (148 pm) > In

(142 pm) > Ga (122 pm) > Al (121 pm) > P(107 pm) > B (84 pm) [33]. Therefore, a large difference

in the atomic radius results in a significant reduction in the overlap populations between E13

and phosphorus. Consequently, the bonding strength between phosphorus and the E13 ele-

ment in the heteroatomic analogues of acetylene (RE13☰PR) should be weak. Second, the π

bond in the RE13 ☰ PR species is also attributed to the lone pair of the R-P moiety, which is

donated into the empty p-π orbital of the R-E13 unit. Since the lone pair of the R-P component
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contains the s valence orbital of phosphorus and the p valence orbital of phosphorus is not the

same size as that of the E13 atom, the overlap in the orbital populations between the P and E13

elements is small. In other words, on the basis of the bonding models that are shown in

Figure 1, the triple bond between E13 and phosphorus is predicted to be very weak.

The computational evidences for these predictions are given in the following sections.

Figure 1. The valence-bond bonding models ([I] and [II]) for the triply bonded RE13 ☰ PR compound.
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2. Results and discussion

2.1. Small ligands on substituted RE13 ☰ PR

Five small substituents (R), including F, OH, H, CH3 and SiH3, are initially chosen for this
study. Three types of density functional theory (DFT) (M06-2X/Def2-TZVP, B3PW91/Def2-
TZVP and B3LYP/LANL2DZ + dp) are used to determine the relative stability of the triply
bonded RE13☰PR species and its corresponding doubly bonded isomers (R2E13 = P: and:
E13 = PR2). In other words, two types of the 1,2-substituent-shift reactions (RE13☰PR ! TS1
! R2E13 = P: and RE13☰PR ! TS2 !: E13 = PR2) are studied. The respective computational
results for RB☰PR [28], RAl☰PR [29], RGa☰PR [30], RIn☰PR [31], and RTl☰PR [32] are
schematically shown in Figures 2–6.

The computational results that are shown in Figures 2–6 show that regardless of the type of
small substituent that is chosen, the triply bonded RE13 ☰ PR compound cannot be stabilized
on the 1,2-migration energy surfaces. That is to say, it is easy for the RE13PR species to migrate
to the corresponding doubly bonded R2E13 = P: or: E13 = PR2 isomers rather than to the triply
bonded RE13 ☰ PR molecules. The theoretical evidence strongly suggests that the experimen-
tal detection of RE13☰PR that features small groups is very unlikely so they are not discussed
in this section [28–32].

2.2. Large ligands on substituted R’E13 ☰ PR´

Four bulky groups (R´) are used to study the effects of substituents on the triply bonded
RE13☰PR molecules. These are SiMe(SitBu3)2, SiiPrDis2, Tbt (C6H2–2,4,6-{CH(SiMe3)2}3)
and Ar* (C6H3–2,6-(C6H2–2,4,6-i-Pr3)2) [34, 35]. In order to avoid the London dispersion
forces [36], the dispersion-corrected M06-2X/Def2-TZVP level of theory [37] is used to compute
geometrical parameters and some properties. The respective results for RB☰PR [28], RAl☰PR
[29], RGa☰PR [30], RIn☰PR [31], and RTl☰PR [32] are shown in Tables 1–5. The same level of
theory is also used to determine the feasibility of producing triply bonded R’E13 ☰ PR´ com-
pounds (Scheme 1 and Tables 1–5).

1. For bulky groups (R0), the E13☰P triple bond distances (Å) are anticipated to be in the
range, 1.736–2.023 (B☰P), 2.1522.183 (Al☰P), 2.146–2.183 (Ga☰P), 2.215–2.362 (In☰P)
and 2.336–2.386 (Tl☰P).

2. The computed reaction enthalpies (ΔH1 and ΔH2) that are shown in Scheme 1 and
Tables 1–5 show that regardless of the bulky ligand that is chosen, the energy of the
triply bonded R’E13 ☰ PR´ species is much lower than those of its corresponding doubly
bonded R´2E13 = P: or: E13 = PR´2 isomers. This computational evidence indicates
that sterically congested ligands kinetically stabilize the triply bonded R’E13 ☰ PR´
compound.

