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Abstract

The geochemical fractionation of metals in soils and sediments corresponds to a tech-
nique to evaluate the levels of contamination and their probability of transfer to bodies of 
water and biota. For environmental studies in water reservoirs, the results of geochemi-
cal fractionation added to physicochemical analysis of water, can define the environ-
mental conditions of metal release. This chapter briefly presents the concept and some 
fractionation techniques, with emphasis on the BCR methodology, in conjunction with 
other analyzes of water from the bottom of the reservoir to evaluate the dynamics of 
Mn mobilization in the Riogrande reservoir in Colombia, as example of practical appli-
cation of Geochemical Fractionation. The highest proportions of Mn in the sediments 
of the Riogrande II reservoir were found in the exchangeable fraction and associated 
with carbonates, however the diffraction analysis did not find carbonated phases. It was 
concluded that the Mn in the water of the bottom of the Riogrande II reservoir origi-
nated especially by processes of desorption of Mn, in addition to reductive dissolution 
of oxyhydroxides.

Keywords: geochemical fractionation, sediments, BCR protocol, metal mobility, Mn 
dynamics in sediment-water interface

1. Introduction

The geochemical fractionation methodology allows establishing the proportions of groups, 

fractions or different forms of metals associated with materials such as soils, sediments and 
sludge, however it is necessary to combine these results with other analyzes such as miner-

alogical analysis, diffractometry, geoavailability, bioaccessibility and bioavailability analysis, 
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for a complete environmental study. In this chapter of the book “Fractionation”, an explana-

tion is given for the concept of Geochemical Fractionation, its importance, the BCR meth-

odology and its application to the release of metals such as Mn in sediments, applied to the 

Riogrande II Water Reservoir in Colombia.

2. The problem of water contamination in reservoirs by the release 

of heavy metals from sediments

2.1. Metals in sediments in water reservoirs and lakes

The sediments of the reservoirs, lakes and oceans reflect a recent environmental history, since 
they are geological records of climatic changes, geodynamic processes, land uses and espe-

cially human activity that positively or negatively impacted the environment. The sediments 

are characterized by the storage of important concentrations of heavy metals and xenobiotic 

substances due to their high adsorbent capacity, the product of a number of functional groups 

that allow them to form surface complexes. However, the potential for release and contami-

nation of water from sediments depends on: total concentrations of all substances, environ-

mental conditions of the bottom water (pH, ORP-Eh and organic matter) and forms in which 
metals are found in the sediments (metals fractions).

Metals have several physicochemical properties and especially different valences, which allows 
them to be found in different chemical forms or fractions in solid materials such as soil, sediments 
and mining mud. Some of these forms or geochemical forms are more available than others; so, 

their release and mobilization to an aqueous phase occurs with slight changes in pH, ORP-Eh [1],  

temperature and electrical conductivity. The water quality of a reservoir is affected by the presence 
of dissolved metals and by the conditions and mechanisms of release from the soil or sediments [2],  

and it has been found that the physicochemical and biological properties and conditions of water 

quality are affected by external factors such as topography, climate and especially human activity [3],  

this is how, in general, the most mobile metal form, such as the interchangeable form or fraction, 

are related to released metals by mining or industrial activity. The sediment is normally located 

in the lower layer of hypolimnion, where the anoxic and reducing conditions cause several solu-

ble compounds to increase their concentration, especially in the interstitial water through disso-

lution or reduction and diffuse to the lower layer of water. Temperature as the factor of thermal 
stratification is an abiotic factor that controls important processes for organisms, likewise it 
affects the physicochemical properties and other abiotic factors [4, 5]. Within the geochemical 

fractions or metals forms, when particles settle in a reservoir, a large part of the metal is in an 
adsorbed form, however in the Hypolimnion, the strongly reducing conditions can dissolve the 

oxides and consequently release the metals towards the water column [6].

