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Abstract

Thiamine is the water-soluble sulfur containing vitamin B1 that is used to form thiamine 
diphosphate (ThDP), an enzyme cofactor important in the metabolism of carbohydrates, 
amino acids and other organic molecules. ThDP is synthesized de novo by certain bac-
teria, archaea, yeast, fungi, plants, and protozoans. Other organisms, such as humans, 
rely upon thiamine transport and salvage for metabolism; thus, thiamine is considered an 
essential vitamin. The focus of this chapter is on the regulation and metabolism of thia-
mine in archaea. The review will discuss the role ThDP has as an enzyme cofactor and the 
catalytic and regulatory mechanisms that archaea use to synthesize, salvage and transport 
thiamine. Future perspectives will be articulated in terms of how archaea have advanced 
our understanding of thiamine metabolism, regulation and biotechnology applications.

Keywords: thiamine, vitamin B1, archaea, thiazole, thiazolium, pyrimidine, sulfur 
mobilization, riboswitch

1. Introduction

Thiamine or vitamin B1 consists of a thiazole/thiazolium ring [5-(2-hydroxyethyl)-4-me-

thylthiazole, THZ] linked by a methylene bridge to an aminopyrimidine ring (2-methyl-

4-amino-5-hydroxymethylpyrimidine, HMP) (Figure 1A). Thiamine diphosphate (ThDP) is 

the best-known form of thiamine, as it is a cofactor. Other natural thiamine phosphate deriva-

tives include: thiamine monophosphate (ThMP), thiamine triphosphate (ThTP), adenosine 

thiamine triphosphate (AThTP) and adenosine thiamine diphosphate (AThDP) (Figure 1A) 

[1, 2]. These latter forms have yet to be analyzed in archaea and, thus, will not be a focus of 
this review.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



2. Thiamine diphosphate

ThDP is an enzyme cofactor found in all domains of life. In archaea and bacteria, ThDP is con-

sidered one of the eight universal cofactors along with NAD, NADP, FAD, FMN, S-adenosyl-

methionine (SAM), pyridoxal-5-phosphate (PLP, vitamin B6), CoA and the C1 carrier 

tetrahydrofolate or tetrahydromethanopterin [3]. The rare exceptions are the bacteria Borrelia 

and Rickettsia, which do not use ThDP as a coenzyme for metabolism [4].

ThDP-dependent enzymes catalyze the cleavage and formation of C-C, C-N, C-S and C-O bonds 

in a wide range of catabolic and anabolic reactions [5]. As a coenzyme, ThDP serves as an elec-

trophilic covalent catalyst in the decarboxylation of 2-oxo acids (e.g., pyruvate and 2-oxogluta-

rate) and in carboligation and lyase-type reactions [6–8]. The active species of ThDP is typically 

the C2 anion/ylid (ThDP−) form, generated by dissociation of the C2-H proton from the thiazole 

ring (Figure 1B). ThDP− is the source of the catalytic power of ThDP-dependent enzymes, as it 

can add to unsaturated systems and serve as a sink for mobile electrons [9, 10]. ThDP typically 

requires Mg2+ or Ca2+ ions to bind the enzyme in a V conformation in which the 4′-amino group 
of the pyrimidine ring is positioned to abstract the C2-H proton from the thiazole ring (Figure 1B) 

[11–15]. This proton abstraction is often assisted by a conserved glutamate residue (Glu) of the 

enzyme that provides a carboxylate side chain for hydrogen bonding to the N1’ of the pyrimi-

dine ring and for proton relay to form the ThDP− catalytic intermediate (Figure 1B). Thus, ThDP 

is fundamentally distinct among coenzymes in that both rings contribute to catalysis.

Figure 1. Thiamin (vitamin B1) and its natural forms. A) Thiamin and its natural derivatives thiamin monophosphate 

(ThMP), thiamin diphosphate (ThDP), thiamin triphosphate (ThTP), and adenosine thiamin triphosphate (AdThTP). 

The aminopyrimidine ring (blue), thiazolium ring (red) and methylene bridge (green) are highlighted with carbon 

indicated by C or blue balls. B) Thiamin diphosphate and its C2 anion/ylid form (ThDP-). Enzyme bound ThDP is in a 

V-conformation, which positions the 4′-amino group of the pyrimidine to abstract the C2-H proton of the thiazolium 
ring when activated by a conserved glutamate residue of the enzyme (in red). The two resonance structures of the anion/

ylid are presented.

B Group Vitamins - Current Uses and Perspectives10



ThDP-dependent enzymes are used in pyruvate metabolism, the TCA cycle, the pentose phos-

phate pathway and branched chain amino acid biosynthesis (Table 1). Archaea commonly 

use ThDP-dependent 2-oxoacid: ferredoxin oxidoreductases (OFORs) to catalyze the oxida-

tive decarboxylation of 2-oxoacids (e.g., pyruvate, 2-oxoglutarate and 2-oxoisovalerate) into an 

energy rich CoA thioester [16–32] or the reverse reaction to fix CO
2
 into cell carbon [33]. ThDP, 

Mg2+ and Fe-S cluster(s) are the intrinsic cofactors of OFORs with ferredoxin as the electron 

acceptor. OFORs (typically 270 kDa) are less complex than the 5-6 MDa 2-oxoacid dehydro-

genases (ODHs) of mitochondria and aerobic bacteria; ODHs rely upon NAD+ as the electron 

acceptor and are composed of E1p (ThDP-dependent 2-oxoacid decarboxylase), E2p (lipoate 

acetyltransferase) and E3p (dihydrolipoamide dehydrogenase) components [16]. While some 

archaea express mRNAs specific for all three ODH (E1p, E2p and E3p) homologs, ODH activ-

ity has yet to be detected in archaea [30]. Other ThDP-dependent enzymes of archaea include 

the non-oxidative 3-sulfopyruvate decarboxylase of coenzyme M biosynthesis [34, 35] and 

the acetohydroxyacid synthase of branch-chain amino acid (isoleucine, leucine and valine) 

biosynthesis [36, 37]. The transketolase activities of archaea [38] are presumed to be catalyzed 

by ThDP-dependent enzymes based on comparative genomics [39].

Archaea Bacteria Eukarya EC Enzyme (Abbreviation and Description)

+ + + 1.2.4.1 PDH Pyruvate dehydrogenase (E1p component)

n.d. + + 1.2.4.2 OGDH 2-Oxoglutarate dehydrogenase (E1o component)

+ (rare) + + 1.2.4.4 BCOADH Branched chain 2-oxoacid dehydrogenase (E1b 

component)

+ + + 2.2.1.1 TK Transketolase (glycolaldehyde transferase)

n.d. + (rare) + 4.1.-.- HACL 2-Hydroxyphytanoyl−/2-hydroxyacyl-CoA lyase

+ + n.d. 1.2.3.3 POX Pyruvate oxidase (phosphate-dependent)

+ + n.d. 1.2.7.1 PFOR Pyruvate: ferredoxin oxidoreductase

+ + n.d. 1.2.7.3 KGOR 2-Oxoglutarate: ferredoxin oxidoreductase

+ + n.d. 1.2.7.7 VOR 2-Oxoisovalerate: ferredoxin oxidoreductase

+ + n.d. 1.2.7.8 IOR Indolepyruvate: ferredoxin oxidoreductase

n.d. + (rare) n.d. 1.2.7.10 — Oxalate: ferredoxin oxidoreductase

n.d. n.d. + 2.2.1.3 DHAS Dihydroxyacetone synthase (formaldehyde 

transketolase)

+ + + 2.2.1.6 AHAS Acetohydroxyacid synthase (acetylacetate synthase)

n.d. + + 2.2.1.7 DXPS 1-Deoxy-D-xylulose 5-phosphate synthase

+ + + 2.2.1.9 MenD 2-Succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-

1-carboxylic-acid synthase

n.d. + n.d. 2.5.1.66 CeaS N2-(2-carboxyethyl)arginine synthase

? + ? 3.7.1.11 — Cyclohexane-1,2-dione hydrolase

? + + 4.1.1.1 PDC Pyruvate decarboxylase

Vitamin B1 (Thiamine) Metabolism and Regulation in Archaea
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3. Thiamine biosynthesis de novo

Thiamine is synthesized de novo by generating thiazole and aminopyrimidine rings separately 

and then joining the rings to form ThMP, the precursor of ThDP. The de novo pathways rely 

upon energy input (ATP), carbon- and nitrogen-based intermediates and a source of sulfur 

(the latter incorporated into the thiazole ring).

3.1. Synthesis and phosphorylation of the aminopyrimidine ring of thiamine

ThiC (HMP-P synthase; EC 4.1.99.17) is the major enzyme used by bacteria [40, 41], plant chlo-

roplasts [42] and archaea [43] to synthesize the aminopyrimidine ring of thiamine (Figures 2-4). 

ThiC converts 5′-phosphoribosyl-5-aminoimidazole (AIR) to 4-amino-5-hydroxymethyl-2-meth-

ylpyrimidine phosphate (HMP-P), thus, diverting carbon/nitrogen skeletons of purine metabo-

lism to thiamine biosynthesis. ThiC is a radical SAM enzyme, that initiates this catalytic reaction 

by use of a [4Fe-4S]+ cluster that reductively cleaves SAM to methionine and an 5′-deoxyadenosyl 
radical [40], a presumed oxidizing cosubstrate of the reaction [44].