3. The theoretical data in Tables 1–5 show that the R0-E13 moiety has a singlet ground state,
but the R0-P component has a triplet ground state. The production of the triply bonded
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Figure 2. The relative Gibbs free energy surfaces for RB ☰ PR (R 〓 H, F, OH, SiH3, and CH3). These energies are

calculated in kcal/mol and are calculated at the M06-2X/Def2-TZVP, B3PW91/Def2-TZVP, and B3LYP/LANL2DZ + dp

levels of theory.
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Figure 3. The relative Gibbs free energy surfaces for RAl ☰ PR (R 〓 H, F, OH, SiH3, and CH3). These energies are

calculated in kcal/mol and are calculated at the M06-2X/Def2-TZVP, B3PW91/Def2-TZVP, and B3LYP/LANL2DZ + dp

levels of theory.
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Figure 4. The relative Gibbs free energy surfaces for RGa ☰ PR (R 〓 H, F, OH, SiH3, and CH3). These energies are

calculated in kcal/mol and are calculated at the M06-2X/Def2-TZVP, B3PW91/Def2-TZVP, and B3LYP/LANL2DZ + dp

levels of theory.
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Figure 5. The relative Gibbs free energy surfaces for RIn ☰ PR (R 〓 H, F, OH, SiH3, and CH3). These energies are

calculated in kcal/mol and are calculated at the M06-2X/Def2-TZVP, B3PW91/Def2-TZVP, and B3LYP/LANL2DZ + dp

levels of theory.
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Figure 6. The relative Gibbs free energy surfaces for RTl ☰ PR (R 〓 H, F, OH, SiH3, and CH3). These energies are

calculated in kcal/mol and are calculated at the M06-2X/Def2-TZVP, B3PW91/Def2-TZVP, and B3LYP/LANL2DZ + dp

levels of theory.

Simulations Suggest Possible Triply Bonded Phosphorus≡E13 Molecules (E13 = B, Al, Ga, In, and Tl)
http://dx.doi.org/10.5772/intechopen.77055

35



R0E13☰ PR0 compound at the singlet ground state constitutes a combination of two triplet
units, [R0-E13]3 and [R0-P]3. Therefore, using the information in Figure 1, the bonding
nature of the E13 ☰ P triple bond in R0E13 ☰ PR0 can be regarded as RE13 PR.

4. The theoretical analyses in Section II shows that the bond order for the E13☰ P triple bond
should be very weak. Tables 1–5 show that the Wiberg bond indices (WBI) [28, 39] for
RE13☰PR compounds that feature sterically bulky substituents are all a little greater than
2.0. The theoretical evidence demonstrates that RE13☰PR that features bulky groups has
only a weak triple bond because the WBI for the C☰C bond in acetylene is computed to be
2.99.

The results of this study show that successful schemes for the synthesis and isolation of triply
bonded RE13☰PR molecules are imminent.

R0 SiMe(SitBu3)2 SiiPrDis2 Tbt Ar*

B ☰ P(Å) 1.736 2.021 2.023 2.021

∠R0-B-P (�) 157.2 166.0 164.4 166.6

∠B-P-R0 (�) 122.0 112.5 121.3 123.3

∠R0-B-P-R0 (�) 174.7 165.5 168.9 169.5

QB
01

�0.2574 �0.1395 0.2718 0.3520

QP
02

�0.1824 �0.3922 0.2260 0.2522

ΔEB0 for R0-B
(kcal/mol)3

25.92 24.86 28.76 34.64

ΔEP0 for R0-P
(kcal/mol)4

�33.10 �37.47 �29.74 �30.52

HOMO-LUMO
(kcal/mol)

73.76 43.44 47.10 41.60

BE (kcal/mol)5 89.54 90.37 85.42 71.43

ΔH1 (kcal/mol)6 73.75 86.65 87.89 87.59

ΔH2 (kcal/mol)6 80.53 77.67 101.7 88.01

WBI7 2.388 2.152 1.963 1.966

1The natural charge density on the boron atom.
2The natural charge density on the phosphorus atom.
3
ΔEB0 (kcal mol�1) = E(triplet state for R0-B)–E(singlet state for R0-B).
4
ΔEP0 (kcal mol�1) = E(triplet state for R0-P)–E(singlet state for R0-P).
5BE (kcal mol�1) = E(triplet state for R0-B) + E(triplet state for R0-P)–E(singlet for R0B ☰ PR0).
6See Scheme 1.
7The Wiberg bond index (WBI) for the B☰P bond: see references [38, 39].