The anaerobic zones, and specifically the deep water masses of the lakes and lagoons, pres-

ent physical and chemical properties completely different to the more superficial waters, in 
addition to the temperature. Two of the physicochemical parameters that define ecosystem 
conditions correspond to dissolved oxygen as to the redox potential, which as it deepens in 

the water column decreases and forms two profiles similar to the temperature, with their cor-

responding points of inflection: oxycline and redoxcline, which can occur both in the water 
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column, as in the water-sediment limit, however the abrupt decrease of the potential in the 

redoxcline is not due to the depletion of oxygen, but due to the appearance of reducing sub-

stances such as hydrogen sulfide (H
2
S), [7]. In general, in sediments under anoxic conditions, 

oxidizable metals forms predominate (reduced species), associated with organic and residual 
matter, while reducible (oxides) and interchangeable metals forms tend to be unstable and are 
easily solubilized [8]. Metals have a differential behavior in lentic or semilentic bodies of water 
where epilimnion oxygen-rich conditions predominate. It forms oxidized species (reducible 
metal forms), which tend to be insoluble and precipitate forming a sediment rich in oxidized 
solid phases (M3+ or M4+), likewise other minerals such as clays with their negative charge, 
transport on their surface metals, forming complexes of external surface, which can also be 

submerged in the reservoir. At the bottom of the hypolimnion and sediment, the anoxic and 
reducing conditions, as well as biological processes, release it in the form of reduced (M2+), 
complex and soluble species, whose oxidation process is very sensitive to heterogeneous and 

homogeneous catalysis, and it is dependent on pH and dissolved oxygen. This process is 

accelerated by the presence of microbial catalysis through different stages; it has been found 
that in the sediment, the movement of ions such as Mn and Fe towards the water column may 

be coupled with an eventual and possible H
2
S formation [9, 10].

The redox conditions can influence the behavior of the trace metals in sediments and affect the 
proportions of the metals forms, either directly or indirectly through changes in the oxidation 

states of the ligands capable of complexing the metal; for example, changes in the redox con-

ditions can cause the reductive dissolution of mineral species that have some adsorbed met-

als (oxyhydroxides that can be reduced and desorb metal ions): ORP-Eh values higher than 
+414 mV are considered oxic and oxidizing, the probability of metal release is low; ORP-Eh 
values between +414 and + 120 mV indicate sub-toxic, moderately reducing conditions, under 

these redox potentials the species are controlled by the redox reactions of Mn and Fe [11], 

ORP-Eh between +250 and +100 mV, the metal oxyhydroxides are unstable and the process 
of dissolution of most metal oxides begins, and ORP-Eh values lower than −120 mV, the sedi-
ment is considered anoxic [11, 12]. If the oxidized layer is less than 5 cm, it is considered that 

the sediment is dominated by Mn2+ flow, the difference with the standard value of reduction 
of Mn (+526 mV), it is because this value is referenced to a pH = 7.0 and T = 25°C, while a value 
of +414 mV is more appropriate under environmental conditions.

2.2. Release of heavy metals and water contamination

In natural systems, the release and mobilization of metals normally occurs through soluble 

phases; so, the evaluation of the contamination of a soil or sediment cannot be based on its 

total concentration of the metal, since the potentially contaminating from metals depends 

on the chemical form or geochemical fraction in which the metal is found. In addition, the 

dissolved metal cations are subject to several mobilization or fixation processes depend-

ing on factors such as pH, ORP-Eh, presence of both soluble and insoluble organic matter, 
and ionic strength [13, 14]. The release, mobility and toxicity of metals depends both on 

the proportions of them in the geochemical fractions and the environmental conditions at 

the bottom of a body of water (pH, ORP-Eh, DO, OM and EC), [15–20]. However, several 

authors have shown the co-precipitation of some metals in the form of complexes with solid 

fractions [21].

