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Abstract 
 
 

Climate change is one of the greatest threats towards humankind and 
wildlife. This consciousness motivated the search for alternatives that could 
contribute to mitigate climate change. Betting on renewable energies 
seems to be a winning strategy adopted worldwide in order to reduce 
greenhouse gas emissions responsible for global climate alterations and to 
improve nations’ energy independency. However, nowadays, these energy 
usages still have negative impacts, mostly on wildlife. Wind energy is even 
considered the greatest unintended human impact on avifauna. In this 
context, the aim of this thesis was to increase the knowledge about wind 
farms impacts on avifauna, which variables influence birds’ fatalities by 
collision with wind turbines and birds’ vulnerability. Models based on 
excessive zero counts were tested to understand which variables influence 
birds’ fatalities assessed on 25 Portuguese wind farms. This allowed to 
estimate the probability of mortality observation per species. The 
information obtained was used to build the fatality risk index that also 
considered the vulnerability factors, which give information of species 
conservation concern and resilience. Those indexes allow to prioritise the 
existing and limited conservation efforts on more vulnerable species. 
Models and indexes are also important for improving knowledge about wind 
energy impacts on wildlife and what can lead to reduce them, in order to 
achieve a sustainable and greener future. 
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Resumo 
 
 

As alterações climáticas são uma das maiores ameaças para a 
Humanidade e para a vida selvagem. A consciência sobre a importância 
destas questões motivou a procura de alternativas, com intuito de mitigar 
estas alterações globais, causadas nomeadamente pelos gases de efeitos 
de estufa. Assim, as energias renováveis apresentam-se como uma 
possível estratégia vencedora a adotar, de forma a reduzir as emissões 
destes gases e levar à independência energética. No entanto, o uso destas 
energias renováveis ainda apresenta impactes negativos, especialmente 
para os ecossistemas. A energia eólica é inclusivamente considerada uma 
das maiores causas não intencionais de origem antropogénica para a 
mortalidade adicional de aves. Neste contexto, esta dissertação tem como 
os principais objetivos o desenvolvimento do conhecimento relativo aos 
impactes da energia eólica, quais as variáveis que influenciam a 
mortalidade de aves respeitante à colisão com as turbinas eólicas assim 
como as variáveis que afetam a vulnerabilidade das espécies. Foram 
testados modelos de contagem com excesso de zeros para compreender a 
influência das variáveis nas observações de mortalidade em 25 parques 
eólicos portugueses. A partir destes modelos foi possível estimar a 
probabilidade de observação de mortalidade para cada uma das espécies 
estudadas, provocada por colisão com eólicas. Esta informação foi ainda 
utilizada de forma a desenvolver um índice de risco de fatalidade com base 
nestas estimativas, assim como em fatores elucidativos da vulnerabilidade 
das espécies, nomeadamente o seu estatuto de conservação e resiliência. 
Desta forma é então possível direcionar esforços e recursos para a 
preservação das espécies com maior vulnerabilidade e prioridade de 
conservação. Este tipo de modelos e índices é ainda fundamental para 
incrementar o conhecimento sobre os impactes da energia eólica na vida 
selvagem e para compreender quais as medidas que podem ser tomadas 
para os reduzir e, assim, garantir um futuro mais verde e sustentável para 
todas as formas de vida. 
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THESIS OUTLINE 

The anthropogenic impacts on the environment led to serious climate changes. The 

nations are progressively aware of the risks and threats that this issue entailed to Humanity and 

wildlife. Climate change mitigation measures are being defined as well as strategies are being 

tested and implemented, in order to achieve those goals. 

Renewable energies, such as wind energy, are unavoidable strategies on mitigation plans 

proposed by the nations. However, the adoption of this “clean energy” may also present negative 

impact outcomes on the environment, especially on avifauna. 

Hence, the fundamental motivations for this thesis are: 1) the awareness about the 

importance of wind energy in climate change mitigation; 2) the negative impacts of wind farms on 

avifauna; and 3) the development of methods that help to reduce them. 

This study is divided in three chapters. Chapter 1 is the general background about these 

topics. In this chapter a brief introduction about climate change and consequent commitment to 

renewable energies is given as well as a brief overview about wind energy. A general overview 

about wind energy, impacts on avifauna and a brief presentation on the key concepts inherent to 

the statistical analysis used on Chapter 2 are also presented. 

Chapter 2 presents an article in development about the creation of an Iberian Birds’ Fatality 

Risk Index. The aim of this chapter is to increase the understanding of which ecological factors 

influence birds’ proneness to collide with wind turbines. To achieve this goal, a statistical model 

based on excessive zero counts was used. The Index was then established to understand which 

species are more vulnerable to this impact and which justify a higher conservation effort. 

Chapter 3 presents the final remarks about the general impacts of wind farms on birds, 

presenting some possible mitigation measures and some future development prospects. 
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CHAPTER 1. GENERAL BACKGROUND 

1.1 Climate Change and Mitigation Targets 

Since the industrial revolution, economic growth has implied a great consumption of natural 

resources, which has led to environmental alterations and shortage of resources. Global warming 

is one of the consequences of the fast process of industrialization (DGEG 2014).  

Nowadays, global climate change represents a great challenge to humankind and a great 

environmental, social and economic threat (APA 2014). Climate change is a serious concern not 

only to humanity but also to wildlife. These changes can significantly aggravate other global 

problems, for example world hunger or lack of resources and extreme weather phenomena could 

become more frequent and intense (Bright et al. 2009).  

Greenhouse Gas Emissions (GGE) are the main and most recognized anthropogenic 

cause for climate change (Huntley et al. 2006; Drewitt & Langston 2006). Thanks to international 

protocols such as the United Nations Framework Convention on Climate Change, signed in 1992, 

and the Kyoto Protocol, adopted in 1997, worldwide governments are implementing measures to 

reduce the increase of global temperature and GGE emissions (Amaral 2009; APA 2014).  

Adaptation and mitigation are the key strategic guidelines to deal with climate change. For 

example, GGE emissions reduction are defined as mitigation measures and approaches that 

ambition to reduce the negative impacts already evident are defined as adaptive measures  

(APA 2014). 

As an alternative to decrease the use of fossil fuels stocks and as a measure to reduce 

GGE emissions of the energy sector, the adoption of renewable energy sources is growing  

(Amaral 2009; GWEC 2014). This strategy is essential to achieve the International Community 

goals of GGE reduction and the increase in global mean temperature remains below 2°C. The 

failure to meet these targets may result in serious problems to mankind which may not be able to 

cope with them (GWEC 2014).  

Aware of these issues, the European Union (EU) established a goal of 20% reduction in 

GGE by 2020 compared to 1990 (APA 2014; EWEA 2014). For 2030, EU member states 

established a target of 40% of GGE reduction compared to 1990, aligned with a growing 

representation of renewable energy penetration (GWEC 2014). 

Political alignment, both local and international, is essential to put into practice effective 

solutions to cope with this issue (APA 2014). The governments concerned with climate changes 

also contributed to growing investment on renewable technologies (Langston & Pullan 2003; 

Chamberlain et al. 2005). Wind energy is not an exception and is an unavoidable topic in climate 

change mitigation policies (Wiser et al. 2011; EWEA 2014; GWEC 2014). This source of energy is 

already close to 4% of the global electricity demand (WWEA 2014). As mentioned by the European 

Wind Energy Association, an average of 696 g CO2/kWh is created by the traditional energy sector 

and it could be significantly avoided by wind energy production (EWEA 2014).  
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1.2 Wind Energy 

Nowadays, the kinetic energy of air masses movements (wind) is used to produce 

mechanical energy that can be transformed in electricity (ENEOP 2014). 

Humankind has been using wind energy in a wide variety of applications since 5000 B.C. 

By that time, sailing vessels in Egypt were pioneers in the application of this technology. By  

200 B.C windmills were used in China to pump water and, in Persia and Middle East, to grind grain. 

Technological advances allowed the evolution of these applications as well as the finding and 

improvement of new usages (Wiser et al. 2011; WEF 2014).  

Only in the 1970’s, at a marketable scale, the generation of electricity produced through 

wind power was possible due to governmental support, technological advances and motivated by 

oil shortages (Wiser et al. 2011; WEF 2014). Currently, this source of energy has been showing a 

fast worldwide development (Figure 1) (Wiser et al. 2011; Saidur et al. 2011). 

Since it depends on wind availability and speed, the location of the wind farms is very 

important. Turbine technological development is also important to guarantee an  efficient  energy 

production on a wide range of wind speeds (Wiser et al. 2011). Currently, wind turbines have 2 or 3 

MW of production capacity rates, which that can fulfil the electricity needs of approximately 2000 to 

3000 homes. The height of these wind turbines can reach 50 m to 120 m and the rotor blades may 

have 25 m to 45 m of wide (ENEOP 2014). To minimize wind energy cost and maximize energy 

capture, the design of the wind turbine has been upgraded and its size is significantly growing.  

This allows a greater energy capture by lowing necessary wind speeds to produce power (Wiser et 

al. 2011). 

Wind energy projects present a high initial cost in infrastructures installation, however in a 

long term scenario, winds farms present low maintenance and other associated costs. Besides, 

wind power is considered a cheap energy source compared to fossil fuels and it also present a 

great potential to reduce investments costs in the future (Wiser et al. 2011; ENEOP 2014). This 

alternative energy also presents other social and economic advantages. This type of energy 

exploitation generates employments in rural areas, promoting economy decentralization. 

Figure 1. Cumulative wind capacity installed in the world between 1996 and 2013. Source: GWEC 2014 
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Compared to other sources, this generates the highest number of jobs per MW (ENEOP 2014). 

Wind power entails the lowest levels of greenhouse gas emissions of all the energy sources. 

Compared to the traditional sources, wind energy present other advantages, such as reduced  

environmental pollution, by not producing toxic emissions, and does not entail water consumption 

(Saidur et al. 2011; ENEOP 2014). That is why wind power is considered the energy with lowest 

direct impacts on the environment (ENEOP 2014).  

In 2013, it was reported by the World Wind Energy Association (WWEA) that wind energy 

capacity reached 318 529 MW worldwide, after reaching 282 275 MW in 2012. In 2013, the growth 

of installed capacity of this wind source has slightly decreased, since 2008, representing a rate of 

only 12.8% (Figure 2) (WWEA 2014). However, this energy source still is the global fastest growing 

source of electricity production (WEF 2014). The WWEA predicts that more than 700 000MW of 

wind energy capacity will be reached in 2020. 

 

 

Currently, the five nations with higher cumulative installed wind capacity are China  

(91 412 MW), the United States of America (61 091 MW), Germany (34 250 MW), Spain  

(22 959 MW) and India (20 150 MW) (GWEC 2014). Portugal presents more than 4 000 MW of 

installed wind energy capacity (4% of all installed capacity on the European Union). This 

percentage places Portugal on the top 10 countries of EU with more cumulative installed capacity 

(Figure 3) (EWEA 2014).  