Table 1. The bond lengths (Å), bond angles (�), singlet-triplet energy splitting (ΔEB0 and ΔEP0), natural charge densities
(QB0 and QP0), binding energies (BE), the Wiberg bond index (WBI), HOMO-LUMO energy gaps, and some reaction
enthalpies for R0B ☰ PR0 at the M06-2X/Def2-TZVP level of theory.
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R0 SiMe(SitBu3)2 SiiPrDis2 Tbt Ar*

Al ☰ P(Å) 2.168 2.152 2.183 2.175

∠R0-Al-P (�) 166.5 163.4 165.0 167.3

∠Al-P-R0 (�) 117.4 119.7 122.1 121.3

∠R0-Al-P-R0 (�) 166.4 163.8 168.5 167.5

QAl
01 0.9712 0.9210 1.1072 1.326

QP
02

�0.8751 �0.9674 �0.3430 �0.359

ΔEAl0 for Al-R0 (kcal/mol)3 28.89 29.30 42.50 40.22

ΔEP0 for P-R0 (kcal/mol)4 �23.10 �27.47 �30.51 �28.52

HOMO-LUMO
(kcal/mol)

52.74 34.83 49.98 57.15

BE (kcal/mol)5 43.49 54.96 47.51 35.41

ΔH1 (kcal/mol)6 95.15 85.23 91.83 85.60

ΔH2 (kcal/mol)6 96.13 82.75 90.56 85.31

WBI7 1.572 1.592 1.685 1.534

1The natural charge density on the aluminum atom.
2The natural charge density on the phosphorus atom.
3
ΔEAl0 (kcal mol�1) = E(triplet state for R0-Al)–E(singlet state for R0-Al).
4
ΔEP0 (kcal mol�1) = E(triplet state for R0-P)–E(singlet state for R0-P).
5BE (kcal mol�1) = E(triplet state for R0-Al) + E(triplet state for R0-P)–E(singlet for R0Al☰PR0).
6See Scheme 1.
7The Wiberg bond index (WBI) for the Al☰P bond: see reference [38, 39].

Table 2. The bond lengths (Å), bond angels (�), natural charge densities (QAl0 and QP0), singlet-triplet energy splitting for
Al-R0 and P-R0 units (ΔEAl0 and ΔEP0), binding energies (BE), HOMO-LUMO energy gaps, Wiberg bond index (WBI),
and some reaction enthalpies for R0Al ☰ PR0 at the dispersion-corrected M06-2X/Def2-TZVP level of theory.

R0 SiMe(SitBu3)2 SiiPrDis2 Tbt Ar*

Ga ☰ P (Å) 2.167 2.146 2.172 2.183

∠R0-Ga-P (�) 158.2 161.3 152.0 158.4

∠Ga-P-R0 (�) 127.8 120.4 117.3 126.1

∠R0-Ga-P-R0 (�) 176.0 175.5 169.4 166.9

QGa
01 0.8023 0.8266 0.8952 0.9003

QP
02

�0.7655 �0.7473 �0.8662 �0.8825

ΔEST for Ga-R0 (kcal/mol)3 30.71 31.34 34.08 38.35

ΔEST for P-R0 (kcal/mol)4 �23.10 �27.47 �23.51 �20.52

HOMO-LUMO
(kcal/mol)

83.14 81.83 73.50 71.34

BE (kcal/mol)5 91.53 102.9 85.34 89.46

ΔH1 (kcal/mol)6 89.11 94.82 86.31 98.94
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R0 SiMe(SitBu3)2 SiiPrDis2 Tbt Ar*

ΔH2 (kcal/mol)6 86.43 85.91 88.53 84.08

WBI7 2.228 2.235 2.017 2.114

1The natural charge density on the gallium atom.
2The natural charge density on the phosphorus atom.
3
ΔEST (kcal mol�1) = E(triplet state for R0-Ga)–E(singlet state for R0-Ga).
4
ΔEST (kcal mol�1) = E(triplet state for R0-P)–E(singlet state for R0-P).
5BE (kcal mol�1) = E(triplet state for R0-Ga) + E(triplet state for R0-Ga)–E(singlet for R0Ga ☰ PR0).
6See Scheme 1.
7The Wiberg bond index (WBI) for the Ga☰P bond: see reference [38, 39].