THI5 forms the aminopyrimidine ring of thiamine from the substrates PLP and histidine in 

yeast [45, 46] (Figure 3). Only a subset of THI5 family (IPR027939) proteins have the conserved 

histidine residue needed for HMP-P synthesis [45] and appear restricted to yeast, fungi, plants 

(non-chloroplast) and select γ-proteobacteria. Bacterial ABC-type solute binding proteins for 
HMP precursor (ThiY) [47] and riboflavin (RibY) [48] transport are structurally related to THI5.  

Thus, the archaeal THI5 family proteins, which are devoid of the conserved histidine residue, 

are suggested to serve a similar role in transport.

ThiD domain proteins are used as bifunctional HMP kinase (EC 2.7.1.49)/HMP-P kinase (EC 

2.7.4.7) enzymes in thiamine biosynthesis and salvage (Figures 2-4). Bacterial ThiD [49, 50] 

and yeast THI20 and THI21 (N-terminal ThiD domain proteins) [51] phosphorylate HMP-P 

to HMP-PP in the de novo pathway and successively phosphorylate HMP to HMP-PP in the 

Archaea Bacteria Eukarya EC Enzyme (Abbreviation and Description)

+ + n.d. 4.1.1.7 BFD Benzoylformate decarboxylase

n.d. + n.d. 4.1.1.8 OXC Oxalyl-CoA decarboxylase

? ? + 4.1.1.43 — Phenylpyruvate decarboxylase

n.d. + n.d. 4.1.1.47 GCL Glyoxylate carboligase (tartronate semialdehyde 

synthase)

n.d. + n.d. 4.1.1.71 KGD 2-Oxoglutarate decarboxylase

+ + n.d. 4.1.1.74 IpdC Indolepyruvate decarboxylase

+ + n.d. 4.1.1.79 ComDE Sulfopyruvate decarboxylase

+ (rare) + + 4.1.1.82 PnPyDC 3-Phosphonopyruvate decarboxylase

n.d. + + 4.1.2.9 PHK Phosphoketolase (D-xylulose-5-phosphate 

phosphoketolase)

? + ? 4.1.2.38 BAL Benzaldehyde lyase (benzoin aldolase)

Table 1. Thiamin diphosphate (ThDP)-dependent enzymes and their distribution among the three domains of life. 

Enzyme homolog detected (+), not detected (n.d.), or low homology (?) as indicated.

B Group Vitamins - Current Uses and Perspectives12



salvage pathway. Proteins with an unusual ThiD2 domain (standalone or fused to ThiE) are 

identified in bacteria to catalyze only HMP-P kinase activity, potentially to avoid misincor-

poration of damaged and/or toxic analogs of HMP into ThDP-dependent enzymes [52]. ThiD 

homologs (IPR004399) are widespread in all domains of life, including organisms that only 

salvage HMP and do not synthesize thiamine de novo. Archaeal ThiD proteins are standalone 

or fused to a ThiN-type ThMP synthase domain (see later discussion) [43, 53, 54].

Figure 2. Thiamin (vitamin B1) biosynthesis in bacteria. Enzymes are discussed in text and colored by phylogenetic 

distribution (red, restricted to one domain of life; blue, found in all domains of life; green, apparent homologs in all 

domains of life but no direct evidence). Abbreviations: AIR, 5-aminoimidazole ribotide; SAM, S-adenosyl-methionine; 

GAP3P, D-glyceraldehyde 3-phosphate; HMP-P, 4-aminohydroxymethyl-2-methylpyrimidine phosphate; HMP-PP, 

4aminohydroxymethyl-2-methylpyrimidine diphosphate; ThMP, thiamin monophosphate; ThDP, thiamin diphosphate; 

DXP, 1-deoxy-D-xylulose 5-phosphate; cTHZ-P, 2-[(2R,5Z)-2-carboxy-4-methylthiazol-5(2H)-ylidene]ethyl phosphate; 

THZ-P, 4-methyl-5-(β-hydroxyethyl)thiazolium phosphate; X, electron carrier.

Figure 3. Thiamin (vitamin B1) biosynthesis in eukaryotes. Blue shading indicates restricted to yeast. Abbreviations: 

ADP-thiazole, ADP-5-ethyl-4methylthiazole-2-carboxylate; PLP, pyridoxal phosphate; R5P, D-ribose 5-phosphate.?, not 

determined to date. For additional abbreviations and coloring scheme see Figure 2.

Vitamin B1 (Thiamine) Metabolism and Regulation in Archaea
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3.2. Synthesis of the thiazole ring of thiamine

De novo biosynthesis of the thiazole ring can be classified into two fundamentally distinct path-

ways based on the type of thiazole synthase (ThiG vs. Thi4) used. While similar in nomenclature, 

the ThiG- and Thi4-type thiazole synthases differ in terms of structure and function. The ThiG-
dependent pathway relies upon at least six steps to form THZ-P and appears limited to bacteria 

based on the phylogenetic distribution of ThiG (EC 2.8.1.10) (Figure 2). By contrast, the Thi4-type 

branch for thiazole biosynthesis is simpler in having only two steps (Figures 3-4) and appears 

more widespread, as Thi4-homologs (KEGG K03146) are represented in all domains of life and 

are demonstrated to function in thiazole ring biosynthesis in yeast [55] and archaea [56, 57].

3.2.1. Synthesis of the thiazole ring of thiamine by the ThiG-pathway

To form the thiazole ring, ThiG uses three substrates: () dehydroglycine, (ii) 1-deoxy-D-xylu-

lose-5-phosphate (DXP) and (iii) thiocarboxylated ThiS [58–61] (Figure 2).

(i) Dehydroglycine is synthesized by either oxygen-dependent (ThiO; EC 1.4.3.19) or SAM 

radical enzymes (ThiH; EC 4.1.99.19), both of which are broadly distributed in bacteria but 

generally absent in archaea and eukaryotes. The ThiO glycine oxidase catalyzes the oxida-

tive deamination of glycine to form the dehydroglycine required for thiazole ring synthesis 

[62–65]. By contrast, the ThiH tyrosine lyase forms a 5′-deoxyadenosyl radical that initiates 
cleavage of the C alpha-C beta bond of tyrosine to generate the dehydroglycine (needed for 

thiamine biosynthesis) and p-cresol (the byproduct) [66–68].

(ii) The 1-deoxy-D-xylulose-5-phosphate synthase (Dxs; EC 2.2.1.7) is a ThDP-dependent 

enzyme that condenses the (hydroxyethyl)-group derived from pyruvate with the C1 aldehyde 

group of D-glyceraldehyde 3-phosphate (GAP3P) to generate DXP and CO
2
 [69, 70]. Dxs homo-

logs (IPR005477) are widespread in bacteria, green algae, higher plants and protists but rare in 

archaea. Dxs generates the DXP precursor of thiamine, pyridoxol and non-mevalonate isopren-

oid biosynthesis pathways [69, 70]. DXP is used for thiamine biosynthesis in bacteria but not in 

eukaryotes or archaea (Figure 2).

(iii) The ThiG-dependent pathway uses a protein-based relay system to mobilize sulfur to the 

thiazole ring. Sulfur is transferred from L-cysteine to an active site cysteine residue of a sul-

furtransferase (e.g., IscS-SH) [71] to form an enzyme persulfide intermediate (e.g., IscS-S-SH) [72].  

Figure 4. Thiamin (vitamin B1) biosynthesis in archaea. For abbreviations and coloring scheme see Figures 2, 3.

B Group Vitamins - Current Uses and Perspectives14



In a separate reaction, the E1-like ThiF adenylates the C-terminus of the ubiquitin-fold pro-

tein, ThiS, in a mechanism resembling the activation step of ubiquitination [73]. This modi-

fication step readies the C-terminus of ThiS for thiocarboxylation. The sulfur is relayed from 
IcsS-S-SH to ThiS through the ThiI rhodanese (RHD) domain [71, 74–76]. The resulting thio-

carboxylated ThiS serves as the sulfur donor for the ThiG mediated synthesis of the thiazole 

ring [58–61].

3.2.2. Synthesis of the thiazole ring of thiamine by the Thi4-pathway

The Thi4-pathway used to form the thiazole ring (Figures 3, 4) is distinct from that of ThiG 

(Figure 2). Key to the pathway is Thi4-mediated formation of ADP-thiazole, which is then 

hydrolyzed to THZ-P by a presumed NUDIX hydrolase [55]. Thi4 family (IPR002922) pro-

teins are distributed in all domains of life and generally absent from ThiG-containing bacteria. 

Although initially annotated as ribose-1,5-bisphosphate isomerases (R15Pi) based on indirect 

assay [77], archaeal Thi4 homologs are found to be distinct from archaeal R15Pi of the e2b2 

family [78, 79] and demonstrated to catalyze thiazole synthase activity [56] that is transcrip-

tionally repressed when thiamine and THZ levels are sufficient [43] and is required for thia-

zole ring formation [57]. In vitro, yeast Thi4 operates by a suicide mechanism by mobilizing 

the sulfur of its active site cysteine (C205) to form ADP-thiazole from NAD and glycine [55]. 

By contrast, the methanogen Thi4, uses an active site histidine residue and iron to catalyze 

the synthesis of ADP-thiazole from NAD, glycine and sulfide [56]. Thi4 enzymes of archaea, 

yeast [80] and plant [81] are related based on X-ray crystal structure; in addition, yeast Thi4 

modified to use an active site histidine residue can operate by a catalytic mechanism with iron 
similarly to the methanogen Thi4 [56, 80].