In 2010, 14% of the energy production in Spain came from renewable energy sources. The 

commitment of this country to achieve energetic European goals is clear and that is reflected on 

the increasing number of wind farms across the country in the last few years (de Lucas et al. 2012). 

In 2013, Spain reached 22 900 MW of cumulative capacity generated by wind energy. In these 

terms, this Iberian country is the second largest market in the European Union (GWEC 2014).  

 

 

Figure 2. Annual wind capacity installed in the world since 1996 until 2013. Source: GWEC 2014 
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In the 1990’s, Portugal was extremely dependent on fossil fuels to produce energy and the 

energetic efficiency was lower than 50%. A strategic redefinition in consonance with the European 

Union was mandatory to promote endogenous renewable energy sources and the improvement of 

energetic independency of the country (ENEOP 2014). In the last decade, the growing tendency of 

wind energy on Portugal was also clear (Amaral 2009; Bernardino et al. 2012). Nowadays, 20% of 

electricity consumed in Portugal is produced by wind energy (APREN 2014). In 2013, the use of 

renewable energy sources (excluding hydric power) allowed this country to save 806 million of 

Euros on imported fossil fuels and a significant reduction of CO2 emissions (estimated 20%) 

(Quercus 2014). In Portugal, only mountainous areas have enough wind regularity for energy 

exploitation. These areas with optimal conditions are found to the north of Tagus River, along the 

south coast and in the southern end of the country. The wind farms location in the country reflects 

this (ENEOP 2014; DGEG 2014).  

The growth of renewable energies, including wind energy, was only possible due to 

political and economic incentives and support. However this development also depends on other 

factors such as operational issues, grid expansion, resource availability, technological progress, 

Figure 3. Installed wind capacity in EU members in 2013 (GW). Source: EWEA 2014 
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among others issues (Wiser et al. 2011; GWEC 2014; WEF 2014). The European Wind Energy 

Association states that the significant progress that could lead to representative evolution of wind 

energy in European electricity demand in the future are the existing technology upgrade and the 

improvements in grid infrastructures. This energy could represent 30% of this demand in 2030 and 

50% in 2050 (EWEA 2011).   

Renewable energy generation is predicted to represent more than 25% of the world’s 

electricity by 2035. By that time, it is likely that wind energy has become the second largest 

renewable energy source, after hydro power. In 2050, wind power capacity could represent more 

than 20% of worldwide electricity demand (Wiser et al. 2011). This will be crucial not only for the 

reduction of GGE, but also for the economy by creating more job opportunities in a decentralized 

manner. Other economic and political positive and significant impacts are the reduction of fossil 

fuels importation and the promotion of energetic independency of nations in the future (GWEC 

2014).  

1.3 Wind and Biodiversity: Impacts on Avifauna 

Wind farms are located on windy areas that are usually unsuitable for the majority of 

human activities. Thus, these areas may be rich in natural heritage and/or with considered 

conservation status (DGEG 2014). Despite their advantages, wind farms could bring some 

negative impacts on these habitats and their wildlife, mainly on flying vertebrates susceptible to 

collision with wind turbines (WEF 2014). 

The understanding of wind farm impacts on wildlife is not growing so rapidly as the 

development of the technology (Drewitt & Langston 2006). Many studies performed on wind farms 

have shown low rates of birds mortality (e.g.: Langston & Pullan 2003; Percival 2005; de Lucas et 

al. 2008). Although these events may be considered relatively rare, the number of studies 

compared to the number of infrastructures is still low and these impacts should not be ignored 

(Langston & Pullan 2003; Percival 2005; de Lucas et al. 2008; Noguera et al. 2010; Marques et al. 

2014).  

The most deadly onshore wind farms recognised in the world are Altamont Pass in 

California, USA, mainly for Golden eagles (Aquila chrysaetos), Tarifa and Navarre in Spain, 

especially for griffon vulture (Gyps fulvus) and Smøla in Norway for White-tailed eagles  

(Haliaatus albicilla) (Thelander et al. 2003; Barrios & Rodríguez 2004; Drewitt & Langston 2006; 

Smallwood & Thelander 2008; de Lucas, Ferrer, Bechard, et al. 2012; Dahl et al. 2013; WEF 

2014). The study of de Lucas et al. (2008,2012) presents variable mortality rates between turbines, 

with these rates depending on different factors, not all associated with the species. 

De Lucas et al. (2008) is one of the few long-term studies available, that compiled data of birds’ 

fatality sampling collected during 10 years (de Lucas et al. 2008; de Lucas, Ferrer, Bechard, et al. 

2012). 
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Some species show more sensitivity to these impacts and high mortality rates compared to 

others (Drewitt & Langston 2008). The numbers may vary not only between species but also 

between locations (Langston & Pullan 2003; Percival 2005; de Lucas et al. 2008). In some species 

even small fatality rates could result in significant impact for its population or even to the species 

itself, especially if species presents a high conservation concern (e.g.: Chamberlain et al. 2005; 

Drewitt & Langston 2006; de Lucas et al. 2012; Furness et al. 2013; Marques et al. 2014). 

Wind farms present many other negative impacts on birds such as habitat fragmentation 

and loss, disturbance, displacement and barrier effect (Orloff & Flannery 1992; Barrios & 

Rodríguez 2004; Garthe & Huppop 2004; Percival 2005; Drewitt & Langston 2008; Bright et al. 

2009; Paula et al. 2011). Habitat loss per turbine is small and the total impact on habitat depends 

on the size of the wind farm project, but major impacts at this level could occur if the construction 

interferes with hydrological patterns or with geomorphological processes. Alteration of land-use can 

also lead to habitat changes (Drewitt & Langston 2006). Wind turbines are obstacles that could 

cause death not only due to direct collision but also due to barotrauma caused by extreme and 

abrupt pressure changes (Drewitt & Langston 2006; Barclay et al. 2007; Noguera et al. 2010). 

Other wind farm associated infrastructures, for example the power lines, could also be a threat for 

birds (Drewitt & Langston 2006).  

There are many possible factors that influence bird fatality by collision with wind turbines. 

Collision risk may depend on a wide range of factors that can be related to: species characteristics 

and behaviour; the wind farm features and specific local conditions (Drewitt & Langston 2006; 

Marques et al. 2014). Species sensitivity and proneness to collide can be associated to their flight 

manoeuvrability and behaviour, birds’ activity, phenology, relative abundance among other possible 

influence factors. Population and species vulnerability can be evaluated by their conservation 

status and breeding capacity, for example (Barrios & Rodríguez 2004; Garthe & Huppop 2004; 

Noguera et al. 2010; Furness et al. 2013; Marques et al. 2014).  

Avoidance and displacement behaviour are also determinant on birds’ fatalities rates.  

Species that exhibit avoidance behaviours to wind farms possibly will present lower risk to collide  

(Dahl et al. 2013; Marques et al. 2014). Thus, these are important factors when mortality rates on 

wind farms are calculated or predicted (Chamberlain et al. 2005). Disturbance on birds’ populations 

is an indirect impact that can be caused by noise, vibration impacts or visual presence of these 

obstacles. The real effects of this disturbance are not entirely understood due the lack of studies 

about this topic  (Drewitt & Langston 2006; Desholm 2009). The consequent avoidance and 

displacement behaviours are also variable between species and locations and can also implicate 

negative impacts to birds’ populations survival and productivity (Drewitt & Langston 2006; Bright et 

al. 2009; Desholm 2009).These impacts can also vary between small fly paths deviations to 

alterations on flight behaviour that leads to a significant reduction of the number of birds in the 

surrounding areas (Drewitt & Langston 2006). 
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Species flight features have great influence on mortality rates due to collision with wind 

turbines. Flight height can vary due to species characteristics but also with topography, weather 

conditions, seasonality and other factors (Drewitt & Langston 2008). The risk is higher if species fly 

at greater altitudes and at the height of the rotor blades. Manoeuvrability is related to the aerial 

agility of species and consequently to their ability of swift reactions and avoiding obstacles, like 

wind turbines (Garthe & Huppop 2004; Furness et al. 2013). Manoeuvrability is associated with 

wing parameters: wind loading and aspect ratio. Species with low manoeuvrability are 

characterized by rapid flight (high wing loading) and heavy body mass and small wings (low aspect 

ratio) (Noguera et al. 2010).  

Flight behaviour also seems to have a great influence on birds’ fatalities (Marques et al. 

2014). Some birds use hovering. This type of flight is associated with strong and unpredictable 

winds that could affect birds’ position. Additionally, birds present this flying type when hunting what 

could distract them of the danger of collision (Smallwood & Thelander 2008; Krijgsveld et al. 2009; 

Marques et al. 2014). Soaring birds are usually large and use updrafts to gain altitude. These 

species may present low manoeuvrability and consequently higher collision risk (Garthe & Huppop 

2004; de Lucas et al. 2008; Furness et al. 2013; Marques et al. 2014). Morphological birds’ 

features, like size, weight and wings length, have been associated with species proneness to 

collide with the wind turbines. These features could influence birds’ flight manoeuvrability and 

behaviour and determine species susceptibility to collide (Bevanger 1994; Barrios & Rodríguez 

2004; de Lucas et al. 2008; de Lucas, Ferrer & Janss 2012; Herrera-Alsina et al. 2013; Marques et 

al. 2014). 

Another factor related to birds flight is the percentage of time flying. Species that spend 

more time flying are more exposed to the danger and consequently are considered in higher risk of 

collision. Since this parameter is dependent of flight activity it will probably present a seasonal 

variation. Likewise, nocturnal flight activity is also considered a risk factor for birds, but further 

information about this is still needed (Garthe & Huppop 2004; Furness et al. 2013).  

The influence of relative abundance and phenology on mortality rates has presented 

controversial results on literature (de Lucas et al. 2008; Noguera et al. 2010; Marques et al. 2014;). 

Some authors suggest that higher bird density is associated with higher probabilities of collision 

with the turbines due to a higher exposure to the danger (Langston & Pullan 2003; Smallwood & 

Karas 2009; Carrete et al. 2012;). However, this is not verified in other studies that suggest this 

relation may not be so simplistic and could be highly related with differential birds’ behaviours 

instead (Madders & Whitfield 2006; de Lucas et al. 2008; Ferrer et al. 2012; Dahl et al. 2013; 

Marques et al. 2014). Barrios & Rodríguez (2004) propose that high mortality rates may be 

determined by the density of birds passing close the rotor blades of a turbine. Thus, it is essential 

to reach a better understanding on this question to reinforce the prediction of these impacts on 

birds (de Lucas et al. 2008; Carrete et al. 2012).  
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Likewise, phenology is associated to birds’ mortality due to the density of birds exposed to 

the risk. In the study of Krijgsveld et al. (2009) the risk seems higher for resident raptors that may 

use wind farm areas regularly. Resident species due to their longer exposure may present higher 

risk (Barrios & Rodríguez 2004; Percival 2005; Drewitt & Langston 2006). However, Drewitt & 

Langston (2008) suggested that resident species are less sensible to collision due to habituation 

and familiarity with this danger. Is also suggested that this influence can be associated with the 

flight behaviour or with possible avoidance behaviours (Barrios & Rodríguez 2004). Relative 

position of migratory pathways with respect to wind farms may also constrain the phenology 

influence on birds’ mortality (Dahl et al. 2013; Marques et al. 2014). Habitat specialisation is also a 

factor that may influence wind farm impacts on birds, which is also related to the probability of area 

usage by birds (Furness et al. 2013).  