Application of the Geochemical Fractionation of Metals in Sediments for Environmental Analysis of a Water...
http://dx.doi.org/10.5772/intechopen.76223

15



The present metals in the sediments of a reservoir can eventually contaminate the water, when 

the physicochemical conditions of the hypolimnion and the benthic zone can produce processes 

such as desorption, dissolution of carbonates and reductive dissolution of oxides (Especially 
oxyhydroxides of Mn and Fe), mobilizing and releasing these metals, and other adsorbed: As 
and Cd [22]. In addition, the Mn and Fe can be mobilized as a product of the dissolution of sul-

fides generating H
2
S, a product of the reduction of mineral sulfides such as Pyrite FeS

2
 [23], or 

can be immobilized either by adsorption to volatile sulfides in acids (AVS: soluble FeS + insolu-

ble FeS) under conditions of sulfate reduction [24], However, compared to Fe, adsorption of Mn 

is usually much lower in AVS [25]. In the environmental studies on metals in bodies of water, 

the topics of [26] are very important: the determination of the distribution and concentration 

of elements of environmental significance in the study area, the understanding the mobility of 
the elements through the different environmental systems and the identification of the relation-

ships between the geochemical behavior of these elements and their impacts on biota.

Sediments act as sinks and sources of pollutants in aquatic systems due to their variable physical 

and chemical properties [27]. An important aspect when using soils and sediments as a record 

or indicator of metal contamination is to define the degree of enrichment, both natural and 
anthropic, according to the concentration of a contaminating metal. The sediment can be clas-

sified as contaminated or not, according to the proportion of metal concentration in relation to 
non-contaminated zones, according to its enrichment compared to threshold levels and accord-

ing to sediment quality guidelines (SQC), [27, 28]. Among others, the Igeo Geoaccumulation 

Index, the FC Contamination Factor (FC) and the EF Enrichment Factor [29] are used. To deter-

mine the relative degree of contamination, comparisons are made with threshold concentra-

tions of standard geological materials, such factors are commonly determined to characterize 

the magnitude of metal contamination in environmental samples [30]. However, one of the 

disadvantages of these systems of environmental soil evaluation is that they are based mainly 

on the total concentration and not on the geochemical fractions.

Contamination by heavy metals in the soil or sediment can represent risks for humans and the 

ecosystem through: direct ingestion or contact with contaminated soil, food chain (soil-plant-
human or soil-plant-animal-human), consumption of contaminated soil water, decrease in the 
quality of food, reduction of land use capacity and problems of land tenure [31]. A metal reaches 

a body of water in various forms: mineral particle with potential to precipitate depending on 

the size and hydrological dynamics of the body of water, soluble free or forming complexes 

and adsorbed by solid phases; the soluble form can be rapidly adsorbed by other solid phases 

(interchangeable fraction) and is carried to the sediments when the soluble and insoluble metal-
lic mineral phases pass from an oxic environment to an anoxic environment (precipitation or 
sedimentation), remaining under a complex series of biogeochemical processes [10, 32].

In the sediment, oxides, silicates, carbonates and organic matter are deposited more or less 
quickly. The organic matter being initially attacked in the sediments by bacteria, oxidizing it in 
its order with O

2
, NO3−, MnO

2
, Fe (OH)

3
, SO

4
2− and finally CO

2
, transforming it into oxic water 

bodies, whose change of redox conditions occurs very close to the water-sediment limit. That 

gradient is usually referred to redoxcline. The redox potential measured in sediments is basically 

influenced by the microbial activity in its process of degradation of organic matter, which in turn 
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depends on the availability and concentration of oxidizing agents [33, 34, 35]. The microbial deg-

radation of the organic matter in the sediments is the mechanism that causes the reducing condi-
tions, when an oxidation of the organic debris takes place, generating in the interstitial waters 

and base of the water column a decrease of the ORP-Eh values, whose reducing conditions can 
release metals such as Fe and Mn, affecting the quality of water and its potential use [6, 36].