3.2.3. Condensation of the aminopyrimidine and thiazole rings to form ThMP

Once formed, the thiamine ring precursors (i.e., THZ-P and HMP-PP) are condensed to ThMP 

by a ThMP synthase of the ThiE- or ThiN-type (EC 2.5.1.3).

ThiE-type ThMP synthases are widespread in all domains of life (IPR036206) and are found 

to catalyze the substitution of the diphosphate of HMP-PP with THZ-P to yield ThMP, CO
2
 

and diphosphate (PPi) in bacteria [82, 83], plants [84] and yeast [85]. ThiE homologs are often 

bifunctional, fused to an additional catalytic domain such as HMP-P kinase (EC 2.7.4.7) 

[52, 84, 85]. ThiE serves as a ThMP synthase in certain archaea based on its requirement for 

growth of haloarchaea in the absence of thiamine, HMP and/or THZ [43].

ThMP synthases of the ThiN-type are also identified in archaea and bacteria, but absent 
in eukaryotes. ThiN domain (IPR019293) proteins are of three major types: I) fused to an 

N-terminal DNA binding domain (ThiR type), II) fused to an N- or C-terminal catalytic domain 

(e.g., ThiD) and III) standalone ThiN domains. The ThiDN proteins are ThMP synthases based 

on in vitro assay and complementation of ΔthiE mutants for growth in the absence of thiamine 

[43, 53, 54]. Fusion of the ThiN domain to the HMP/HMP-P kinase domain (ThiD) is sug-

gested to minimize the release of HMP-PP prior to its condensation with THZ-P and, thus, 

channel substrate to the ThMP product [43]. ThiN domains that lack a conserved α-helix near 
the active site histidine are not ThMP synthases and instead can serve as apparent ligand 

binding sites for transcriptional regulation as in ThiR (see later discussion) [43].

Vitamin B1 (Thiamine) Metabolism and Regulation in Archaea
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3.2.4. Formation of ThDP from ThMP or thiamine

Thiamine diphosphate (ThDP), the biologically active form of thiamine, is produced from 

ThMP by two routes. ThMP is commonly phosphorylated to ThDP by the ATP-dependent 

ThiL ThMP kinase (EC 2.7.4.16 of IPR006283) in bacteria [86] and archaea [87]. Alternatively, 

ThMP is hydrolyzed to thiamine, and thiamine, is converted to ThDP by a Mg2+-dependent 

thiamine pyrophosphokinase TPK (THI80) that catalyzes thiamine + ATP ⇆ ThDP + AMP (EC 

2.7.6.2) in eukaryotes [88–91]. Consistent with this latter route, TPK is required for the de novo 

biosynthesis of thiamine in yeast [89, 90] and the ThMP phosphatase TH2 can hydrolyze ThMP 

to thiamine in plants [92]. TPK is also used to salvage thiamine to ThDP in eukaryotes [91, 

93] and certain bacteria (TPK homolog YloS) [93]; by contrast, γ-proteobacteria use a thiamine 
kinase (ThiK, EC 2.7.1.89) to phosphorylate thiamine to ThMP [93] prior to ThiL-mediated 

phosphorylation of ThMP to ThDP. While TPK (IPR036759) homologs are conserved in some 

archaea, ThiK is not. Puzzling then is that certain archaea (e.g., haloarchaea and Pyrobaculum) 

have ThiBQP thiamine transport and ThiL ThMP kinase homologs but do not have ThiK 

or TPK homologs or activities (e.g., Pyrobaculum californica) [87]. Furthermore, archaea lack-

ing TPK and ThiK homologs can transport thiamine and generate ThDP as demonstrated 

by growth of a ThMP synthase mutant, Haloferax volcanii ΔthiE, when supplemented with 

thiamine but not THZ or HMP [43, 57]. These findings suggest that certain archaea use an 
alternative pathway to salvage thiamine to ThDP.

4. Thiamine transport

Thiamine is a micronutrient that is actively transported into cells against a concentration 

gradient. Transport of thiamine and its precursors alleviates the need for de novo biosyn-

thesis of thiamine. Thiamine transporters are predicted in archaea based on homology to 

bacterial transport systems or identification of putative transporter genes that are either 
in genomic synteny with thiamine biosynthesis genes or downstream of ThDP-binding 

riboswitch (THI- box) motifs [57, 94–96].

Bacterial transporters of thiamine and thiamine precursors, conserved in archaea, can be clas-

sified into: (i) ABC-type transporters (e.g., ThiBPQ and ThiYXZ) [47, 97, 98], (ii) a new ABC-

type class termed energy coupling factor (ECF) importers [95, 99], (iii) NiaP transporters [100] 

of the major facilitator superfamily (MSF, IPR036259) that use an ion gradient [101] and (iv) 

PnuT transporters that mediate the facilitated diffusion of thiamine [102, 103]. ABC and ECF 

are primary active transporters that hydrolyze ATP in thiamine uptake by use of conserved 

ATPases (Figure 5). ECF and ABC transporters are distinguished by the type of protein used 

to bind solute: ECF uses a transmembrane substrate-capture protein (S component, ThiT) 

while ABC uses an extracytoplasmic solute binding protein (e.g., ThiB or ThiY) [95, 99]. ECF 

systems are typically modular in that ThiT and other S-components (e.g., the biotin specific 
BioY) interchangeably bind to the transmembrane (T) component of the system [95, 99, 104]. 

By comparison, ABC systems are not modular and have solute binding proteins (ThiB/Y) that 

bind to the extracytoplasmic domain of the transporter [47, 48, 105, 106].

B Group Vitamins - Current Uses and Perspectives16



5. Thiamine salvage

Thiamine and its derivatives are salvaged from the outside and inside of a cell to replenish 

and repair the ThDP cofactor for metabolism. Thiamine salvage pathways are widespread 

in all domains of life and overcome the need for de novo biosynthesis of thiamine, minimize 

energy cost, and reduce the misincorporation of thiamine breakdown products into ThDP-

dependent enzyme active sites [107].

Archaea are found to salvage thiamine and its derivatives (HMP and THZ) from the envi-

ronment [43, 57] and repress the de novo biosynthesis of thiamine when thiamine levels are 

sufficient [43, 108]. Archaeal salvage pathways are predicted to include enzymes of de novo 

biosynthesis (i.e., ThiD, ThiE or ThiDN, and ThiL) with enzymes specific for salvage such as 
ThiM (THZ kinase, EC 2.7.1.50), TenA (aminopyrimidine aminohydrolase, EC 3.5.99.2) and/

or YlmB (formylaminopyrimidine deformylase, EC 3.5.1.-) the latter speculative as it clus-

ters to a family of proteins (IPR010182) that includes succinyl-diaminopimelate desuccinylase 

and YodQ of N-acetyl-beta-lysine synthesis [57] (Figure 6). ThiM is a THZ kinase in bacteria 

[49, 109–111], protists [112], and plants [113] and is predicted in archaea (e.g., UniProtKB 

D4GV40) based on conserved active site residues [114]. TenA homologs are subclassified into 
TenA_C and TenA_E [115], based on conserved active site cysteine and glutamate residues, 

respectively. Both types of TenA proteins are conserved in archaea. TenA_C is demonstrated 

to be an aminohydrolase that works in concert with the YlmB deformylase to regenerate HMP 

from thiamine degradation products and to function as a thiaminase II that hydrolyzes thia-

mine to THZ and HMP in bacteria [94, 116]. Note that thiaminase I (EC 2.5.1.2) which is 

secreted by certain bacteria to degrade thiamine [117, 118] is distinct from TenA. In plants, 

TenA_E is bifunctional in catalyzing deformylase and aminohydrolase activities to regenerate 

Figure 5. Comparison of thiamin transport by ABC and ECF importers. The nucleotide-binding domains that hydrolyze 

ATP and drive transporter are shown in blue. The ABC-type transmembrane domain protein (ThiP) and ECF-type 

Tcomponent (EcfT) are in shades of green. The soluble binding protein (ThiB, ThiY) of the ABC importer is in dark 

orange. The ECF importer S-components of thiamin (ThiT) and biotin (BioY), which can be swapped, are in shades of 

orange.
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HMP from thiamine breakdown products, thus, overcoming the need for YlmB [115]. TenA_C 

and TenA_E are conserved in archaea and likely to function in thiamine salvage.

6. Thiamine regulation

Thiamine biosynthesis, salvage and/or transport pathways are regulated by THI-box ribo-

switches in bacteria [119–121], eukaryotes [122–125], and a few archaea (based on Rfam RF00059) 

[43, 96]. The THI-box riboswitch is a regulatory element of an mRNA/pre-mRNA aptamer that 

binds a thiamine metabolite and an expression platform that transduces the ligand binding to 

control gene expression [126]. In bacteria, when ThDP levels are sufficient, ThDP binds the 5′ 
untranslated region (UTR) of the THI-box and triggers the formation of a stem-loop structure 

that masks the Shine-Dalgarno (SD) sequence of the mRNA and inhibits translation initiation 

[119–121]. The major targets of this regulation are the mRNAs of the thiamine metabolic operons 

(e.g., thiCEFSGH and thiMD in E. coli) [119–121] and the ABC-type thiamine transporter (thiBPQ), 

with the latter based on motif analysis (Rfam RF00059). Eukaryotes (plants, fungi, and algae) 
also use a THI-box riboswitch to regulate expression of thiamine metabolism but do so by modu-

lating the alternative splicing of pre-mRNAs [42, 122–125, 127–130]. In these eukaryotic systems, 

ThDP or HMP-PP binds the THI-box riboswitch of an intron located in the 5′- or 3’-UTR and 
causes mispairing of the splice donor (GU) and acceptor (AG) of the pre-mRNA (e.g., THIC and 

THI4). This incorrect pairing promotes alternative mRNA slicing and, thus, reduces thiamine 

biosynthesis.