Visual perception of dangerous situations may be another factor that influences birds’ 

fatality due to collision with wind turbines. Some species, described as potential vulnerable, for 

example vultures, present very slender frontal binocular fields, which may difficult the perception of 

this danger (Martin & Katzir 1999; de Lucas, Ferrer, Bechard, et al. 2012; Martin et al. 2012; 

Marques et al. 2014).   

Intraspecific features, like sex and age, may influence birds’ behaviours and fatalities rates 

(Morinha et al. 2014; Langston & Pullan 2003; Stienen et al. 2008; Drewitt & Langston 2008). For 

example, Morinha et al. (2014) addresses the factors that influence differential mortality due to 

collision with wind turbines on Slylark (Alauda arvensis) in Northern Portugal. This species 

presents decreasing population trends, despite having low conservation status. This study 

highlights the intraspecific influence of sex and age in mortality rates, which may be related with 

breeding behaviour (Morinha et al. 2014).  

There are other factors that may influence birds’ mortality. Some features associated to the 

wind farm features like turbine characteristics, blades visibility, signal lights and infrastructures 

arrangement could also affect birds’ fatalities (Marques et al. 2014). Birds mortality is also 

associated to the location features, mainly if the wind farm area is in flight path or if it has high food 

availability (Hoover & Morrison 2005; Drewitt & Langston 2006; Marques et al. 2014). 

Weather conditions also play an important role in this issue by affecting birds’ behaviour 

and flight (Drewitt & Langston 2008). Strong winds that affect flying control and other adverse 

conditions may disturb visibility or increase attraction to artificial light (Langston & Pullan 2003; 

Marques et al. 2014). Weather conditions like fog or rain may affect visibility, which might increase 

species risk. In severe weather conditions the number of flying birds could be low, but for migration 

species this could be an unavoidable problem (Drewitt & Langston 2008).  

To recognize species priority on the effort for impacts reduction, some factors like 

conservation status, survival rates and breeding capacity could give a better understanding of 

species real vulnerability as well as of the impacts effect at birds’ population level (Desholm 2009; 

Noguera et al. 2010; Furness et al. 2013;). Conservation status could be used as an external 

measure of conservation priority (Desholm 2009). Species that present a higher breeding capacity 
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and with bigger clutch sizes could more easily replace the losses in their populations (Noguera et 

al. 2010). On the other hand, in species with high adult survival rates and with low breeding 

capacity rates, these losses could represent an higher impact on the population restoration 

(Desholm 2009; Furness et al. 2013). Population dynamics define the ability of losses 

compensation what is essential to understand the level of the impact (Drewitt & Langston 2008).  

Long-lived species like raptors and waterbirds are the more vulnerable expected species to 

these impacts (Desholm 2009). Birds of prey present seem high proneness to collision and low 

productivity, which may difficult the population renewal in higher rates of mortality. Even small 

increases in mortality could lead to population decline. The information about passerines remains 

limited, due to lower detections rates, rapid scavengers’ removal and possible lower collision rates. 

This justify the fewer numbers of studies about these species (Drewitt & Langston 2008).  

Among the variability of species and its behaviours, in conservation is vital to prioritise 

higher risk species, identifying which ones are most vulnerable to impacts (Gardali et al. 2012; 

Furness et al. 2013). To achieve this, different authors have proposed sensitivity and vulnerability 

to impact indexes with specific adaptations (Garthe & Huppop 2004; Bright et al. 2009; Desholm 

2009; Noguera et al. 2010; Furness et al. 2013). These indexes not only permit to concentrate 

conservation efforts on more vulnerable species but also permit to establish death estimations, 

identify more vulnerable areas and predict impacts of a wind farm project at earlier stage (Noguera 

et al. 2010).  

Wind farms negative impacts on birds vary widely across species and even within the 

species. The knowledge about the impacts of wind farms on biodiversity is increasing but further 

research should be performed to reach a better understanding of these impacts, how they influence 

birds and their populations and how they could be significantly minimized (Bright et al. 2009; 

Furness et al. 2013; Marques et al. 2014)  

1.4 Excessive zero counts in statistical models 

Mixed effects models provide heterogeneous response variables, containing both fixed and 

random effects. These type of models are commonly used to describe biological and ecological 

data (Zuur et al. 2009). The models are choose based on maximum likelihood methods and 

frequently used in many different study areas, like ecology, medicine or economy (Baayen et al. 

2008). 

Poisson distributions are defined by a mean value as a result of the action of the co-

variables. When the observed variance is higher than the one presented by the model, 

overdispersion is present (Turkman & Silva 2000). Ecological research data usually present a large 

quantity of zero values (Clarke & Green 1988). That may cause extra overdispersion which could 

not be fitted with the standard distributions, like Poisson distributions or Negative Binomial 

distributions (Cameron & Trivedi 1989; Martin et al. 2005; Zeileis et al. 2007). In those cases zero 

inflated models or hurdle models can be a solution (Zuur et al. 2009).  
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To deal with excessive zero counts two main types of models could be applied. For each 

model two different distributions could also be used. These models are: Zero-inflated Poisson 

(ZIP), zero inflated Negative Binomial (ZINB); hurdle or zero-altered Poisson (HP) and hurdle or 

zero-altered Negative Binomial (HNB). The main difference between zero-inflated models and 

hurdle models is linked to the source of the zero counts. The Negative Binomial model allows 

dealing with extra overdispersion in the positive part of data comparing to the Poisson model (Zuur 

et al. 2009).  

There are two main types of zeros: the true zeros and the false zeros. False zeros included 

the ones counted due to design error, which could be caused by poor experimental sampling 

practises or planning, observer error, or even due to “bird error”, which means that although the 

habitat is suitable, the species is not there. The true zeros are the ones caused by structural error, 

in which the absence is explained because the habitat is unsuitable for the species. Zeros obtained 

due to sampling outside the species habitat range should be excluded (Zuur et al. 2009).  

Zero altered or hurdle models were originally proposed by Mullahy (1986) in econometrics 

and present two parts. In a first step a binomial model is used to assess the probability to observe 

a zero, regardless of the source. In the second part of the model, the non-zero observations are 

assessed with zero truncated models (the response variable cannot produce zero counts) using 

Poisson or Negative Binomial distributions. Covariates could be used in both parts. This type of 

models is also considered hurdle models because positive observations have to cross a hurdle to 

get non-zero count. Thus, the source of zeros is not discriminated (Zuur et al. 2009).  

Zero inflated models (Mullahy 1986; Lambert 1992) also result from the combination of a 

binomial process to model the probability to obtain a false zero and a count process where a 

Poisson or Negative Binomial could be applied. Unlike the hurdle models, in the count process, 

true zeros could be produced beyond the non-zero observations (Zuur et al. 2009). In these cases, 

true zeros may represent real ecological effects with study interest (Zeileis et al. 2007). 

Distinguishing the zero types is indispensable for ecological interpretation and the choice 

of the best suitable model to use (Zuur et al. 2009). Zeileis et al. (2007) show how the erroneous 

choice of the model might lead to considerable different parameters and precision estimations, 

which could also lead to biased results. Thus, not taking excessive number of zeros into account 

could compromise the model’s conclusions and the interpretation of results (Zuur et al. 2009).  

Hence, the cause of an excessive zero count and the knowledge on data allow a better 

choice between the two types of models. Statistical tests and information criteria could also be 

used to support the model choice (Zuur et al. 2009). 
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Resumo 

As alterações climáticas e o esgotamento dos recursos fósseis são atualmente um grande 

desafio para a Humanidade. A energia eólica apresenta-se como uma possível solução para estes 

problemas. No entanto a produção de energia eólica acarreta impactes negativos, nomeadamente 

para as aves. Com o objetivo de estudar os fatores que determinam o risco de mortalidade por 

colisão com as turbinas eólicas, foram compilados registos de censos de aves e prospeção de 

cadáveres de 25 parques eólicos Portugueses. Foi também recolhida informação adicional sobre 

as características das espécies ibéricas presentes nestes registos. Apesar de apresentar larga 

escala, verifica-se uma elevada variabilidade de comportamentos entre espécies havendo 

algumas para as quais este fenómeno pode considerar-se relativamente raro, tendo como 

consequência a observação de mortalidade nula. Assim, o uso de modelos aumentados em zero 

pode apresentar-se como uma solução para lidar com o excesso de zeros. Este estudo teve como 

objetivo avaliar a importância de fatores etológicos e morfológicos na mortalidade de aves por 

colisão em dois grupos de espécies. As variáveis explicativas e significativas que foram obtidas 

para estes modelos foram as características morfológicas, manobrabilidade, tipo de voo, fenologia, 

comportamento gregário e abundância relativa, variando a sua significância consoante o grupo de 

aves em estudo. Os modelos implementados permitiram inferir acerca da sensibilidade das 

espécies à colisão e à sua vulnerabilidade a este impacte. Para espécies ameaçadas de extinção 

e com maior propensão à colisão, a mortalidade adicional pode trazer impactos irreversíveis para 

a sobrevivência de uma população e até da espécie. Perceber a vulnerabilidade de aves e a 

realização deste tipo de estudos são uma mais-valia para minimizar os impactes de um parque 

eólico em qualquer fase do seu projeto e permitir que esta seja uma energia verdadeiramente 

verde. 
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Excesso de zeros; Índice de Risco de Mortalidade; Modelos Inflacionados em zero; 

Parques eólicos; Ranking de Vulnerabilidade; Sensibilidade de Aves. 
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Abstract 

Climate change and fossil resources depletion are the greatest global challenges of 

nowadays. Wind energy could be a solution to climate change mitigation but it presents impacts on 

biodiversity, in particular for avifauna. There are many records of birds’ mortality from collisions 

with these structures. To establish a fatality risk index, records from birdlife census and carcass 

searches at 25 Portuguese onshore wind farms were compiled. Data of different Iberian birds’ 

species present on those records as well as their characteristics were also collected. Birds’ species 

present a high variety of characteristics and behaviours and, for some of them, fatality due to 

collision could be considered a rare event, hence null mortality counts could be observed.  In this 

context, to deal with the data, characterized by an excessive zero counts, zero inflated models and 

hurdle models were used. Zero inflated models are the most suitable for this data, once some 

species could actually present no mortality due to collision. Two groups of birds were evaluated 

and a model was choose to explain which morphological and ethological factors leads to birds’ 

fatalities for each group. Morphological characteristics’, manoeuvrability, flying type, phenology, 

gregarious behaviour and relative abundance were the significant variables on the chosen models, 

whose significance varied according to each group on study. These models permitted the 

evaluation of species’ sensitivity to collision and understanding of their real vulnerability to this 

impact. If species with greater risk of extinction and high protection concern present high sensitivity 

to fatalities, additional mortality caused by collision with wind turbines could have a great impact on 

their population viability. This type of studies are essential to predict and understand impacts of 

wind farms on birds and turn wind into a truly green energy with minimal effects on wildlife. 