Table 3. The bond lengths (Å), bond angels (�), natural charge densities (QGa0 and QP0), singlet-triplet energy splitting
(ΔEST), binding energies (BE), the HOMO-LUMO energy gaps, the Wiberg bond index (WBI), and some reaction
enthalpies for R0Ga ☰ PR0 at the dispersion-corrected M06-2X/Def2-TZVP level of theory.

R0 SiMe(SitBu3)2 SiiPrDis2 Tbt Ar*

InαP(Å) 2.362 2.337 2.215 2.238

∠R0-In-P (�) 169.6 175.0 177.9 171.4

∠In-P-R0 (�) 115.0 112.0 113.2 115.1

∠R0-In-P-R0 (�) 177.5 172.47 175.4 172.3

QIn
01 1.1046 0.9396 0.9489 0.9553

QP
02

�0.9546 �0.9363 �0.8560 �0.6715

ΔEST for In-R0

(kcal/mol)3
33.93 29.53 22.48 28.41

ΔEST for P-R0

(kcal/mol)4
�28.51 �27.58 �25.64 �22.31

HOMO-LUMO
(kcal/mol)

74.96 72.41 87.56 88.43

BE (kcal/mol)5 86.51 84.30 92.61 90.64

ΔH1 (kcal/mol)6 92.07 90.08 97.41 87.46

ΔH2 (kcal/mol)6 88.35 89.18 89.26 79.32

WBI7 2.263 2.251 2.188 2.174

1The natural charge density on the central indium atom.
2The natural charge density on the central phosphorus atom.
3
ΔEST (kcal mol�1) = E(triplet state for R’-In)–E(singlet state for R’-In).
4
ΔEST (kcal mol�1) = E(triplet state for R’-P)–E(singlet state for R’-P).
5BE (kcal mol�1) = E(triplet state for R’-In) + E(triplet state for R’-P)–E(singlet for R’In ☰ PR’).
6See Scheme 1.
7The Wiberg bond index (WBI) for the In☰P bond: see reference [38, 39].

Table 4. The bond lengths (Å), bond angels (�), singlet-triplet energy splitting (ΔEST), natural charge densities (QIn0 and
QP0), binding energies (BE), the HOMO-LUMO energy gaps, the Wiberg bond index (WBI), and some reaction enthalpies
for R0In☰PR0 at the B97-D3/LANL2DZ + dp level of theory.
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R0 SiMe(SitBu3)2 SiiPrDis2 Tbt Ar*

Tl ☰ P(Å) 2.386 2.384 2.385 2.336

∠R0
–Tl-P (�) 166.9 166.4 168.9 161.2

∠Tl–P–R0 (�) 122.3 113.7 116.2 115.6

∠R0
–Tl–P–R0 (�) 171.4 179.5 173.9 174.4

QTl
01 0.975 0.739 1.166 1.218

QP
02

�0.860 �0.826 �0.344 �0.257

ΔEST for Tl–R0 (kcal/mol)3 35.91 35.52 31.27 30.24

ΔEST for P–R0 (kcal/mol)4 �43.10 �37.47 �39.74 �40.52

HOMO-LUMO (kcal/mol) 71.27 27.21 58.05 39.34

BE (kcal/mol)5 80.24 85.43 62.51 67.89

ΔH1 (kcal/mol)6 91.34 90.49 89.22 87.11

ΔH2 (kcal/mol)6 73.98 72.83 71.27 74.01

WBI7 2.116 2.273 2.127 2.201

1The natural charge density on the central thallium atom.
2The natural charge density on the central phosphorus atom.
3
ΔEST (kcal mol�1) = E(triplet state for R0-Tl)–E(singlet state for R0-Tl).
4
ΔEST (kcal mol�1) = E(triplet state for R0-P)–E(singlet state for R0-P).
5BE (kcal mol�1) = E(triplet state for R0-Tl) + E(singlet state for R0-P)–E(singlet for R0Tl ☰ PR0).
6See Scheme 1.
7The Wiberg bond index (WBI) for the Tl☰P bond: see reference [38, 39].

Table 5. The bond lengths (Å), bond angels (�), singlet-triplet energy splitting (ΔEST), natural charge densities (QTl0 and
QP0), binding energies (BE), the HOMO-LUMO energy gaps, the Wiberg bond index (WBI), and some reaction enthalpies
for R0Tl ☰ PR0 at the dispersion-corrected M06-2X/Def2-TZVP level of theory.

Scheme 1. Several important conclusions can be drawn from the results in Tables 1–5.
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