Thiamine metabolism is also regulated by transcription factors, as exemplified by organisms 
that synthesize thiamine de novo but do not have a THI-box riboswitch motif including yeast 

and many archaea. In yeast, three proteins (Thi2p, Thi3p, and Pdc2p) coordinate the induction 

of thiamine biosynthetic (THI) gene expression in response to thiamine starvation [131–136]. 

Figure 6. Thiamin (vitamin B1) salvage in archaea. Abbreviations: Formylaminio-HMP, N-formyl-4-amino5-aminomethyl-

2-methylpyrimidine; amino-HMP, 4amino-5-aminomethyl-2-methylpyrimidine; HMP, 4amino-5-hydroxymethyl-2-

methylpyrimidine; THZ, 4methyl-5-(2-hydroxyethyl)thiazole. For additional abbreviations and coloring scheme see 

Figures 2-4.
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Thi3p serves as the thiamine sensor for the two transcription factors (Thi2p and Pdc2p) that 

bind specific DNA sequences upstream of the THI genes. When thiamine is low, Thi3p forms 

a ternary complex with Thi2p and Pdc2p that activates transcription of the THI genes. Once 

the levels of thiamine are sufficient, Thi3p binds ThDP, triggering dissociation of Thi3p from 
the ternary complex and reduced expression of the THI genes. In archaea from the phyla 

Euryarchaeota [43] and Crenarchaeota [108], a novel transcription factor, ThiR, is found to repress 

thiamine metabolic gene (thi4 and thiC) expression when the levels of thiamine are sufficient. 
ThiR is composed of an N-terminal DNA binding domain and C-terminal ThiN domain. The 

ThiN domain of ThiR is not catalytic, as it is missing an α-helix extension and conserved Met 
near the active-site His that are needed for the thiazole synthase activity of ThiDN proteins 

[43]. Instead the ThiN domain of ThiR serves as an apparent sensor of thiamine metabolites 

that triggers ThiR-mediated repression of thi4 and thiC transcription during thiamine suffi-

cient conditions. This type of transcriptional regulation appears common in archaea based on 

the widespread phylogenetic distribution of ThiR homologs vs. THI-box motifs.

7. Future perspectives and conclusions

Thiamine is an important vitamin for improving human health [137], is a strategic nutritional 

supplement [138, 139], is targeted for production in probiotics [140], is useful in drug discov-

ery including developing antimetabolites to treat cancer or fungal infections [141–144], has 

potential for use as antitoxic agent in the food industry [145], may improve crop resistance 

[146], is a starting point for design of novel riboswitches [147], functions in central metabolism 

and unusual biocatalytic reactions [6–8, 148–151], may modulate global nutrient cycles [152], 

and holds promise for other applications.

Discovery of the metabolic route for the de novo biosynthesis of thiamine in archaea opens a new 

window for the use of extremophiles in thiamine-related biotechnology applications. Archaea 

are designated as GRAS (generally recognized as safe) by the FDA, are amenable to genetic 

manipulation [153], and can readily express ThDP-dependent enzymes from foreign systems 

(e.g., bacterial pyruvate decarboxylase) [154]. Thus, archaea provide a useful resource to discover 

and optimize ThDP-dependent biocatalysts for the generation of renewable fuels and chemicals.

Archaea also provide an evolutionary perspective on the origins of thiamine biosynthesis 

pathways. The aminopyrimidine biosynthesis branch, composed of the radical SAM enzyme 

ThiC and the HMP/HMP-P kinase ThiD, appears ancient based on its functional conservation 

in all three domains of life. By contrast, thiazole biosynthesis can be divided into two major 

pathways: ThiG- and Thi4-dependent. Of these two divisions, the Thi4-type is suggested to 

be fairly ancient as Thi4 depends on Fe for catalytic activity, can use sulfide as a source of 
sulfur for thiazole ring formation, is functionally conserved in archaea and eukaryotes, and is 

predicted to function in certain bacteria (including anaerobes) based on genome sequencing.

Identification of genes needed to transport, synthesize, and salvage thiamine (from the 
three domains of life) improves understanding of how vitamin B1 may be trafficked in the 
environment. Finding that Thi4 is important for thiazole ring formation in eukaryotes and 

archaea provides new perspective on defining the organisms that synthesize thiamine de novo. 

Microbes that produce thiamine and thiamine precursors are suggested to be of benefit to 
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other microbial taxa that cannot produce thiamine yet require this vitamin as a cofactor for 

their metabolic activity [152]. Thus, interspecies vitamin transfer may influence the metabo-

lism of microbial consortia and global/carbon energy cycles.

Finally, thiamine is damaged by extreme conditions such as oxidation. Plant and yeast have 

a hydrolase (Tnr3, YJR142W) that converts the oxy- and oxo-damaged forms of ThDP into 

monophosphates to avoid misincorporation of the damaged thiamine molecules into the 

ThDP-dependent enzymes [155]. Many archaea thrive in conditions of extreme thermal and 

oxidative stress suggesting these microbes use unique mechanisms to avoid and/or repair 

damaged ThDP for use as a cofactor.

Acknowledgements

Funds for this project were awarded to JM-F through the Bilateral NSF/BIO-BBSRC program 

(NSF 1642283), the U.S. Department of Energy, Office of Basic Energy Sciences, Division 
of Chemical Sciences, Geosciences and Biosciences, Physical Biosciences Program (DOE 

DE-FG02-05ER15650) and the National Institutes of Health (NIH R01 GM57498).

Conflict of interest

The author has no conflict of interest to declare.

Author details

Julie A. Maupin-Furlow

Address all correspondence to: jmaupin@ufl.edu

Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, 

University of Florida, Gainesville, Florida, USA

References

[1] Bettendorff L, Wins P. Thiamine diphosphate in biological chemistry: New aspects of 
thiamine metabolism, especially triphosphate derivatives acting other than as cofactors. 

The FEBS Journal. 2009;276(11):2917-2925

[2] Frederich M, Delvaux D, Gigliobianco T, Gangolf M, Dive G, Mazzucchelli G, et al. 

Thiaminylated adenine nucleotides. Chemical synthesis, structural characterization and 

natural occurrence. The FEBS Journal. 2009;276(12):3256-3268

[3] Xavier JC, Patil KR, Rocha I. Integration of biomass formulations of genome-scale meta-

bolic models with experimental data reveals universally essential cofactors in prokary-

otes. Metabolic Engineering. 2017;39:200-208

B Group Vitamins - Current Uses and Perspectives20



[4] Zhang K, Bian J, Deng Y, Smith A, Nunez RE, Li MB, et al. Lyme disease spirochaete 

Borrelia burgdorferi does not require thiamine. Nature Microbiology. 2016;2:16213

[5] Müller M, Sprenger GA, Pohl M. CC bond formation using ThDP-dependent lyases. 

Current Opinion in Chemical Biology. 2013;17(2):261-270

[6] Jordan F. Current mechanistic understanding of thiamine diphosphate-dependent enzy-

matic reactions. Natural Product Reports. 2003;20(2):184-201

[7] Nemeria N, Binshtein E, Patel H, Balakrishnan A, Vered I, Shaanan B, et al. Glyoxylate 

carboligase: A unique thiamine diphosphate-dependent enzyme that can cycle between 

the 4′-aminopyrimidinium and 1′,4′-iminopyrimidine tautomeric forms in the absence of 
the conserved glutamate. Biochemistry. 2012;51(40):7940-7952

[8] Shaanan B, Chipman DM. Reaction mechanisms of thiamine diphosphate enzymes: New 

insights into the role of a conserved glutamate residue. The FEBS Journal. 2009;276(9): 

2447-2453

[9] Schellenberger A. Sixty years of thiamine diphosphate biochemistry. Biochimica et 

Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology. 1998;1385(2): 

177-186

[10] Stetter H. Catalyzed addition of aldehydes to activated double bonds - a new synthetic 
approach. Angewandte Chemie International Edition in English. 1976;15(11):639-647

[11] Schellenberger A, Hubner G, Neef H. Cofactor designing in functional analysis of thia-

mine diphosphate enzymes. Methods in Enzymology. 1997;279:131-146

[12] Frank RA, Titman CM, Pratap JV, Luisi BF, Perham RN. A molecular switch and proton 

wire synchronize the active sites in thiamine enzymes. Science. 2004;306(5697):872-876

[13] Chabriere E, Charon MH, Volbeda A, Pieulle L, Hatchikian EC, Fontecilla-Camps 

JC. Crystal structures of the key anaerobic enzyme pyruvate: Ferredoxin oxidoreduc-

tase, free and in complex with pyruvate. Nature Structural Biology. 1999;6(2):182-190

[14] Caines ME, Elkins JM, Hewitson KS, Schofield CJ. Crystal structure and mechanistic 
implications of N2-(2-carboxyethyl)arginine synthase, the first enzyme in the clavulanic 
acid biosynthesis pathway. The Journal of Biological Chemistry. 2004;279(7):5685-5692

[15] Xiang S, Usunow G, Lange G, Busch M, Tong L. Crystal structure of 1-deoxy-D-xylulose 

5-phosphate synthase, a crucial enzyme for isoprenoids biosynthesis. The Journal of 

Biological Chemistry. 2007;282(4):2676-2682

[16] Yan Z, Maruyama A, Arakawa T, Fushinobu S, Wakagi T. Crystal structures of archaeal 

2-oxoacid: Ferredoxin oxidoreductases from Sulfolobus tokodaii. Scientific Reports. 2016; 
6:33061

[17] Plaga W, Lottspeich F, Oesterhelt D. Improved purification, crystallization and pri-
mary structure of pyruvate: Ferredoxin oxidoreductase from Halobacterium halobium. 