 

Keywords 

Birds’ sensitivity; Excessive zero’s counts; Fatality Risk Index; Vulnerability Ranking; Wind 

farms; Zero inflated models. 
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2.1 Introduction 

Climate change is a great global threat and a major environmental concern (APA 2014). 

Greenhouse gas emissions have an anthropogenic origin and are a recognized cause for the 

global climate change (Huntley et al. 2006). The adoption of renewable energy sources is an 

effective measure to reduce gas emissions in the energy sector and an alternative to the decrease 

of fossil fuels stocks (Amaral 2009; GWEC 2014). Therefore, wind energy is an unavoidable topic 

when we discuss emissions reduction strategies and climate change mitigation (Wiser et al. 2011).  

The exploitation of wind energy to produce electricity is currently growing rapidly and in a 

large scale, especially in Europe (Drewitt & Langston 2006; Noguera et al. 2010; GWEC 2014; 

EWEA 2014; WWEA 2014). We are witnessing to a remarkable increase on production of wind 

energy and its progresses. In the last decade, Portugal is not an exception to this trend (APA 2014; 

EWEA 2014; DGEG 2014). However, the knowledge and understanding of the environmental 

impacts of this development are lagging behind (Drewitt & Langston 2006).  

Wind farms represent impacts on wildlife, especially in flying vertebrates (e.g.: Percival 

2005; Drewitt & Langston 2006; de Lucas et al. 2008; Wiser et al. 2011; Bernardino et al. 2012; 

Furness et al. 2013; Marques et al. 2014; WEF 2014). Avifauna direct fatalities or lethal injuries can 

be caused by collision with turbines, cables or other associated structures of the wind farm (Drewitt 

& Langston 2006). The collision risk depends on many different factors, for example, environmental 

conditions, wind farms features and birds’ characteristics (Drewitt & Langston 2006; Noguera et al. 

2010; Furness et al. 2013; Marques et al. 2014). 

Numerous pre and post construction monitoring studies have been conducted to 

understand and assess the impacts of wind farms on biodiversity (de Lucas et al. 2008; Bernardino 

et al. 2012). Although many studies present low levels of bird mortality, this issue requires attention 

and should not be underestimated (Langston & Pullan 2003; Percival 2005; Madders & Whitfield 

2006; Drewitt & Langston 2006; Marques et al. 2014). For more vulnerable species this additional 

mortality could be significant and affect the capability of population renewal and survival (Drewitt & 

Langston 2006; Noguera et al. 2010; Furness et al. 2013). 

Some authors tried to develop different vulnerability indexes for different categories of birds 

to reach a better acquaintance of bird collision risk and their conservation concern (e.g.: Garthe & 

Huppop 2004; Noguera et al. 2010; Furness et al 2013). Garthe & Huppop (2004) developed a 

wind farm sensivity index for seabirds, using 9 factors scored on a point scale based on fields 

assessements and existing knowlegde or subbjective considerations. Based on this, they created 

vulnerability maps to identify areas of major conservation concern. Furness et al. 2013 followed a 

similar aproach incorporating new data and modifying the allocated scores based on more recent 

research. Noguera et. al (2010) adapted the indexes developed by Garthe and Hüppop (2004) to 

raptors in onshore areas.  
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In this study, 6 factors were statistically modeled to understand their significance as 

explanotary variables of collision risk and then, vulnerability scores were applied. Since, in some 

cases, these fatalities could be considered rare events (Langston & Pullan 2003; Percival 2005), 

statistical models based on excessive zero’s count were used to model this proneness.   

Knowledge about this topic is essential for a better understanding of species sensitivity and 

vulnerability to wind energy impacts. Thus, it is possible to improve the impacts’ prediction of wind 

farm projects and more efficient measures can be implemented to reduce them (Chamberlain et al. 

2005; Drewitt & Langston 2006; Marques et al. 2014). 

The main aim of this study is to understand which morphological and ethological factors 

better explain birds’ proneness to collide with wind farms structures using models based on zero 

counts. Additionally, a Fatality Risk Index was established scoring three vulnerability factors and 

the fatality proneness obtained from mortality data on 25 Portuguese wind farms.  

2.2 Materials and Methods 

2.2.1 Study design 

Based on previous studies, in this approach two types of factors were defined: sensitivity 

and vulnerability factors. Sensitivity factors may directly affect the birds’ fatalities proneness by 

collision with wind farms, and vulnerability factors relate to species survival and conservation status 

(Garthe & Huppop 2004; Bright et al. 2008; Noguera et al. 2010; Furness et al. 2013).  

To achieve this study’s goals, records from birdlife census and carcass searches at 25 

onshore wind farms were compiled. Data on different Iberian birds’ species present in those 

records as well as their characteristics were collected from the literature. After this, a statistical 

model based on excessive numbers of zeros was applied to study which factors influence the 

proneness of birds' fatality by collision. A Fatality Risk Index was established by scoring the 

collision sensitivity and vulnerability factors. The detailed procedures are described in the following 

sections. 

2.2.2. Species relative abundance and mortality data 

Data of birds’ census and carcass searches from 25 Portuguese onshore wind farms were 

analysed. The studied wind facilities are mainly located in Northern (n = 6) and Central (n = 16) 

Portugal, three of them are located in the country’s south. The total amount of regularly searched 

wind turbines was 494. Data was collected in different periods from each wind farm between April 

2005 and January 2014.  
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Concerning species abundance, data collected was divided in two groups due to the 

different census methods used in the field and consequently as a result of its different survey effort. 

The two groups were defined concerning the different methodology used: Group 1 (G1) and Group 

2 (G2). The G2 (n = 31) represents to the species of diurnal raptors and other soaring birds whose 

relative abundance was assessed by vantage points with duration of 30 minutes, 1 hour or 2 hours 

depending of the wind facility. The G1 (n = 99) represents the other diurnal birds species found 

assessed by 5 minute point counts. In each method all the visual or auditory contacts were counted 

in limited and predefined intervals.  

The fatality data are from surveys performed on these wind farms at the same periods. In 

the wind farm searches, all traces of bird fatalities were recorded and collected for identification. 

Survey took 20 minutes for each search plot and covered an area up to 50 m around each wind 

turbine.  

The values of observed mortality obtained in each wind farm were summed for each 

species included in this study. All the contacts concerning species relative abundance were also 

summed for each species detected. The census effort for G1 corresponds to multiplying the 

number of survey points by the total number of surveys performed. For G2, the census effort is the 

result of the multiplication of the number of vantage points by the number of searches and by the 

number of hours spent per point. For carcass searches, the survey effort matches the product of 

the number of surveys performed and number of turbines searched in each survey, for both 

groups. Respective survey effort of each wind farm was also summed for each species. The 

summed survey effort for each species of G1 was 4106 for bird census and 30194 for carcass 

searches. For G2 the sum value for abundance and carcass searches effort is 1750 and 32498, 

respectively. In this way, the results are considered independently of the wind farm and the survey 

efforts uniformed for each species of each group. 

In order to ease statistical analysis due to the wide range of data, the values of abundance 

were categorized based on quartile values. 

It is important to apply correction factors to the observations on the field, as Langston & 

Pullan (2003) refer. Hence, the values of observed mortality were corrected with a mean detection 

probability for each carcass size (small: 0.351; medium: 0.462; large: 0.606), assessed through the 

conduction of searcher efficiency trials at wind farms. 

 

2.2.3 Species sensitivity and vulnerability factors 

To determine which variables can influence species sensitivity to collision with wind 

turbines, different variables were tested to include in the models. These variables included 

morphological characteristics, flight type, phenology, gregarious behaviour, manoeuvrability and 

relative abundance. The information for each species was collected from literature research. Annex 

2 summarizes the literature used for each variable. Bibliography also indicates other likely factors 
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that may be associated with species sensitivity to wind farms (e.g.: Noguera et al. 2010) but they 

were not considered in this study due to incomplete or inexistent information for all the species 

evaluated.  

The morphological characteristics taken into consideration were average weight (kg), 

length (m), wingspan (m) and wing area (m2). The flight type is considered an important sensitivity 

factor (Drewitt & Langston 2008). Garthe & Huppop (2004) and Noguera et al. (2010) analysed the 

behaviour and percentage of time flight based on direct observation data. Complete data for this 

kind of evaluation was not found in the literature for all species. Therefore, it was indicated which 

flying behaviours could be presented for each species. Based on the species descriptions of 

Cramp & Simmons (2004), four different flying types were considered: fluttering, soaring, gliding 

and hovering. Regular flapping was not considered because all species can exhibit this flying 

behaviour (Cramp & Simmons 2004).  

Phenology, the study of biological activity linked with climate and life cycle events such as 

birds’ movements (Ricklefs 2003), identified whether birds are resident or non-resident in 

continental Portugal.  

The gregarious behaviour of the species was also assessed due to high amounts of bird 

movements and lower attention to imminent threats when in flock (Drewitt & Langston 2006). It was 

indicated for each species if they show gregarious behaviour. 

As mentioned by Noguera et al. (2010), manoeuvrability elucidates for the swift ability, 

especially in reaction to unexpected obstacles. This parameter is associated with two calculated 

parameters for each species: wing loading and aspect ratio. Wing loading is calculated by dividing 

the weight of the bird by its wing area and elucidates about flight speed. Aspect ratio is obtained by 

dividing the square of the wingspan by wing area and is related to the shape of the wing (Tennekes 

2009).  

To establish the Fatality Risk Index the resulting information of the sensitivity model and 

three vulnerability factors were scored: population trend, conservation status and breeding 

capacity. This index was based following Garthe & Huppop (2004), Noguera et al. (2010) and 

Furness et al. (2013) methodologies. Scores of 1 to 4 were associated with each parameter, 

wherein 1 represents “low vulnerability” and 4 represents “high vulnerability”.  