The distribution of metals in the geochemical fractions in sediments should not be interpreted 

as a historical record of sedimentation, due to redox remobilization processes and the action 

of organisms in the upper layers of the sediment. The reducing processes under the water-

sediment limit produce and release chemical compounds such as CH
4
, NH

4
+, H

2
S, Fe2+ and 

Mn2+, while the oxidation of the organic matter produces HCO3− and NH4+, in this sense the 

abrupt decrease of dissolved oxygen is generated not only by the oxidation of organic matter 
but also by the oxidation of CH

4
, NH4+ and HS− [37, 38]. The models of release and mobili-

zation of metals in the redox limit establishes a sedimentation or continuous deposition of 

detritus and mineral compounds from a column of hydrogen peroxide, and a source of fresh 

oxidized material from the upper and outer part, when this particulate material sediment 

and find the redox limit (oxic-anoxic region), it is reduced to its divalent forms, thus produc-

ing a point source of soluble metal in the redox limit; as the soluble metals diffuse (turbulent 
diffusion or molecular diffusion), up and down its point source generates two concentration 
profiles: an upper profile belonging to the insoluble species, caused by the gravitational accu-

mulation of oxygen-metal hydroxides (M2+), which dissolve at the redox limit and a lower 
profile belonging to the soluble species caused by the reductive dissolution of the solid phases 
of the metal, and whose concentration is higher towards the redox limit, where the migration 

upwards it, produces oxidation and formation of new oxidized insoluble species (Figure 1).

There are two basic approaches for the determination of the distribution of metals in the sediments: 

the theoretical one based on thermodynamic calculations that has the problem of incomplete data, 

and the other one is the experimental that involves a separation of fractions using a procedure or 

extraction sequential scheme (ESS), such as Tesier, BCR or others, these methods allow identifying 
phases or forms to be measured from very available to very low available [39, 40].

Figure 1. Conceptual model of the metals sensitive to redox processes (Mn and Fe), showing the profiles of the soluble 
and particulate forms. Source: adapted and modified [10].
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3. Environmental study of water contamination and the advantages 

of the application of the geochemical fractionation methodology

3.1. Geochemical fractionation methodology

The geochemical fractionation is a laboratory process based on the application of selective 

chemical extractions, where the mobility of metals in soils and sediments is studied, imitating 

different environmental conditions or strong changes. This method or laboratory procedure 
is based on the rational use of a series of more or less selective reagents chosen to successively 

solubilize different mineralogical fractions that are believed to be responsible for retaining a 
large part of the trace elements [41]. Chemical extractions are used to evaluate operationally 

defined metal fractions, which may be related to particular chemical species, as well as to 
the potential mobility, bioavailability and ecotoxic phases of a sample, however, the results 

obtained by the extractions are dependent on the procedure applied [39, 42], so it is con-

sidered a very accurate approach to the environmental analysis of metal pollution in soils, 

sludges and sediments. Metals of anthropogenic origin are generally introduced into the envi-

ronment as aqueous ions and inorganic complexes, which are easily adsorbed on suspended 

particles through weak chemical bonds to mineral grains and particles; these metals are pre-

dominantly belonging to the labile extractable fraction of the sediments [40].

In uncontaminated soils and sediments, trace metals occur mainly as relatively immobile 

species in silicates and primary minerals, as a result of weathering, a trace element fraction 

is gradually transferred to accessible forms for plants. In contaminated soils, the entrance 

of metals in almost all cases occurs in forms not associated with silicates. In the sediments, 

the situation is very similar, metallic species can exist in different forms [42]: in solution, 

ionic or colloidal, inorganic and organic complexes interchangeable, complexes where metals 

are strongly bound, insoluble mineral and organic phases and resistant secondary minerals. 

From a practical point of view, the geochemical fractionation of metals is achieved by sequen-

tial treatments that involve the use of chemical reagents, which are applied sequentially to a 

portion of the solid sample. The general applications of chemical extraction schemes are sum-

marized in: characterization of pollution sources, evaluation of metal mobility and bioavail-

ability and identification of metal link sites to evaluate the accumulation of metals, pollution 
and transport mechanisms.