European Journal of Biochemistry. 1992;205(1):391-397

[18] Kerscher L, Oesterhelt D. Purification and properties of two 2-oxoacid: Ferredoxin 
oxidoreductases from Halobacterium halobium. European Journal of Biochemistry. 

1981;116(3):587-594

Vitamin B1 (Thiamine) Metabolism and Regulation in Archaea
http://dx.doi.org/10.5772/intechopen.77170

21



[19] Kunow J, Linder D, Thauer RK. Pyruvate: Ferredoxin oxidoreductase from the sul-

fate-reducing Archaeoglobus fulgidus: Molecular composition, catalytic properties, and 

sequence alignments. Archives of Microbiology. 1995;163(1):21-28

[20] Mai X, Adams MW. Indolepyruvate ferredoxin oxidoreductase from the hyperthermo-

philic archaeon Pyrococcus furiosus. A new enzyme involved in peptide fermentation. 

The Journal of Biological Chemistry. 1994;269(24):16726-16732

[21] Smith ET, Blamey JM, Adams MW. Pyruvate ferredoxin oxidoreductases of the hyperther-

mophilic archaeon, Pyrococcus furiosus, and the hyperthermophilic bacterium, Thermotoga 
maritima, have different catalytic mechanisms. Biochemistry. 1994;33(4):1008-1016

[22] Blamey JM, Adams MW. Purification and characterization of pyruvate ferredoxin oxi-
doreductase from the hyperthermophilic archaeon Pyrococcus furiosus. Biochimica et 

Biophysica Acta. 1993;1161(1):19-27

[23] Kletzin A, Adams MW. Molecular and phylogenetic characterization of pyruvate and 
2-ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosus and pyruvate ferre-

doxin oxidoreductase from Thermotoga maritima. Journal of Bacteriology. 1996;178(1):248-257

[24] Heider J, Mai X, Adams MW. Characterization of 2-ketoisovalerate ferredoxin oxidore-

ductase, a new and reversible coenzyme A-dependent enzyme involved in peptide fer-

mentation by hyperthermophilic archaea. Journal of Bacteriology. 1996;178(3):780-787

[25] Bock AK, Kunow J, Glasemacher J, Schonheit P. Catalytic properties, molecular com-

position and sequence alignments of pyruvate: Ferredoxin oxidoreductase from the 

methanogenic archaeon Methanosarcina barkeri (strain Fusaro). European Journal of 

Biochemistry. 1996;237(1):35-44

[26] Mai X, Adams MW. Characterization of a fourth type of 2-keto acid-oxidizing enzyme 

from a hyperthermophilic archaeon: 2-ketoglutarate ferredoxin oxidoreductase from 

Thermococcus litoralis. Journal of Bacteriology. 1996;178(20):5890-5896

[27] Zhang Q, Iwasaki T, Wakagi T, Oshima T. 2-oxoacid:Ferredoxin oxidoreductase from the ther-

moacidophilic archaeon, Sulfolobus sp. strain 7. Journal of Biochemistry. 1996;120(3):587-599

[28] Ma K, Hutchins A, Sung SJ, Adams MW. Pyruvate ferredoxin oxidoreductase from the 

hyperthermophilic archaeon, Pyrococcus furiosus, functions as a CoA-dependent pyru-

vate decarboxylase. Proceedings of the National Academy of Sciences of the United 

States of America. 1997;94(18):9608-9613

[29] Bock AK, Schonheit P, Teixeira M. The iron-sulfur centers of the pyruvate:Ferredoxin 

oxidoreductase from Methanosarcina barkeri (Fusaro). FEBS Letters. 1997;414(2):209-212

[30] Jolley KA, Maddocks DG, Gyles SL, Mullan Z, Tang SL. Dyall-smith ML, et al. 2-Oxoacid 

dehydrogenase multienzyme complexes in the halophilic Archaea? Gene sequences and 

protein structural predictions. Microbiology. 2000;146(Pt 5):1061-1069

[31] Ozawa Y, Nakamura T, Kamata N, Yasujima D, Urushiyama A, Yamakura F, et al. 

Thermococcus profundus 2-ketoisovalerate ferredoxin oxidoreductase, a key enzyme in 

the archaeal energy-producing amino acid metabolic pathway. Journal of Biochemistry. 

2005;137(1):101-107

B Group Vitamins - Current Uses and Perspectives22



[32] van Ooyen J, Soppa J. Three 2-oxoacid dehydrogenase operons in Haloferax volcanii: 
Expression, deletion mutants and evolution. Microbiology 2007;153(Pt 10):3303-3313

[33] Jahn U, Huber H, Eisenreich W, Hugler M, Fuchs G. Insights into the autotrophic CO
2
 

fixation pathway of the archaeon Ignicoccus hospitalis: Comprehensive analysis of the 

central carbon metabolism. Journal of Bacteriology. 2007;189(11):4108-4119

[34] Sarmiento F, Ellison CK, Whitman WB. Genetic confirmation of the role of sulfopyru-

vate decarboxylase in coenzyme M biosynthesis in Methanococcus maripaludis. Archaea. 

2013;2013:185250

[35] Graupner M, Xu H, White RH. Identification of the gene encoding sulfopyruvate decar-

boxylase, an enzyme involved in biosynthesis of coenzyme M. Journal of Bacteriology. 

2000;182(17):4862-4867

[36] Xing RY, Whitman WB. Sulfometuron methyl-sensitive and -resistant acetolactate syn-

thases of the archaebacteria Methanococcus spp. Journal of Bacteriology. 1987;169(10): 

4486-4492

[37] Xing R, Whitman WB. Purification and characterization of the oxygen-sensitive ace-

tohydroxy acid synthase from the archaebacterium Methanococcus aeolicus. Journal of 

Bacteriology. 1994;176(5):1207-1213

[38] Yu JP, Ladapo J, Whitman WB. Pathway of glycogen metabolism in Methanococcus mari-
paludis. Journal of Bacteriology. 1994;176(2):325-332

[39] Soderberg T. Biosynthesis of ribose-5-phosphate and erythrose-4-phosphate in archaea: 

A phylogenetic analysis of archaeal genomes. Archaea. 2005;1(5):347-352

[40] Palmer LD, Downs DM. The thiamine biosynthetic enzyme ThiC catalyzes multiple 

turnovers and is inhibited by S-adenosylmethionine (AdoMet) metabolites. The Journal 

of Biological Chemistry. 2013;288(42):30693-30699

[41] Martinez-Gomez NC, Downs DM. ThiC is an [Fe-S] cluster protein that requires AdoMet 

to generate the 4-amino-5-hydroxymethyl-2-methylpyrimidine moiety in thiamine syn-

thesis. Biochemistry. 2008;47(35):9054-9056

[42] Raschke M, Burkle L, Muller N, Nunes-Nesi A, Fernie AR, Arigoni D, et al. Vitamin B1 bio-

synthesis in plants requires the essential iron sulfur cluster protein, THIC. Proceedings of 

the National Academy of Sciences of the United States of America. 2007;104(49):19637-19642

[43] Hwang S, Cordova B, Abdo M, Pfeiffer F, Maupin-Furlow JA. ThiN as a versatile domain 
of transcriptional repressors and catalytic enzymes of thiamine biosynthesis. Journal of 

Bacteriology. 2017;199(7):e00810-16

[44] Chatterjee A, Hazra AB, Abdelwahed S, Hilmey DG, Begley TP. A “radical dance” in thia-

mine biosynthesis: Mechanistic analysis of the bacterial hydroxymethylpyrimidine phos-

phate synthase. Angewandte Chemie (International Ed. in English). 2010;49(46):8653-8656

[45] Coquille S, Roux C, Fitzpatrick TB, Thore S. The last piece in the vitamin B1 biosyn-

thesis puzzle: Structural and functional insight into yeast 4-amino-5-hydroxymethyl-

2-methylpyrimidine phosphate (HMP-P) synthase. The Journal of Biological Chemistry. 

2012;287(50):42333-42343

Vitamin B1 (Thiamine) Metabolism and Regulation in Archaea
http://dx.doi.org/10.5772/intechopen.77170

23



[46] Wightman R, Meacock PA. The THI5 gene family of Saccharomyces cerevisiae: Distribution 

of homologues among the hemiascomycetes and functional redundancy in the aerobic 

biosynthesis of thiamine from pyridoxine. Microbiology. 2003;149(Pt 6):1447-1460

[47] Bale S, Rajashankar KR, Perry K, Begley TP, Ealick SE. HMP binding protein ThiY and 

HMP-P synthase THI5 are structural homologues. Biochemistry. 2010;49(41):8929-8936

[48] Rodionova IA, Li X, Plymale AE, Motamedchaboki K, Konopka AE, Romine MF, et al. 