Information for Portuguese bird population’s trends was obtained on Equipa Atlas (2008) 

and Catry et al. (2010). In this study, populations with possible and certain increase were scored 

with 1. Populations without apparent alterations were scored with 2. Undetermined population trend 

was scored with 3 and populations with certain or possible decline were scored with 4. Noguera et 

al (2010) considered population size instead of population trend as a vulnerability factor. We 

defined that population size as the relative abundance assessed in the field, which was included as 

an explanatory variable of species sensitivity and fatality. Therefore, population size was here 

replaced for population trend, which gave a comparable evaluation of the state of the species’ 

population (IUCN 2012). 
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The conservation status used was the one assigned to birds that occur on the Portuguese 

territory according to Cabral et al. (2005). The score of 1 was assigned to considered low concern 

species, 2 for near threatened, 3 for vulnerable species and 4 for endangered and critical in risk 

birds’ species.  

For breeding capacity the score of Noguera et al. (2010) was applied based on clutch 

sizes. According to Noguera et al. (2010), 1 was endorsed for clutch sizes with an average of more 

than four eggs, 2 for clutch with three or four eggs, score of 3 for those with two eggs and 4 for the 

ones with only one egg. This parameter reflects the capability of population regeneration and 

consequently naturally diminishes the impact of additional mortality caused by wind turbines 

(Noguera et al. 2010).  

Annex 1 presents a table that summarizes the bibliography used to collect the information 

for each factors. 

2.2.4 Statistical methods 

Count models are usually adjusted with simple Poisson or Negative Binomial distributions, 

but an excessive number of zeros can cause overdispersion and bias the results if the mean of the 

distribution is small. In ecological research, data usually present more zeros than expected. In 

these cases, zero inflated (ZI) or hurdle (H) models may be a solution to get a more adequate and 

reliable fit to the observed data (Zuur et al. 2009). 

The main differences between zero inflated and hurdle models rely on the source of the 

zero counts. Depending on the source, it is possible to discriminate different types of zeros. All 

zeros obtained on samplings outside the species habitat range should be removed from the 

analyses. The other zeros could be divided into categories: true and false zeros. True zeros are 

related to structural errors reflecting the specie’s absence due to the non-suitability of the 

environment for that particular specie. False zeros are associated with the observers, experimental 

design, sampling practises and survey errors (Zuur et al. 2009). 

Hurdle models, which do not differentiate the source of the zeros, are divided in two steps. 

First, the data is divided in zeros and non-zeros and the probability of observing a zero is given by 

a Binomial model.  Then, the non-zeros are modelled based on zero truncated distributions (count 

process). Zero inflated or mixture models differentiate from the hurdle models because true zeros 

could be produced on the count process. A Binomial process to model the false zeros is also 

included on zero inflated models (Zuur et al. 2009). 

In zero inflated or hurdle models, the count process can be modelled by a Poisson (P) 

distribution or a Negative Binomial (NB) distribution. To summarize, the cause of an excessive zero 

observations and the knowledge on data allow a better choice between the two types of models 

(Zuur et al. 2009).  
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2.2.5 Fatality Risk Index 

The Fatality Risk Index was determined in two stages. First, the sensitivity of birds’ 

mortality by collision was model and, second, a species ranking was built by assigning scores to 

the results of sensitivity model and to the vulnerability factors previously mentioned. The data 

analysis was performed using R version 3.1.0 (R Core Team, 2014). 

In the sensitivity model, the corrected mortality number for each species (estimated 

mortality) was the response variable. This implies that a count model was needed to adjust bird’s 

sensitivity to fatalities by collision with wind turbines. The wrong choice of the model used may lead 

to erroneous conclusions (Turkman & Silva 2000). Thus, for this data the mixture-effects zero 

inflated and hurdle models were tested to try to deal with these difficulties (Zuur et al. 2009). 

Four different types of models were built for each group: zero inflated model with Poisson 

distribution (ZIP), zero inflated model with Negative Binomial distribution (ZINB), hurdle model with 

Poisson distribution (HP) and hurdle model with Negative Binomial distribution (HNB). 

The R functions zeroinfl() and hurdle() were used from the package pscl to adjust 

data to the different models, specifying the arguments dist and link, respectively as 

poisson/negbin and logit ( Zeileis et al. 2007; Jackman 2014).  

Before running the models one extreme outlier was removed.  

On a first step, only the morphological and manoeuvrability factors were included to build 

the different models. The variance inflation factor (vif() function) was used to exclude the 

collinear variables from the model. After this selection, all the remaining variables related to 

species sensitivity were taken into consideration, but it was not possible to include them all to each 

type of model tested in a first approach due to their unbalanced sample sizes (Zuur et al. 2009).  

After trying different combinations and building the models for each group with all the 

variables that could be included on them, model selection was performed using the Akaike 

information criterion (AIC), via the step() function in R (Zeileis & Hothorn 2002; Fox & Weisberg 

2011; R Core Team 2014). This function was used to examine which variables could be dropped 

from the initial models and to select the significant ones to reach the best adjustment to this data 

(Zuur et al. 2009). 

Furthermore, to infer the best fitted model, methods of selection criteria based on 

maximum likelihood (Borgatto 2004) and other statistical information were used. For model 

selection, the criteria calculated were the Pearson correlation coefficient (r), Spearman rank 

correlation (rs), intercept and slope of the linear regression relating observed versus fitted values 

and RMSE (Root-mean-square deviation), MAE (mean absolute error), AIC, log likelihood and 

degrees of freedom (Zuur et al. 2009). These statistics were calculated using R packages: pcsl, 

stats, qpcR and Metrics (Zeileis et al. 2007; Hamner 2012; Jackman 2014; R Core Team 2014; 

Spiess 2014). 
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After model selection for each species’ group, both models were analysed to understand 

the influence of each variable and to establish a sensitivity score. This sensitivity score matched 

with the characterization of the fitted values quartiles that was then used to build the Fatality Risk 

Index. Species in the 25 percentile were scored with 1 (lower sensitivity). Species with a probability 

between 25% and 50% of presenting fatalities were scored with 2, and the species between 50% 

and 75% of probability were scored with 3. The species that are present on the fourth quartile of 

fitted mortality were scored with 4 (higher sensitivity).  

By adapting the models presented in the literature (Garthe & Huppop 2004; Bright et al. 

2008; Noguera et al. 2010; Furness et al. 2013), the global species ranking was achieved by 

applying the following formula per each species, where SS represent the Sensitivity Score and PT, 

CT and BC the scores assigned to Population Trend, Conservation Status and Breeding Capacity, 

respectively. 

 

𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑦 𝑅𝑖𝑠𝑘 𝐼𝑛𝑑𝑒𝑥 = 𝑆𝑆 ∗ 
𝑃𝑇 + 𝐶𝑇 + 𝐵𝐶

3
 

 

2.3 Results 

In total, 31 different species were assessed in G2 and 99 species in G1 on the field 

surveys. All this 130 different birds constitute the initial species pool in this study. Due to the lack of 

complete available information and after the removing of the outlier, the species pool was reduced 

to 97 (G1: 72 species; G2: 25 species) from 13 different taxonomic orders in total (Accipitriformes;  

Anseriformes; Apodiformes; Charadriiformes; Ciconiformes; Columbiformes; Coraciiformes; 

Cuculiformes; Falconiformes; Galliformes; Passeriformes; Pelecaniformes; Piciformes). 

The observed distribution of the corrected mortality counts for the G1 and G2 species 

group respectively are presented in Figure 4. Both distributions show high number of zeros. These 

zero counts represent 75% of the estimated mortality observations for the G2 species and 69.4% 

for G1 group. The estimated mortality for birds of G1 group presents median equal to 0, which is 

clearly lower than the mean (mean = 2.12). The variance of this count is approximately 40.56. 

Seventy five percent of G1 species present estimated mortalities lower than approximately 1.250, 

which is even lower than the mean. For G2 species the median of estimated mortality is equal to 0. 

The mean and variance of this count is 2.12 and 47.36, respectively.  

For G1 the species with larger estimated mortality were Alauda arvensis, Lullula arborea 

and Apus apus. For G2 the highest values were observed on Falco tinnuculus, Circus pygargus 

and Buteo buteo. Table 1 resumes the estimated mortality for all the species of this study. These 

mortality observations may be influenced by different factors. Table 2 presents a summary of all the 

factors tested on the sensitivity model for each group. 
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Figure 4. Empirical distribution of estimated mortality for G1 and G2 groups. 
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Table 1. Estimated mortality counts for each species of G1 and G2. 

G1 

Estimated 
Mortality 

Number of 
Occurrences 

Species 

0 50 Aegithalos caudatus; Anas platyrhynchos; Anthus campestres; Anthus pratensis;  
Anthus spinoletta; Anthus trivialis; Carduelis carduelis; Carduelis chloris; 
Carduelis spinus; Certhia brachydactyla; Columba palumbus; Coturnix coturnix; 
Cuculus canorus; Dendrocopos major; Fringilla coelebs; Gallinago gallinago; 
Hirundo daurica; Hirundo rustica; Loxia curvirrostra; Motacilla cinérea; Motacilla flava; 
Oenanthe oenanthe; Parus ater; Parus caeruleus; Parus cristatus; Parus major; 
Passer domesticus; Phoenicurus phoenicurus; Phylloscopus trochilus; Pica pica; 
Prunella modulars; Pyrrhula pyrrhula; Regulus regulus; Riparia riparia; Saxicola rubetra; 
Serinus serinus;Sitta europaea; Streptopelia decaocto; Sturnus unicolor; 
Sturnus vulgaris; Sylvia atricapila; Sylvia communis; Sylvia hortensis; 
Sylvia melanocéfala; Troglodytes troglodytes;Turdus merula; Turdus philomelos; 
Turdus torquatus; Turdus viscivorus; Upupa epops 

1 4 Merops apiaster; Garrulus glandarius; Picus viridis; Streptopelia turtur 

2 8 Galerida cristata; Luscinia megarhynchos; Phoenicurus ochruros; Muscicapa striata; 
Ptyonoprogne rupestres; Motacilla alba; Emberiza hortulana; Jynx torquilla 

3 1 Columba livia 

5 1 Hippolais polyglotta 

6 1 Galerida theklae 

8 3 Apus pallidus; Carduelis canabina; Ficedula hypoleuca 

11 1 Erithacus rubecula 

12 1 Apus apus 

31 1 Lullula arborea 

41 1 Alauda arvenses 

 

G2 

Estimated 
Mortality 

Number of 
Occurrences 

Species 

0 19 Accipiter gentilis; Aquila chrysaetos; Ardea cinérea; Ciconia ciconia; Ciconia nigra; 
Circus cyaneus; Corvus corax; Corvus corone; Egretta garzetta; Elanus caeruleus; 
Falco peregrinus; Falco subbuteo; Larus cachinnans; Larus fuscus; Milvus migrans; 
Milvus milvus; Neophron percnopterus; Pernis apivorus; Phalacrocorax carbo 

1 3 Accipiter nisus; Gyps fulvus; Hieraaetus pennatus 

6 1 Buteo buteo 

11 1 Circus pygargus 

33 1 Falco tinnunculus 
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For the G2 model, fluttering was excluded due to the characteristics of the species and its 

consequent absence. Soaring and gliding were not considered once the majority of species 

presented this behaviour, unbalancing these variables. For the G1 model, all the variables related 

to flying were included on the first model formula.   