In all the geochemical fractionation schemes, the extractants are applied in order to increase 

the reactivity to the successive fractions corresponding to forms with decreasing mobilities, 

most of the schemes or extraction sequences recommend the decomposition of the organic 

matter before the liberation of the subsequent metallic fractions [43]. Although sequential 

extractions are not specific to extracting the bound element from the solid fraction, they pro-

vide comparative information on metal mobility under changing environmental conditions, 

thus, the use of this approach can help to understand the relative contribution of metal sources 

and help in the prediction of trace element mobility [44]. Several extraction schemes have been 

designed for the determination of the forms of metals in soils and sediments, although with 

their limitations, sequential extraction is widely used to assess the relative importance of the 
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different chemical forms that may be present in soils and sediments. However, the reagents 
used, the times and fractions extracted depend on the objectives set out in the research proj-

ects. The geochemical fractionation protocols present a common methodology based on the 

successive exposure of a solid sample to extractant solutions of increasing strength and/or of 

different characteristics. The chemical reagents are classified according to their mode of action 
[45]: concentrated inert electrolytes, weak acid, reducing agents, complexing agents, oxidiz-

ing agents and strong acids.

The sequential extraction schemes seek to solubilize the following fractions (Figure 2):

Exchangeable fraction: the metals in this fraction are bound to sediments or soil by weak 

adsorption in the particles, they are species bound by weak interactions of electrostatic type 

and released by ion exchange processes. Changes in the ionic strength of the interstitial water 

affects adsorption-desorption or ion exchange processes result in the release of metals at the 
sediment-water, soil-water interface.

Fraction bound to carbonates: metals bound to carbonates are sensitive to changes in pH, the 

increase in acidity liberates metal cations, achieving the release of the metal through the dis-

solution of a fraction of solid material. The metal fraction recovered in the acid soluble phase 

is co-precipitated with carbonates, and specifically adsorbed at some sites on the surface of 
the clays, organic matter and oxyhydroxides of Fe-Mn.

Fraction linked to oxides of Fe-Mn or reducible fraction: metals bound to oxides are unstable under 

reducing conditions, these conditions result in the release of metal ions. The oxides of Mn and 

Fe are excellent “sweepers” of metals.

Fraction linked to organic matter or oxidizable fraction: the degradation of organic matter under 
oxidizing conditions can release soluble metals bound to these materials. Trace elements can 

be incorporated in many forms to organic matter, including living organisms, organic lay-

ers on inorganic particles and biological detritus. In sediments and soils, the organic content 

comprises humic substances and to a lesser degree proteins, carbohydrates, peptides, amino 

acids and resins, whose organic material tends to be degraded under oxidizing conditions, 

allowing the release of the sorbed metals.

Residual fraction: this fraction contains minerals, which may contain metals in their crystal-

line networks. Primary and secondary minerals contain metals in their crystalline structures, 
constituting the total of this fraction.

In general, the exchangeable fraction corresponds to the way in which the metal is more avail-

able for consumption by the plants and that can be released with simply changes in the ionic 

strength of the medium [46]. The content of metals bound to carbonates is sensitive to changes 

in pH and becomes mobile when the pH decreases. The fraction of metals bound to oxyhy-

droxides can be mobilized with the increase or reduction of oxidizing conditions in the envi-

ronment; finally, the fraction associated with the residual fraction can be mobilized only as a 
result of long-term weathering [43]. The different schemes for the extraction of metals during 
geochemical fractionation are based on sequences ranging from three to five or more steps.

Application of the Geochemical Fractionation of Metals in Sediments for Environmental Analysis of a Water...
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3.2. The role of geochemical fractionation and the BCR methodology

The importance of geochemical fractionation or metals forms is not only to determine the 

groups in which metals are distributed in a soil or sediment, the most important thing is to 

be able to relate these results to the chemical conditions of the bottom water of a reservoir 
and the water of pore, and its variations in time (pH, EC, ORP-Eh and organic matter), and 
thus be able to infer when or under what conditions can begin to release metals. Among the 

established and well-known extraction schemes for metal extraction are:

3.2.1. Methodology of Tessier

It corresponds to one of the initial methodologies to establish the fractions of metals, devel-

oped in the year 1979 [47]. It determines five fractions of metals in matrices such as soils and 
sediments: Fraction 1: soluble in water and interchangeable, Fraction 2: associated with car-

bonates, Fraction 3: linked to oxides of Fe and Mn, Fraction 4: linked to organic matter and 
Fraction 5: residual, linked to complex oxides and silicates.