Genomic distribution of B-vitamin auxotrophy and uptake transporters in environmental 

bacteria from the Chloroflexi phylum. Environmental Microbiology Reports. 2015;7(2):204-210

[49] Mizote T, Tsuda M, Smith DD, Nakayama H, Nakazawa T. Cloning and character-

ization of the thiD/J gene of Escherichia coli encoding a thiamine-synthesizing bifunc-

tional enzyme, hydroxymethylpyrimidine kinase/phosphomethylpyrimidine kinase. 

Microbiology. 1999;145(Pt 2):495-501

[50] Reddick JJ, Kinsland C, Nicewonger R, Christian T, Downs DM, Winkler ME, et al. 

Overexpression, purification and characterization of two pyrimidine kinases involved in the 
biosynthesis of thiamine: 4-amino-5-hydroxymethyl-2-methylpyrimidine kinase and 4-amino-

5-hydroxymethyl-2-methylpyrimidine phosphate kinase. Tetrahedron. 1998;54:15983-15991

[51] Kawasaki Y, Onozuka M, Mizote T, Nosaka K. Biosynthesis of hydroxymethylpyrimi-

dine pyrophosphate in Saccharomyces cerevisiae. Current Genetics. 2005;47(3):156-162

[52] Thamm AM, Li G, Taja-Moreno M, Gerdes SY, de Crecy-Lagard V, Bruner SD, et al. A 

strictly monofunctional bacterial hydroxymethylpyrimidine phosphate kinase precludes 

damaging errors in thiamine biosynthesis. Biochemical Journal. 2017;474:2887-2895

[53] Hayashi M, Kobayashi K, Esaki H, Konno H, Akaji K, Tazuya K, et al. Enzymatic and 

structural characterization of an archaeal thiamine phosphate synthase. Biochimica et 

Biophysica Acta. 2014;1844(4):803-809

[54] Morett E, Korbel JO, Rajan E, Saab-Rincon G, Olvera L, Olvera M, et al. Systematic discovery 
of analogous enzymes in thiamine biosynthesis. Nature Biotechnology. 2003;21(7):790-795

[55] Chatterjee A, Abeydeera ND, Bale S, Pai PJ, Dorrestein PC, Russell DH, et al. Saccharomyces 
cerevisiae THI4p is a suicide thiamine thiazole synthase. Nature. 2011;478(7370):542-546

[56] Eser BE, Zhang X, Chanani PK, Begley TP, Ealick SE. From suicide enzyme to catalyst: 

The iron-dependent sulfide transfer in Methanococcus jannaschii thiamine thiazole bio-

synthesis. Journal of the American Chemical Society. 2016;138(11):3639-3642

[57] Hwang S, Cordova B, Chavarria N, Elbanna D, McHugh S, Rojas J, et al. Conserved 

active site cysteine residue of archaeal THI4 homolog is essential for thiamine biosyn-

thesis in Haloferax volcanii. BMC Microbiology. 2014;14:260

[58] Park JH, Dorrestein PC, Zhai H, Kinsland C, McLafferty FW, Begley TP. Biosynthesis of 
the thiazole moiety of thiamine pyrophosphate (vitamin B1). Biochemistry. 2003;42(42): 

12430-12438

[59] Dorrestein PC, Zhai H, Taylor SV, McLafferty FW, Begley TP. The biosynthesis of the 
thiazole phosphate moiety of thiamine (vitamin B1): The early steps catalyzed by thia-

zole synthase. Journal of the American Chemical Society. 2004;126(10):3091-3096

B Group Vitamins - Current Uses and Perspectives24



[60] Dorrestein PC, Zhai H, McLafferty FW, Begley TP. The biosynthesis of the thiazole phos-

phate moiety of thiamine: The sulfur transfer mediated by the sulfur carrier protein 

ThiS. Chemistry & Biology. 2004;11(10):1373-1381

[61] Zhang J, Zhang B, Zhao Y, Yang X, Huang M, Cui P, et al. Snapshots of catalysis: Structure 

of covalently bound substrate trapped in Mycobacterium tuberculosis thiazole synthase 

(ThiG). Biochemical and Biophysical Research Communications. 2018;497(1):214-219

[62] Settembre EC, Dorrestein PC, Park JH, Augustine AM, Begley TP, Ealick SE. Structural 
and mechanistic studies on ThiO, a glycine oxidase essential for thiamine biosynthesis 

in Bacillus subtilis. Biochemistry. 2003;42(10):2971-2981

[63] Nishiya Y, Imanaka T. Purification and characterization of a novel glycine oxidase from 
Bacillus subtilis. FEBS Letters. 1998;438(3):263-266

[64] Job V, Marcone GL, Pilone MS, Pollegioni L. Glycine oxidase from Bacillus subti-
lis. Characterization of a new flavoprotein. The Journal of Biological Chemistry. 
2002;277(9):6985-6993

[65] Pedotti M, Rosini E, Molla G, Moschetti T, Savino C, Vallone B, et al. Glyphosate 
resistance by engineering the flavoenzyme glycine oxidase. The Journal of Biological 
Chemistry. 2009;284(52):36415-36423

[66] Kriek M, Martins F, Leonardi R, Fairhurst SA, Lowe DJ, Roach PL. Thiazole synthase 

from Escherichia coli: An investigation of the substrates and purified proteins required for 
activity in vitro. The Journal of Biological Chemistry. 2007;282(24):17413-17423

[67] Challand MR, Martins FT, Roach PL. Catalytic activity of the anaerobic tyrosine lyase 

required for thiamine biosynthesis in Escherichia coli. The Journal of Biological Chemistry. 

2010;285(8):5240-5248

[68] Kriek M, Martins F, Challand MR, Croft A, Roach PL. Thiamine biosynthesis in 

Escherichia coli: Identification of the intermediate and by-product derived from tyrosine. 
Angewandte Chemie (International Ed. in English). 2007;46(48):9223-9226

[69] Sprenger GA, Schorken U, Wiegert T, Grolle S, de Graaf AA, Taylor SV, et al. Identification of 
a thiamine-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-

D-xylulose 5-phosphate precursor to isoprenoids, thiamine, and pyridoxol. Proceedings of 

the National Academy of Sciences of the United States of America. 1997;94(24):12857-12862

[70] Lois LM, Campos N, Putra SR, Danielsen K, Rohmer M, Boronat A. Cloning and character-

ization of a gene from Escherichia coli encoding a transketolase-like enzyme that catalyzes the 

synthesis of D-1-deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamine, 

and pyridoxol biosynthesis. Proceedings of the National Academy of Sciences of the United 

States of America. 1998;95(5):2105-2110

[71] Lauhon CT, Kambampati R. The iscS gene in Escherichia coli is required for the bio-

synthesis of 4-thiouridine, thiamine, and NAD. The Journal of Biological Chemistry. 

2000;275(26):20096-20103

[72] Flint DH. Escherichia coli contains a protein that is homologous in function and 

N-terminal sequence to the protein encoded by the nifS gene of Azotobacter vinelandii and 

Vitamin B1 (Thiamine) Metabolism and Regulation in Archaea
http://dx.doi.org/10.5772/intechopen.77170

25



that can participate in the synthesis of the Fe-S cluster of dihydroxy-acid dehydratase. 
The Journal of Biological Chemistry. 1996;271(27):16068-16074

[73] Xi J, Ge Y, Kinsland C, McLafferty FW, Begley TP. Biosynthesis of the thiazole moiety 
of thiamine in Escherichia coli: Identification of an acyldisulfide-linked protein–protein 
conjugate that is functionally analogous to the ubiquitin/E1 complex. Proceedings of the 
National Academy of Sciences of the United States of America. 2001;98(15):8513-8518

[74] Mueller EG, Palenchar PM, Buck CJ. The role of the cysteine residues of ThiI in the genera-
tion of 4-thiouridine in tRNA. The Journal of Biological Chemistry. 2001;276(36):33588-33595

[75] Martinez-Gomez NC, Palmer LD, Vivas E, Roach PL, Downs DM. The rhodanese domain 
of ThiI is both necessary and sufficient for synthesis of the thiazole moiety of thiamine in 
Salmonella enterica. Journal of Bacteriology. 2011;193(18):4582-4587

[76] Kambampati R, Lauhon CT. Evidence for the transfer of sulfane sulfur from IscS to ThiI 
during the in vitro biosynthesis of 4-thiouridine in Escherichia coli tRNA. The Journal of 
Biological Chemistry. 2000;275(15):10727-10730

[77] Finn MW, Tabita FR. Modified pathway to synthesize ribulose 1,5-bisphosphate in meth-
anogenic archaea. Journal of Bacteriology. 2004;186(19):6360-6366

[78] Sato T, Atomi H, Imanaka T. Archaeal type III RuBisCOs function in a pathway for AMP 
metabolism. Science. 2007;315(5814):1003-1006

[79] Gogoi P, Kanaujia SP. A presumed homologue of the regulatory subunits of eIF2B 
functions as ribose-1,5-bisphosphate isomerase in Pyrococcus horikoshii OT3. Scientific 
Reports. 2018;8(1):1891

[80] Zhang X, Eser BE, Chanani PK, Begley TP, Ealick SE. Structural basis for iron-mediated sul-
fur transfer in archael and yeast thiazole synthases. Biochemistry. 2016;55(12):1826-1838