Variables present in the model formula were selected by its significance as explanatory 

variables for this data. Then, four different models were obtained for each group, one for each 

model type and applied distribution, to ascertain which fits better with the empirical data.  

Table 3 shows the results of the statistical criteria calculated for the selected models for G1 

and G2. These results formally validate the proposed models.  

 

Table 2. Summary of each variable tested on the statistical models. Min: minimum value; max: 

maximum value; x̅: the mean value. 

Variable 
G1 G2 

min max x̅ min max x̅ 

Average Weight (Kg) 0.006 1.175 0.084 0.204 47.525 5.008 

Average Length (m) 0.090 0.640 0.192   0.330 1.075 0.610 

Average Wingspan (m) 0.145 0.895 0.316 0.625 2.600 1.394 

Average Wing Area (m2) 0.003 0.105 0.020 0.065 1.000 0.276 

Wing Loading (Kg/m2) 1.085 12.998 2.813 2.063 79.606 10.938 

Aspect Ratio 3.500 13.500 5.872 3.934 19.857 8.413 

Relative Abundance 0.000 1706.000 214.250 1.000 1068.000 131.500 

 
    

Present Absent Present Absent 

Fluttering 20 52 0 25 

Gliding 27 45 21 4 

Soaring 2 70 22 3 

Hovering 25 45 7 18 

     

 Yes No Yes No 

Gregarious Behaviour 38 34 6 19 

     

 Resident Non-resident Resident Non-resident 

Phenology 37 35 14 11 
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Table 3. Model comparison based on the described adjustment statistics (see text for details).  

 
Model r rs Intercept Slope RMSE MAE AIC Log lik df 

G1 

ZIP 0.40 0.20 0.20 0.93 1.08 2.57 217.20 -90.60 18 

ZINB 0.46 0.33 0.07 0.87 0.79 2.65 202.56 -82.28 19 

HP 0.41 0.18 0.07 0.96 1.06 2.69 218.36 -91.18 18 

HNB 0.39 0.21 0.33 0.84 1.00 2.64 204.22 -89.11 13 

           

G2 

ZIP -0.09 0.26 2.30 0.00 0.61 96318.20 52.91 -16.46 10 

ZINB -0.09 0.26 2.30 0.00 0.61 77825.09 54.91 -16.46 11 

HP -0.08 0.25 2.25 0.00 0.91 645.68 56.06 -20.03 8 

HNB 0.26 0.22 1.23 0.36 0.97 3.44 66.37 -24.19 9 

 

The best fitted model for G1 was a zero-inflated Negative Binomial model that includes the 

following variables: average weight; aspect ratio; gliding; hovering; gregarious behaviour; relative 

abundance. Average length, wingspan, wing loading and average wing area were dropped from the 

model due to their collinearly. Fluttering and phenology were dropped through step()function 

once they were not statistically significant explanatory variables for this case study. For the final G1 

model, average weight (p = 0.025) and high abundance (p = 0.003) were determinant for the model 

count process, explaining the true zeros and positive counts observations. Aspect ratio (p = 0.016), 

presence of gliding (p = 0.033) and gregarious behaviour (p = 0.004) were the significant variables 

for the Binomial model part, that is related to false zeros generation.  

For G2 the model that give the best fit was the zero-inflated Poisson model that includes 

average weight, hovering, gregarious behaviour and phenology. Average length, wingspan, wing 

loading and average wing area were also dropped due to their collinearly. Then, aspect ratio was 

also dropped from the model but due to non-significance. For the G2 model, none of the variables 

were significant on the binomial part of the model (p > 0.05). For the count part, all the final 

variables were statistical significant (average weight: p < 0.001; presence of hovering: p < 0.001; 

presence of gregarious behaviour: p < 0.001; phenology – non-resident species: p < 0.001).  

Probabilities of observing mortality due to collision with wind turbines were assessed 

through the selected models, which allowed scoring each species according to the quartile it 

belonged. For species with higher probabilities to present fatality observations, a higher score was 

given. The Fatality Risk Index for all the species studied was built also taking all the vulnerability 

variables into consideration.  

Table 4 presents the Fatality Risk Index obtained for all species. 



 

 

Table 4. Fatality Risk Index (FRI) calculated for all the species through scores. 

Group Species FRI  Group Species FRI  Group Species FRI  Group Species FRI 

G2 Milvus milvus 13.33  G1 Parus cristatus 5.33  G1 Phylloscopus trochilus 3.33  G1 Motacilla alba 2.00 

G1 Apus apus 10.67  G1 Parus major 5.33  G1 Ptyonoprogne rupestris 3.33  G1 Pyrrhula pyrrhula 2.00 

G2 Circus pygargus 9.00  G1 Prunella modularis 5.33  G1 Streptopelia decaocto 3.33  G1 Riparia riparia 2.00 

G1 Alauda arvensis 8.00  G1 Sturnus unicolor 5.33  G1 Turdus merula 3.33  G1 Saxicola rubetra 2.00 

G2 Circus cyaneus 8.00  G1 Troglodytes troglodytes 5.33  G2 Accipiter nisus 3.00  G1 Sylvia atricapilla 2.00 

G1 Columba livia 8.00  G1 Anthus Pratensis 5.00  G1 Anthus campestris 3.00  G1 Turdus viscivorus 2.00 

G2 Larus fuscus 8.00  G1 Anthus trivialis 5.00  G1 Garrulus glandarius 3.00  G1 Carduelis spinus 1.67 

G1 Merops apiaster 8.00  G2 Buteo buteo 5.00  G1 Hirundo daurica 3.00  G1 Columba palumbus 1.67 

G2 Neophron percnopterus 7.33  G1 Ficedula hypoleuca 5.00  G1 Picus viridis 3.00  G2 Larus cachinnans 1.67 

G2 Gyps fulvus 7.00  G1 Luscinia megarhynchos 5.00  G1 Certhia brachydactyla 2.67  G1 Turdus torquatus 1.67 

G2 Pernis apivorus 7.00  G1 Sturnus vulgaris 5.00  G2 Corvus corone 2.67  G1 Aegithalos caudatus 1.33 

G1 Apus pallidus 6.67  G1 Sylvia communis 5.00  G1 Hirundo rustica 2.67  G1 Anas platyrhynchos 1.33 

G2 Elanus caeruleus 6.67  G1 Dendrocopos major 4.00  G1 Motacilla cinerea 2.67  G2 Ardea cinerea 1.33 

G1 Lullula arborea 6.67  G1 Erithacus rubecula 4.00  G1 Muscicapa striata 2.67  G1 Carduelis carduelis 1.33 

G2 Milvus migrans 6.67  G1 Loxia curvirostra 4.00  G1 Oenanthe oenanthe 2.67  G2 Ciconia ciconia 1.33 

G1 Serinus serinus 6.67  G1 Parus caeruleus 4.00  G1 Pica pica 2.67  G1 Cuculus canorus 1.33 

G2 Falco peregrinus 6.00  G2 Phalacrocorax carbo 4.00  G1 Sylvia hortensis 2.67  G1 Emberiza hortulana 1.33 

G1 Galerida cristata 6.00  G1 Phoenicurus ochruros 4.00  G2 Aquila chrysaetos 2.33  G1 Motacilla flava 1.33 

G2 Hieraaetus pennatus 6.00  G1 Sitta europaea 4.00  G2 Falco subbuteo 2.33  G1 Passer domesticus 1.33 

G1 Carduelis cannabina 5.33  G1 Streptopelia turtur 4.00  G1 Gallinago gallinago 2.33  G1 Phoenicurus phoenicurus 1.33 

G1 Carduelis chloris 5.33  G1 Sylvia melanocephala 4.00  G2 Accipiter gentilis 2.00  G1 Regulus regulus 1.33 

G2 Falco tinnunculus 5.33  G1 Turdus philomelos 4.00  G1 Anthus spinoletta 2.00  G1 Jynx torquilla 1.00 

G1 Fringilla coelebs 5.33  G1 Upupa epops 4.00  G2 Ciconia nigra 2.00     

G1 Galerida theklae 5.33  G2 Corvus corax 3.33  G1 Coturnix coturnix 2.00     

G1 Parus ater 5.33  G1 Hippolais polyglotta 3.33  G2 Egretta garzetta 2.00     

3
4
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2.4 Discussion 

The observed mortality numbers varied between the two groups analysed. As shown in 

Figure 4, both present an excessive number of species for which mortality was not observed. This 

means that the mortality distribution clearly shows an excessive number of zero counts, thus 

justifying the choice in using zero-inflated or hurdle models. Additionally, the high values of 

variance indicate the presence of overdispersion (Zuur et al. 2009).  

Both zero-inflated models and hurdle models could be a wise solution to represent the 

studied data. If the excessive number of zeros were ignored and a Poisson and Negative Binomial 

distributions were applied, standard errors and estimated parameters might have been biased and 

extra overdispersion could be caused (Zuur et al. 2009). The main differences between the two 

types of models are related to how the zeros are modelled, as explained above. Considering our 

data, zeros could be produced on the count process, which means some species could effectively 

present zero mortality counts. Therefore, for this ecological data the existences of the two main 

types of zeros: true zeros and false zeros, makes sense. Taken this into account, the zero inflated 

models were more suitable th4n hurdle models for this study (Zuur et al. 2009). 

After setting aside hurdle models, statistical selection criteria were used to choose the 

model distribution that better fits the data (Table 3). These statistical and information criteria 

allowed us to assess the suitability for each model and to perform models validation (Akaike 1974; 

Turkman & Silva 2000; Borgatto 2004). 

The calculated parameters did not show high correlation between observed and fitted 

values. For G2, as presented on Table 3, the coefficient correlation values are close to 0, indicating 

a very weak relation between the observed and estimated values. Also intercept (2.302) and slope 

(0) present values far from 0 and 1, respectively, what also indicates a wicked adjustment between 

fitted and observed values. Therefore, fitted values might not represent reliable estimations. The 

chosen model presents the lower AIC. Thus, for G2 a ZIP model was chosen, instead of a ZINB 

model which presents worst selection criteria. This indicates that, after dealing with excessive 

zeros, a Poisson distribution could easily represent the suited data and deal with possible over 

dispersion. The results also show that the analyses could be biased and data adjustment could be 

improved. This could happen since it was not possible to include all the studied variables on the 

model due to unbalanced samples of those variables. A bigger sample with more balanced values 

could allow the analyses of all the variables.  More factors and more detailed analyses of each one 

could help to explain what truly affects birds’ mortality due to collision with wind turbines. 