Figure 2. Metals forms or geochemical fractions of metals in sediments, soils or sludges.
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3.2.2. Methodology of bloom (emphasis on the extraction of non-volatile mercury fractions)

This methodology is very applied to mining and industrial sludge where Hg is one of the 

main pollutants, also determines five fractions, but with some differences: F1: soluble in water 
(Hg-w), F2: interchangeable (soluble in stomach acid Hg-I), F3: chelated organ (Hg-O), F4: 
elemental mercury (Hg-E) and F5: mercury sulfide (Hg-s) [48].

3.2.3. BCR methodology

Developed by the European Community, with the Measurement and Testing Program (BCR) 
[44], where several authors have defined the following fractions as the most important [40]. 

The BCR geochemical fractionation (European Community Reference Office—BCR), in order 
to determine the concentrations of metals according to their availability: BCR1: interchange-

able metal, adsorbed and bound to carbonates, BCR2: metal reducible or associated with 

oxides, BCR3: metal associated with organic matter and sulfides and residual: mineral in sili-
cates and other mineral phases [49].

The applied protocol in BCR Methodology [50] is:

• Interchangeable fraction and soluble in acid, BCR1: to 1 g of dry sediment is added 40 ml 

of 0.11 M acetic acid, it is stirred at 400 rpm, for 16 h. Centrifuge for 20 min at 3600 rpm, 

collect the supernatant for reading in AA or by ICP. The sediment is then washed with 
distilled water, stirring the sample with 20 ml, centrifuging 20 min at 3600 rpm, discarding 

the supernatant.

• Reducible fraction, BCR2: to the remaining sediment of the BCR1 extraction, 40 ml of 

0.5 M hydroxylamine (pH = 1.5) is added, it is stirred at 400 rpm, for 16 h. It is then centri-
fuged 20 min at 3600 rpm, the supernatant is collected for reading in AA or by ICP. The sed-

iment is washed with distilled water, stirring the sample with 20 ml, centrifuging 20 min at 

3600 rpm, discarding supernatant.

• Oxidizable fraction, BCR3: to the remaining sediment of the BCR2 extraction, initially 

10 ml of 8.8 M hydrogen peroxide is added, it is heated in water to 85° C for 1 h, and it is 
left to cool. The operation is repeated until all the organic matter is oxidized. About 50 ml 
of 1 M ammonium acetate is added at pH = 2.0, stirring at 400 rpm, for 16 h. Centrifuge 
for 20 min at 3600 rpm, collect the supernatant for reading in AA or by ICP. The sedi-
ment is washed with distilled water, stirring the sample with 20 ml, centrifuging 20 min at 

3600 rpm, discarding the supernatant.

• Residual metal: the metallic fraction associated with the sediment after washing is con-

sidered the residual extracted with the mixture of hydrochloric acid (HCl) and nitric acid 
(HNO

3
) in a ratio of 1:3.

The two reasons why the latter methodology was selected for the study of the mobility of Mn 
in the Riogrande II reservoir were the simplicity in the fractions with respect to the Tessier 

methodology and the existence of reference materials.

Application of the Geochemical Fractionation of Metals in Sediments for Environmental Analysis of a Water...
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3.3. The complete environmental study for the metals in water reservoir

When the potential for water contamination is to be evaluated, based on the geochemical 

fractionation data of the sediments, the following analyzes are also included for the complete 

environmental study for the metals in water reservoir:

• Spatial time variations of the factors: pH, redox potential, electric conductivity, dissolved 

oxygen and temperature both in the bottom water and in the interstitial water.