[81] Godoi PH, Galhardo RS, Luche DD, Van Sluys MA, Menck CF, Oliva G. Structure of the 
thiazole biosynthetic enzyme THI1 from Arabidopsis thaliana. The Journal of Biological 
Chemistry 2006;281(41):30957-30966

[82] Backstrom AD, McMordie RAS, Begley TP. Biosynthesis of thiamine I: The function of 
the thiE gene product. Journal of the American Chemical Society. 1995;117(8):2351-2352

[83] Chiu HJ, Reddick JJ, Begley TP, Ealick SE. Crystal structure of thiamine phosphate syn-
thase from Bacillus subtilis at 1.25 Å resolution. Biochemistry. 1999;38(20):6460-6470

[84] Suk Kim Y, Nosaka K, Downs DM, Myoung Kwak J, Park D, Kyung Chung I, et al. 
A Brassica cDNA clone encoding a bifunctional hydroxymethylpyrimidine kinase/thia-
mine-phosphate pyrophosphorylase involved in thiamine biosynthesis. Plant Molecular 
Biology. 1998;37(6):955-966

[85] Paul D, Chatterjee A, Begley TP, Ealick SE. Domain organization in Candida glabrata THI6, 
a bifunctional enzyme required for thiamine biosynthesis in eukaryotes. Biochemistry. 
2010;49(45):9922-9934

[86] Webb E, Downs D. Characterization of thiL, encoding thiamine-monophosphate kinase, 
in Salmonella typhimurium. The Journal of Biological Chemistry. 1997;272(25):15702-15707

B Group Vitamins - Current Uses and Perspectives26



[87] Hayashi M, Nosaka K. Characterization of thiamine phosphate kinase in the hyper-

thermophilic archaeon Pyrobaculum calidifontis. Journal of Nutritional Science and 

Vitaminology (Tokyo). 2015;61(5):369-374

[88] Voskoboyev AI, Ostrovsky YM. Thiamine pyrophosphokinase: Structure, proper-

ties, and role in thiamine metabolism. Annals of the New York Academy of Sciences. 

1982;378:161-176

[89] Nosaka K, Kaneko Y, Nishimura H, Iwashima A. Isolation and characterization of a 

thiamine pyrophosphokinase gene, THI80, from Saccharomyces cerevisiae. The Journal of 

Biological Chemistry. 1993;268(23):17440-17447

[90] Fankhauser H, Zurlinden A, Schweingruber AM, Edenharter E, Schweingruber ME. 

Schizosaccharomyces pombe thiamine pyrophosphokinase is encoded by gene tnr3 and is 

a regulator of thiamine metabolism, phosphate metabolism, mating, and growth. The 

Journal of Biological Chemistry. 1995;270(47):28457-28462

[91] Nosaka K, Onozuka M, Nishino H, Nishimura H, Kawasaki Y, Ueyama H. Molecular 

cloning and expression of a mouse thiamine pyrophosphokinase cDNA. The Journal of 

Biological Chemistry. 1999;274(48):34129-34133

[92] Mimura M, Zallot R, Niehaus TD, Hasnain G, Gidda SK, Nguyen TN, et al. Arabidopsis 

TH2 encodes the orphan enzyme thiamine monophosphate phosphatase. The Plant Cell. 

2016;28(10):2683-2696

[93] Melnick J, Lis E, Park JH, Kinsland C, Mori H, Baba T, et al. Identification of the two 
missing bacterial genes involved in thiamine salvage: Thiamine pyrophosphokinase and 

thiamine kinase. Journal of Bacteriology. 2004;186(11):3660-3662

[94] Jenkins AH, Schyns G, Potot S, Sun G, Begley TP. A new thiamine salvage pathway. 

Nature Chemical Biology. 2007;3(8):492-497

[95] Majsnerowska M, Ter Beek J, Stanek WK, Duurkens RH, Slotboom DJ. Competition 

between different S-components for the shared energy coupling factor module in energy 
coupling factor transporters. Biochemistry 2015;54(31):4763-4766

[96] Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS. Comparative genomics of thi-

amine biosynthesis in procaryotes. New genes and regulatory mechanisms. The Journal 

of Biological Chemistry. 2002;277(50):48949-48959

[97] Webb E, Claas K, Downs D. thiBPQ encodes an ABC transporter required for trans-

port of thiamine and thiamine pyrophosphate in Salmonella typhimurium. The Journal 

of Biological Chemistry. 1998;273(15):8946-8950

[98] Dermoun Z, Foulon A, Miller MD, Harrington DJ, Deacon AM, Sebban-Kreuzer C, 

et al. TM0486 from the hyperthermophilic anaerobe Thermotoga maritima is a thiamine-

binding protein involved in response of the cell to oxidative conditions. Journal of 

Molecular Biology. 2010;400(3):463-476

[99] Rodionov DA, Hebbeln P, Eudes A, ter Beek J, Rodionova IA, Erkens GB, et al. A novel 

class of modular transporters for vitamins in prokaryotes. Journal of Bacteriology. 

2009;191(1):42-51

Vitamin B1 (Thiamine) Metabolism and Regulation in Archaea
http://dx.doi.org/10.5772/intechopen.77170

27



[100] Jeanguenin L, Lara-Nunez A, Rodionov DA, Osterman AL, Komarova NY, Rentsch 

D, et al. Comparative genomics and functional analysis of the NiaP family uncover 

nicotinate transporters from bacteria, plants, and mammals. Functional & Integrative 

Genomics. 2012;12(1):25-34

[101] Zhang XC, Zhao Y, Heng J, Jiang D. Energy coupling mechanisms of MFS transporters. 

Protein Science. 2015;24(10):1560-1579

[102] Genee HJ, Bali AP, Petersen SD, Siedler S, Bonde MT, Gronenberg LS, et al. Functional 

mining of transporters using synthetic selections. Nature Chemical Biology. 2016;12(12): 

1015-1022

[103] Jaehme M, Singh R, Garaeva AA, Duurkens RH, Slotboom DJ. PnuT uses a facilitated diffu-

sion mechanism for thiamine uptake. The Journal of General Physiology. 2018;150(1):41-50

[104] ter Beek J, Duurkens RH, Erkens GB, Slotboom DJ. Quaternary structure and func-

tional unit of energy coupling factor (ECF)-type transporters. The Journal of Biological 

Chemistry 2011;286(7):5471-5475

[105] Hollenbach AD, Dickson KA, Washabaugh MW. Overexpression, purification, and 
characterization of the periplasmic space thiamine-binding protein of the thiamine traf-

fic ATPase in Escherichia coli. Protein Expression and Purification. 2002;25(3):508-518

[106] Soriano EV, Rajashankar KR, Hanes JW, Bale S, Begley TP, Ealick SE. Structural simi-

larities between thiamine-binding protein and thiaminase-I suggest a common ances-

tor. Biochemistry. 2008;47(5):1346-1357

[107] Jurgenson CT, Begley TP, Ealick SE. The structural and biochemical foundations of 

thiamine biosynthesis. Annual Review of Biochemistry. 2009;78:569-603

[108] Rodionov DA, Leyn SA, Li X, Rodionova IA. A novel transcriptional regulator related 

to thiamine phosphate synthase controls thiamine metabolism genes in Archaea. Journal 

of Bacteriology. 2017;199(4)

[109] Tani Y, Kimura K, Mihara H. Purification and properties of 4-methyl-5-hydroxyethyl-
thiazole kinase from Escherichia coli. Bioscience, Biotechnology, and Biochemistry. 

2016;80(3):514-517

[110] Zhang Y, Taylor SV, Chiu HJ, Begley TP. Characterization of the Bacillus subtilis thiC 

operon involved in thiamine biosynthesis. Journal of Bacteriology. 1997;179(9):3030-3035

[111] Mizote T, Nakayama H. The thiM locus and its relation to phosphorylation of hydroxy-

ethylthiazole in Escherichia coli. Journal of Bacteriology. 1989;171(6):3228-3232

[112] Wrenger C, Eschbach ML, Muller IB, Laun NP, Begley TP, Walter RD. Vitamin B1 de 

novo synthesis in the human malaria parasite Plasmodium falciparum depends on exter-

nal provision of 4-amino-5-hydroxymethyl-2-methylpyrimidine. Biological Chemistry. 