For G1 data, a ZINB model shows the best fit compared to the other models under 

evaluation. In this case dealing with the overdispersion caused by zeros was not enough to get a 

better adjustment and a model with Negative Binomial distribution on the count process was 

chosen. This choice was also based on evaluated information criteria (Table 3). As shown in  

Table 3, the Pearson correlation coefficient is also not close to 1, indicating that there was not a 

good adjustment between observed and fitted values. However, slope and intercept indicates a 



36 
 

 

 

better fit, once they are close to 0 and 1, respectively. The ZINB model was chosen not only due to 

its already presented results but also because for G1 it presented the lowest AIC from the tested 

models.  

Results for G1 and G2 models were significantly different. The G1 model presents better 

parameters results indicating a more reliable model. The main differences of the models were in 

the variables that defined each model, which could be related to the samples sizes. G1 has a 

larger sample size with less unbalanced variables. With a larger and/or balanced sample, data 

adjustment could be improved and more factors could be tested. Once the G1 model includes 

more variables, it could give a better understanding about birds’ sensitivity to wind turbines collision 

and may represent a less biased analyses. Both models gave an estimated probability to observe 

mortality for each species, but for G2 models the information is not as reliable as explained before.  

To improve these models other variables should be considered and a higher and more 

balanced sample could allow a more reliable assessment without dividing the species groups. 

Significant factors to explain mortality sensitivity could be related not only to species behaviour and 

characteristics but also to intra-specific factors (e.g.: Henderson et al. 1996; Drewitt & Langston 

2006), environmental conditions (e.g.: Erickson et al. 2001; Drewitt & Langston 2006) and 

alterations on birds population and communities ecological niches (e.g.: Thelander et al. 2003; 

Drewitt & Langston 2006; Kuvlesky et al. 2007) 

According to the literature, the relation of relative abundance and birds mortality presents 

contradictory results (Carrete et al. 2012). Relative abundance was not included in the model for 

G2, whereas for G1 it is a significant variable to positively adjust data, especially on the count 

process when species present higher rates of relative abundance. Langston & Pullan (2003) and 

Smallwood & Thelander (2008) considered that higher birds abundance should present higher 

mortality levels because of a probable higher exposure to the risk, but Fernley et al. (2006), 

Whitfield & Madders (2006) and de Lucas et al. (2008) do not support this idea.  

Barrios & Rodríguez (2004) propose that the risk of fatalities for soaring birds may be 

connected to the density of birds’ movements close to the rotting blades and suggested that this 

could be linked to the species behaviour, especially the flight behaviour. Other authors considered 

that this behaviour is associated with birds mortality (Orloff & Flannery 1993; Thelander et al. 2003; 

Barrios & Rodríguez 2004; Drewitt & Langston 2006). 

Our results indicate that the presence of certain flying behaviours presented higher risk for 

birds (the ones significant on the count part of the model – hovering on G2 model) or higher 

probabilities of generate zero observations (the ones significant on the binomial part of the model – 

presence of gliding on the G1 model). Hovering birds present higher collision risk since this flight 

type is associated with strong and unpredictable winds that could unexpectedly change the birds’ 

position, when they are focused on preys (Smallwood & Thelander 2008; Krijgsveld et al. 2009; 

Marques et al. 2014). Soaring was considered not significant in the G1 once this behaviour is 

almost absent for this group. On the other hand, it characterizes the G2 species, recognised as a 

high vulnerability risk group (Madders & Whitfield 2006). The influence of each flying type could 
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also be associated with the flying altitude that each type entails. Birds that fly in higher altitudes 

could present a higher collision risk due to the proximity to the rotor blades (Furness et al. 2013). 

However, different birds may present different flying types in different proportions, which could 

explain the influence of each flying behaviour (Garthe & Huppop 2004). Analysing this aspect in a 

different perspective and adopting a methodology similar to Bright et al. (2008), Noguera et al. 

(2010) and Furness et al. (2013) could improve this study. In their studies they examined the 

percentage of flying time and the behaviour presented as well as mean heights of flights for each 

specie.  

Furthermore, the risk of these flying types could be influenced by other risk factors, like 

manoeuvrability (Pennycuick 1998). This parameter expresses the aerial agility of species to avoid 

imminent obstacles and is considered a consequence of birds’ morphology rather than behaviour 

(Furness et al. 2013). For example, birds with small wings and high weight, despite having high 

flying speed, present lower manoeuvrability. This means that they present high wing loadings and 

low aspect ratios which results in a greater difficulty to avoid turbine collision (Bevanger 1998; 

Drewitt & Langston 2006; Noguera et al. 2010). This way, birds with lower manoeuvrability, which 

matches to high wing loading and low aspect ratio, present a higher risk of collision with wind farm 

structures (Brown et al. 1992; Bevanger 1998; Garthe & Huppop 2004; Drewitt & Langston 2006; 

Noguera et al. 2010). Both models present manoeuvrability and morphological variables significant 

to model the estimated data. These variables present high collinearity among them and their 

effects are connected. Subsequently, only the representative variables of the group were applied to 

avoid erroneous outcomes in the models. In the G1 the significant variables were average weight 

and aspect ratio. In the G2 only average weight is present, but it also confirms the significance of 

manoeuvrability to understand birds’ collision with wind turbines due to its collinearity relation to 

wing loading and the other morphological variables.  

Both groups present gregarious behaviour as an explanatory variable but with 

contradictory results. For G2 it was a significant variable in the count model, which could also be 

associated with the concentration of bird movements close to higher risk zones and lower levels of 

attention by birds when in flock (Alonso & Alonso 1999; Pettersson 2005; Drewitt & Langston 

2008). However, for G1 it is a significant variable on the Binomial part, influencing zero counts 

observations. This variable and birds fatalities could be influenced also by the combination of other 

factors, such as seasonal factors, avoidance behaviours, wind farm location, habitat specialization 

and probability of area usage by birds. The combination and interaction of these factors may be the 

explanation for the contradictory results presented (Barrios & Rodríguez 2004; Furness et al. 

2013).  

Although resident species may present a higher risk due to longer exposure to the risk of 

collision (Barrios & Rodríguez 2004; Percival 2005), this study indicates that non-resident species 

might show higher sensitivity, as also proposed by Noguera et al. (2010). Resident species might 

be more familiarized with these infrastructures or present avoidance behaviours, which could 

explain lower collision rates (Barrios & Rodríguez 2004; Drewitt & Langston 2008;). Phenology is a 
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significant variable only for G2. For G1, a longer time of exposure may not be a cause of birds’ 

mortality, as migrants may be more exposed to this effect, especially if wind farms are on their 

routes (Dahl et al. 2013; Marques et al. 2014).  

The combination of all the variables of each model allowed inferring the probability of birds 

showing mortality due to collision with wind turbines. These probability analyses also permit the 

comparison of all the species, independently of the group. Nonetheless, as also suggested in Table 

3 and in Annex 2, fitted values may be biased once the final model present a low correlation with 

observed count and inadequacy to model data.  

Among the studied species, the most sensitive to wind turbines collision are Milvus milvus, 

Larus fuscus and Phalacrocorax carbo for the G2 and Apus apus, Lullula arborea and  

Sylvia communis for G1. This reflects the high probability of collision with wind turbines by these 

species due to their morphological and ethological characteristics as described by the respective 

sensitivity models. However, these species are not necessarily the most vulnerable species to this 

impact and consequent to additional mortality on their population. To understand which species are 

more vulnerable, the Fatality Risk Index was established taking into consideration the conservation 

status of the species and their resilience parameters.  

The results show that the species with a highest fatality risk are Milvus milvuss, Apus apus, 

Circus pygargus, Alauda arvensis and Circus cyanus. These species present high sensitivity to 

collision with wind turbines and high vulnerability index. For these species the number of fatalities 

could compromise the renewal capacity of their population. In these cases, impacts of wind farms 

can compromise these species survival, if mitigation measures are not taken into account 

(Noguera et al. 2010). Species like Carduelis chloris, Sylvia melanocephala and Phalacrocorax 

carbo, had high probability for observed mortality but do not present a high Fatality Risk Index. For 

these species, the renewable ability of the population is high and/or the conservation concern is 

low. Additional mortality may not represent a major impact for species survival (Noguera et al. 

2010). However the impacts on these species should not be completely overlooked. Although this 

study gives some indications about which species should be the target of future impact 

assessment and monitoring studies, more detailed studies should be performed to account the 

specificities of the sites and surrounding bird populations as well as reaching stronger and reliable 

predictive models (Madders & Whitfield 2006; Chamberlain et al. 2005; Noguera et al. 2010; de 

Lucas et al. 2012; Furness et al. 2013; Marques et al. 2014).  

These results support the studies that highlight raptors as a highy sensible group to wind 

farms, not only due to their sensitivity to collision but also due to possible barriers effects, 

disturbance, habitat loss and conservation concern (Orloff & Flannery 1992; Barrios & Rodríguez 

2004; Garthe & Huppop 2004; Drewitt & Langston 2006; Madders & Whitfield 2006; Noguera et al. 

2010; de Lucas et al. 2012). However some passerines also present high Fatality Risk Indexes that 

should not be overlooked (Morinha et al. 2014).  
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This type of energy source presents clear advantages and a high potential, as an answer 

for the electricity needs as well as a possibility for climate change mitigation (Amaral 2009). 

Nevertheless reducing or neutralizing its impacts on biodiversity, through better planning and more 

efficient mitigation measures, is also essential, to make this a reliable and truly clean and green 

solution (Ek 2005; Fielding et al. 2006; Gamboa & Munda 2007; de Lucas et al. 2008; Amaral 

2009). 
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CHAPTER 3. FINAL REMARKS 

With this study, it was possible to conclude that different variables influence different 

groups of species. According to the models, the morphological characteristics, manoeuvrability, 

flying type, behaviour and relative abundance are the most significant factors tested. These zero-

inflated models permitted the calculation of the fatality risk index where sensitivity to impact and 

conservation vulnerability were combined. Ranking species with more potential risk is a way to 

prioritise the investment of limited resources in the conservation of species with higher impact risk 

(Desholm 2009).  

The levels of the correlation coefficients between estimated and fitted values obtained 

were extremely low, the selected models should be used with wariness, due to the high probability 

of biased and unreliable results in relation to the impacts on nature. This way, it is essential to 

improve these models and reliability of their results.  

In general, the literature indicates that calculation of indexes should be significantly 

improved. Incorporating a wide variety of factors on models and indexes has been criticized 

because the variables tested may present different scales which could be incomparable and 

incompatible. Multi-collinearity among factors could also occur and bias the models (Desholm 

2009; Furness et al. 2013).  

Other problems about building this kind of models and with their results reliability are the 

inconsistency in sampling and the limited number of long-term studies (de Lucas et al. 2008; 

Drewitt & Langston 2008). The development and application of precise and standardized search 

methods are fundamental to obtain more reliable estimations (Paula et al. 2011). This can also 

enable studies comparison (Drewitt & Langston 2008). The field observations should be corrected 

by detection probabilities and rates of scavengers’ removal (Langston & Pullan 2003). In the future, 

more studies about avoidance rates should be performed and taken into consideration in collision 

risk models as a determinant factor influencing estimated mortality values (Chamberlain et al. 

2005; Furness et al. 2013). Better assessments tools can also allow the development of more 

objective, complete and reliable models and indexes (Madders & Whitfield 2006).  

During the last few years the knowledge about these impacts and how birds are influenced 

by wind farms is increasing, but complete information is still low (Marques et al. 2014). This way, 

more studies should be performed to fill existing information gaps and strengthen the reliability of 

the available data (Noguera et al. 2010). 

This kind of models and indexes are fundamental to reach a better understanding of the 

factors that influence birds’ mortality by turbine collision. This is why models and indexes should be 

continuously re-evaluated and upgraded (Chamberlain et al. 2005; Madders & Whitfield 2006; 

Desholm 2009; Furness et al. 2013). This knowledge is fundamental to improve future studies, 

development of more suitable methodologies and impacts predictions (Drewitt & Langston 2006; 

de Lucas et al. 2008).  
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In the future, the models created and the fatality risk index calculated in this research could 

be used to build vulnerability maps (e.g.: Garthe & Huppop 2004; Bright et al. 2008; Bright et al. 

2009; Noguera et al. 2010; Furness et al. 2013;). Vulnerability maps could represent great tools in 

wind farm location selection (Noguera et al. 2010; Furness et al. 2013). The development of these 

spatial models and indexes allow the prediction of the impacts of one wind farm as well as the 

cumulative effects of infrastructures groups across extensive areas. These spatial models are 

additional tools to improve impacts assessments (Furness et al. 2013; Marques et al. 2014).  

Although most studies present low mortality rates, even these low values could bring great 

impacts on species and respective population (Langston & Pullan 2003; Madders & Whitfield 2006; 

Drewitt & Langston 2008; de Lucas et al. 2012). At any stage of a wind farm project impact 

minimization measures should be considered. A good project planning of wind farms is vital to 

achieve minimal impacts on avifauna (Fielding et al. 2006; de Lucas et al. 2008; Marques et al. 

2014).  

The right location of wind turbines is the most effective measure to reduce negative 

impacts on wildlife (de Lucas et al. 2012; Marques et al. 2014). At a planning stage, identification of 

potential sensitive locations by spatial fatality models or the avoidance of areas with high densities 

of threatened species or prone to collisions could be a strategy to minimize impacts as well as the 

avoidance of conservation key areas  (Drewitt & Langston 2006; Fielding et al. 2006; Madders & 

Whitfield 2006; de Lucas et al. 2008; de Lucas et al. 2012; Northrup & Wittemyer 2013; Marques et 

al. 2014). 

After wind farms construction, different impacts mitigation measures could be applied. 

Replacing wind turbines that present higher effects on flying vertebrates for less problematic sites 

could be an example of an impact reduction measure (Northrup & Wittemyer 2013; Marques et al. 

2014). Stopping turbines on demand in potentially hazardous situations may also be an alternative 

measure that could be used with minimal effects on energy production (de Lucas et al. 2012). 

Other alternative is the restriction of turbines operation during expected potential periods, like high 

birds’ activity periods and adverse climate weather episodes. However, this may implicate higher 

effects on the energetic production then the measures mentioned above (Smallwood & Karas 

2009; Marques et al. 2014).  

Technical and scientific developments are also powerful tools in negative impacts 

mitigation. Advances on turbines design and technology could improve turbine visibility for birds 

(Marques et al. 2014). Radars, cameras, telemetry and other systems are other technologies in 

development that could give important contributions in different topics, such as identification of 

risky situations and assessments of behavioural information (Drewitt & Langston 2006; de Lucas et 

al. 2012; Marques et al. 2014). Deterrents devices, like laser or bioacoustics stimulus, could also 

be used but habituation to the stimuli could occur. However, this could have other unpredictable 

effects on birds (Marques et al. 2014). 
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Habitat modification techniques are another possible minimization method examined by 

Marques et al. (2014). With these techniques the wind farms areas usage by birds could be 

decreased as well as alternative usage areas could be created and incremented (Marques et al. 

2014). 

After construction, monitoring programs are essential to evaluate the effectiveness of the 

implemented measures and potentiate their improvement and increasing knowledge about this 

issue. In extreme situations, compensatory measures by enhancing target populations or 

minimizing other human impacts on birds might be considered (Amaral 2009; Marques et al. 2014).  

Monitoring and environmental impacts studies are relevant at all stages of a wind farm 

project (Amaral 2009). Before-after control impact approaches are also crucial to reach a better 

understanding of factors that influence these impacts, getting reliable results and assess mitigation 

measures effectiveness (Marques et al. 2014). 

Wind energy still depends on technological advances to solve some constrains, such as 

wind intermittency and its integration on electric grid, to turn this into a real alternative to fossil 

fuels. However, new technologies could bring new conservation questions. But, at the same time, 

this developments could at the same time bring new knowledge in how wind farms impacts could 

be reduced (Wiser et al. 2011; Marques et al. 2014).  

Compared to other human interferences, such as illegal shooting, windows, power lines, 

poisoning, cars and pets, wind farms present the lowest mortality rates, not exceeding 40 deaths 

per turbine per year (Drewitt & Langston 2008; Sovacool 2009). These differences between 

impacts rates of different activities are especially relevant when it is compared with the 

considerable impacts caused by fossil fuels exploration. Climate change could also present 

devastating impacts on wildlife and may be the cause of the extinction of 15% to 37% of global 

species by 2050 (Bright et al. 2009). 

In conclusion, climate change is an enormous threat not only to humans but also to wildlife. 

Sustainable expansion of renewable energy is an essential tool in climate change mitigation (Bright 

et al. 2009) and to accomplish climate and energetic international commitments. Both wind energy 

enlargement and environmental associated topics need further research and depend on close 

collaboration between industry, governments and researchers (Drewitt & Langston 2008; Wiser et 

al. 2011). A better understanding of this issue is vital to minimize impacts and improve alternative 

energies exploration for a greener future (Panwar et al. 2011). 
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ANNEX 1 

 



 

Bibliography source of the data used for each variable. 

Variable References 

Morphological Variables 
(weight; length; wingspan) 

Cramp & Simmons 2004 

Wing Area BOS 2014 and some data provided by Sander Gussekloo, Experimental 
Zoology Group, Wageningen University, The Netherlands 

Flight type Cramp & Simmons 2004 

Gregarious Behaviour Cramp & Simmons 2004 

Phenology Equipa Atlas, 2008; Catry et al. 2010 

Conservation Status Cabral et al. 2005 

Breeding Capacity Cramp & Simmons 2004 

Population Trend Equipa Atlas, 2008; Catry et al. 2010 
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ANNEX 2 

 



 

 

Fitted Values for Mortaliy (FM) calculated with the selected models. 

G1 
 
 

 
 

G1 
 
 

 
 

G1 
 
 

 
 

G2 
 

 

Species FM  Species FM  Species FM  Species FM 

Aegithalos caudatus 0.43  Galerida theklae 2.75  Pica pica 0.57  Accipiter gentilis 0.03 

Alauda arvensis 7.92  Fringilla coelebs 9.20  Picus viridis 1.17  Accipiter nisus 0.35 

Anas platyrhynchos 0.06  Galerida cristata 1.55  Prunella modularis 8.64  Aquila chrysaetos 0.00 

Anthus campestris 1.35  Galerida theklae 2.75  Ptyonoprogne rupestris 0.93  Ardea cinerea 0.00 

Anthus pratensis 1.89  Gallinago gallinago 0.08  Pyrrhula pyrrhula 0.56  Buteo buteo 3.53 

Anthus spinoletta 0.01  Garrulus glandarius 1.21  Regulus regulus 0.36  Ciconia ciconia 0.00 

Anthus trivialis 2.26  Hippolais polyglotta 0.91  Riparia riparia 1.00  Ciconia nigra 0.02 

Apus apus 15.93  Hirundo daurica 1.16  Saxicola rubetra 0.35  Circus cyaneus 3.58 

Apus pallidus 3.62  Hirundo rustica 0.89  Serinus serinus 6.19  Circus pygargus 4.40 

Carduelis cannabina 5.66  Jynx torquilla 0.27  Sitta europaea 1.36  Corvus corax 0.18 

Carduelis carduelis 0.49  Loxia curvirostra 0.89  Streptopelia decaocto 0.68  Corvus corone 0.18 

Carduelis chloris 2.52  Lullula arborea 10.23  Streptopelia turtur 0.90  Egretta garzetta 0.21 

Carduelis spinus 0.10  Luscinia megarhynchos 1.72  Sturnus unicolor 14.51  Elanus caeruleus 13.18 

Certhia brachydactyla 1.07  Merops apiaster 2.31  Sturnus vulgaris 1.53  Falco peregrinus 3.43 

Columba livia 1.68  Motacilla alba 0.79  Sylvia atricapilla 0.84  Falco subbuteo 0.03 

Columba palumbus 0.07  Motacilla cinerea 0.58  Sylvia communis 1.14  Falco tinnunculus 13.88 

Coturnix coturnix 0.13  Motacilla flava 0.08  Sylvia hortensis 0.85  Gyps fulvus 1.00 

Aegithalos caudatus 0.43  Muscicapa striata 0.62  Sylvia melanocephala 9.84  Hieraaetus pennatus 0.32 

Alauda arvensis 7.92  Oenanthe oenanthe 0.68  Troglodytes troglodytes 7.68  Larus cachinnans 0.06 

Anas platyrhynchos 0.06  Parus ater 3.25  Turdus merula 1.09  Larus fuscus 665235.60 

Cuculus canorus 0.35  Parus caeruleus 1.62  Turdus philomelos 1.95  Milvus migrans 2334.32 

Dendrocopos major 1.39  Parus cristatus 2.94  Turdus torquatus 0.03  Milvus milvus 1213125.52 

Emberiza hortulana 0.40  Parus major 2.52  Turdus viscivorus 0.29  Neophron percnopterus 0.21 

Erithacus rubecula 8.32  Passer domesticus 0.41  Upupa epops 1.51  Pernis apivorus 2.23 

Ficedula hypoleuca 1.35  Phoenicurus ochruros 1.45     Phalacrocorax carbo 64878.90 

Fringilla coelebs 9.20  Phoenicurus phoenicurus 0.24     Accipiter gentilis 0.03 

Galerida cristata 1.55  Phylloscopus trochilus 0.85       

 