2006;387(1):41-51

[113] Yazdani M, Zallot R, Tunc-Ozdemir M, de Crécy-Lagard V, Shintani DK, Hanson 

AD. Identification of the thiamine salvage enzyme thiazole kinase in Arabidopsis and 

maize. Phytochemistry. 2013;94:68-73

B Group Vitamins - Current Uses and Perspectives28



[114] Drebes J, Kunz M, Windshugel B, Kikhney AG, Muller IB, Eberle RJ, et al. Structure of 

ThiM from vitamin B1 biosynthetic pathway of Staphylococcus aureus - insights into a 

novel pro-drug approach addressing MRSA infections. Scientific Reports. 2016;6:22871

[115] Zallot R, Yazdani M, Goyer A, Ziemak MJ, Guan JC, McCarty DR, et al. Salvage of the 

thiamine pyrimidine moiety by plant TenA proteins lacking an active-site cysteine. The 

Biochemical Journal. 2014;463(1):145-155

[116] Müller IB, Bergmann B, Groves MR, Couto I, Amaral L, Begley TP, et al. The vitamin 

B1 metabolism of Staphylococcus aureus is controlled at enzymatic and transcriptional 

levels. PLoS One. 2009;4(11):e7656

[117] Costello CA, Kelleher NL, Abe M, McLafferty FW, Begley TP. Mechanistic studies 
on thiaminase I. Overexpression and identification of the active site nucleophile. The 
Journal of Biological Chemistry. 1996;271(7):3445-3452

[118] Cooper LE, O'Leary SE, Begley TP. Biosynthesis of a thiamine antivitamin in Clostridium 
botulinum. Biochemistry. 2014;53(14):2215-2217

[119] Miranda-Ríos J, Navarro M, Soberón M. A conserved RNA structure (thi box) is involved 

in regulation of thiamine biosynthetic gene expression in bacteria. Proceedings of the 

National Academy of Sciences of the United States of America. 2001;98(17):9736-9741

[120] Winkler W, Nahvi A, Breaker RR. Thiamine derivatives bind messenger RNAs directly 

to regulate bacterial gene expression. Nature. 2002;419(6910):952-956

[121] Serganov A, Polonskaia A, Phan AT, Breaker RR, Patel DJ. Structural basis for gene regula-

tion by a thiamine pyrophosphate-sensing riboswitch. Nature. 2006;441(7097):1167-1171

[122] Thore S, Leibundgut M, Ban N. Structure of the eukaryotic thiamine pyrophosphate 

riboswitch with its regulatory ligand. Science. 2006;312(5777):1208-1211

[123] Cheah MT, Wachter A, Sudarsan N, Breaker RR. Control of alternative RNA splicing 

and gene expression by eukaryotic riboswitches. Nature. 2007;447(7143):497-500

[124] Wachter A, Tunc-Ozdemir M, Grove BC, Green PJ, Shintani DK, Breaker RR. Riboswitch 

control of gene expression in plants by splicing and alternative 3′ end processing of 
mRNAs. The Plant Cell. 2007;19(11):3437-3450

[125] Croft MT, Moulin M, Webb ME, Smith AG. Thiamine biosynthesis in algae is regulated 

by riboswitches. Proceedings of the National Academy of Sciences of the United States 

of America. 2007;104(52):20770-20775

[126] Garst AD, Batey RT. A switch in time: Detailing the life of a riboswitch. Biochimica et 

Biophysica Acta. 2009;1789(9-10):584-591

[127] Bocobza SE, Aharoni A. Small molecules that interact with RNA: Riboswitch-based 

gene control and its involvement in metabolic regulation in plants and algae. The Plant 

Journal. 2014;79(4):693-703

[128] Bocobza S, Adato A, Mandel T, Shapira M, Nudler E, Aharoni A. Riboswitch-dependent 

gene regulation and its evolution in the plant kingdom. Genes & Development. 

2007;21(22):2874-2879

Vitamin B1 (Thiamine) Metabolism and Regulation in Archaea
http://dx.doi.org/10.5772/intechopen.77170

29



[129] Kubodera T, Watanabe M, Yoshiuchi K, Yamashita N, Nishimura A, Nakai S, et al. 

Thiamine-regulated gene expression of Aspergillus oryzae thiA requires splicing of the 

intron containing a riboswitch-like domain in the 5'-UTR. FEBS Letters. 2003;555(3):516-520

[130] Moulin M, Nguyen GT, Scaife MA, Smith AG, Fitzpatrick TB. Analysis of Chlamydomonas 

thiamine metabolism in vivo reveals riboswitch plasticity. Proceedings of the National 

Academy of Sciences of the United States of America. 2013;110(36):14622-14627

[131] Hohmann S, Meacock PA. Thiamine metabolism and thiamine diphosphate- dependent 

enzymes in the yeast Saccharomyces cerevisiae: Genetic regulation. Biochimica et Bio-

physica Acta. 1998;1385(2):201-219

[132] Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, et al. 

Transcriptional regulatory code of a eukaryotic genome. Nature. 2004;431(7004):99-104

[133] Nosaka K, Esaki H, Onozuka M, Konno H, Hattori Y, Akaji K. Facilitated recruitment 
of Pdc2p, a yeast transcriptional activator, in response to thiamine starvation. FEMS 

Microbiology Letters. 2012;330(2):140-147

[134] Nosaka K, Onozuka M, Konno H, Kawasaki Y, Nishimura H, Sano M, et al. Genetic 

regulation mediated by thiamine pyrophosphate-binding motif in Saccharomyces cerevi-
siae. Molecular Microbiology. 2005;58(2):467-479

[135] Nosaka K, Onozuka M, Konno H, Akaji K. Thiamine-dependent transactivation activity 

of PDC2 in Saccharomyces cerevisiae. FEBS Letters. 2008;582(29):3991-3996

[136] Nosaka K. Recent progress in understanding thiamine biosynthesis and its genetic regula-

tion in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology. 2006;72(1):30-40

[137] Liu D, Ke Z, Luo J. Thiamine deficiency and neurodegeneration: The interplay among 
oxidative stress, endoplasmic reticulum stress, and autophagy. Molecular Neurobiology. 

2017;54(7):5440-5448

[138] Revuelta JL, Buey RM, Ledesma-Amaro R, Vandamme EJ. Microbial biotechnology for 

the synthesis of (pro)vitamins, biopigments and antioxidants: Challenges and opportu-

nities. Microbial Biotechnology. 2016;9(5):564-567

[139] Wolak N, Zawrotniak M, Gogol M, Kozik A, Rapala-Kozik M. Vitamins B1, B2, B3 

and B9–Occurrence, biosynthesis pathways and functions in human nutrition. Mini 

Reviews in Medicinal Chemistry. 2017;17(12):1075-1111

[140] LeBlanc JG, Chain F, Martin R, Bermudez-Humaran LG, Courau S, Langella P. Beneficial 
effects on host energy metabolism of short-chain fatty acids and vitamins produced by 
commensal and probiotic bacteria. Microbial Cell Factories. 2017;16(1):79

[141] Tylicki A, Lotowski Z, Siemieniuk M, Ratkiewicz A. Thiamine and selected thia-

mine antivitamins–biological activity and methods of synthesis. Bioscience Reports. 

2018;38(1):BSR20171148

[142] Lu'o'ng KV, Nguyen LT. The role of thiamine in cancer: Possible genetic and cellular 

signaling mechanisms. Cancer Genomics & Proteomics. 2013;10(4):169-185

B Group Vitamins - Current Uses and Perspectives30



[143] Chhabria MT, Patel S, Modi P, Brahmkshatriya PS. Thiazole: A review on chemistry, 

synthesis and therapeutic importance of its derivatives. Current Topics in Medicinal 

Chemistry. 2016;16(26):2841-2862

[144] Rouf A, Tanyeli C. Bioactive thiazole and benzothiazole derivatives. European Journal 

of Medicinal Chemistry. 2015;97:911-927

[145] Nazemi L, Kordbacheh P, Daei Ghazvini R, Moazeni M, Akbari Dana M, Rezaie 

S. Effects of thiamine on growth, aflatoxin production, and aflr gene expression in A. 

parasiticus. Current Medical Mycology. 2015;1(1):26-34

[146] Boubakri H, Gargouri M, Mliki A, Brini F, Chong J, Jbara M. Vitamins for enhancing 

plant resistance. Planta. 2016;244(3):529-543

[147] Lunse CE, Scott FJ, Suckling CJ, Mayer G. Novel TPP-riboswitch activators bypass met-
abolic enzyme dependency. Frontiers in Chemistry. 2014;2:53

[148] Lu T, Li X, Gu L, Zhang Y. Vitamin B1-catalyzed acetoin formation from acetalde-

hyde: A key step for upgrading bioethanol to bulk C(4) chemicals. ChemSusChem. 

2014;7(9):2423-2426

[149] Resch V, Schrittwieser JH, Siirola E, Kroutil W. Novel carbon-carbon bond formations 
for biocatalysis. Current Opinion in Biotechnology. 2011;22(6):793-799

[150] Muller M, Gocke D, Pohl M. Thiamin diphosphate in biological chemistry: Exploitation 

of diverse thiamin diphosphate-dependent enzymes for asymmetric chemoenzymatic 

synthesis. The FEBS Journal. 2009;276(11):2894-2904

[151] Pohl M, Lingen B, Muller M. Thiamine-diphosphate-dependent enzymes: New aspects 

of asymmetric C-C bond formation. Chemistry. 2002;8(23):5288-5295

[152] Carini P, Campbell EO, Morre J, Sanudo-Wilhelmy SA, Thrash JC, Bennett SE, et al. 
Discovery of a SAR11 growth requirement for thiamin's pyrimidine precursor and its 

distribution in the Sargasso Sea. The ISME Journal. 2014;8(8):1727-1738

[153] Leigh JA, Albers SV, Atomi H, Allers T. Model organisms for genetics in the domain 

Archaea: Methanogens, halophiles, Thermococcales and Sulfolobales. FEMS Microbiology 

Reviews. 2011;35(4):577-608

[154] Kaczowka SJ, Reuter CJ, Talarico LA, Maupin-Furlow JA. Recombinant production 

of Zymomonas mobilis pyruvate decarboxylase in the haloarchaeon Haloferax volcanii. 
Archaea. 2005;1(5):327-334

[155] Goyer A, Hasnain G, Frelin O, Ralat MA, Gregory JF 3rd, Hanson AD. A cross- kingdom 

Nudix enzyme that pre-empts damage in thiamine metabolism. The Biochemical Journal. 

2013;454(3):533-542

Vitamin B1 (Thiamine) Metabolism and Regulation in Archaea
http://dx.doi.org/10.5772/intechopen.77170

31