• Proportions of organic matter, texture and mineralogy of the sediments using various tech-

niques to associate mineral phases with the metals found in the fractionation.

• Experimental tests in columns with the sediments and the background water, making them 
vary in time especially in the pH and dissolved oxygen factors (modifying them), and eval-
uating the behavior of the metals in the water column.

• Analysis of soluble metals at least 50 cm above the water sediment limit and 1 m below that 

limit considering sampling points at least every 2 cm.

• Analysis of diffractometry with scanning electron microscopy, in order to verify the min-

eral phases predicted in the geochemical fractionation.

However, since a few years ago, the following three analyzes are being emphasized to assess 

the contamination of a metal in a soil, sediment or body of water: available fraction (cor-

responds especially to the BCR1 + BCR2 fractions, the extraction of the available phase is a 

simple extraction and can be done with: HCL 1 N-CH
3
COOH 0.11 M-Na

2
EDTA 0.05 M-CaCl

2
 

0.01 M-NH
4
NO

3
 0.1 M-Ca (NO

3
)

2
 0.1 M [28, 51, 52]), bioaccessible fraction (corresponds to 

the fraction of the substance that once released enters an organism via ingestion, inhalation 

or dermal contact [53, 54], the extraction of this fraction is also simple and is generally done 

with: acidified 0.4 M glycine (pH = 1.5) and it is then neutralized (pH = 7.0) that would cor-

respond to the gastric and intestinal fluid [55, 56]) and bioavailable fraction (fraction that is 
accumulated in vegetable and/or animal tissues [51, 52]).

4. Case study: application of geochemical fractionation in the 

Colombian reservoir

4.1. The Riogrande II reservoir (Antioquia-Colombia), its location and other related 

information

In the Riogrande II reservoir (Antioquia-Colombia) there have been concentrations of Mn 
that eventually affected negatively the quality of the water resource, especially due to color 
effects, prior to the treatment in the potabilization plant that supplies water to the city of 
Medellin (Colombia). In order to implement the necessary controls, it was necessary to know 
and analyze the geochemical dynamics of Mn from the geochemical fractionation, its relations 

with the physicochemical conditions of the reservoir and finally determine the conditions of 
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release from the sediment. The Riogrande II reservoir (6° 32.62 N, 75° 27.27 W) is located in 
the jurisdiction of the municipalities of Don Matías, San Pedro, Belmira, Santa Rosa de Osos 
and Entrerríos to the North of the city of Medellin (Department of Antioquia—Colombia) [57].

4.2. Mn in the sediments of this reservoir and its significance

In natural and artificial water bodies, such as reservoirs, sediments are important in water 
quality, since changes in redox conditions can dissolve oxy- hydroxides of Mn and Fe, mobiliz-

ing and releasing these metals [22]. The manganese is the third element of the most abundant 

transition metals in the earth’s crust [58], as a transition metal it gives an important behavior 

at the level of oxide-reduction, and it facilitates the formation of complexes, being one of the 

most abundant elements of the earth’s crust. It is found in the ground, sediments, rocks, water 

and in biological products; at least a hundred minerals contain it [59]. Mn is a metal that is very 

sensitive to redox changes in soils and natural waters. In humid soil conditions, Mn tends to be 

in its reduced and mobile form. It is well-known that the concentrations of soluble forms of Mn 

undergo strong changes in the depth of water columns where oxygen depletion occurs, which 

is strongly associated to the oxidation of organic matter in sediments; therefore, organic mat-
ter plays a very important role in the control and distribution of Mn2+ in the interstitial water; 

either, as an adsorbent or as a complexing ligand [60–62].

The behavior of Mn is influenced by the acidification of the medium, with an inverse correla-

tion between the concentrations of Mn2+ and the pH values. Some bodies of water with pH 

values ≥6.0, act as sinks of Mn, while smaller values act as a source of Mn. This behavior is 
possibly controlled by dissolution processes of species such as Mn4+ and Mn3+, the oxidation 

kinetics of Mn and the equilibrium of ion exchange [63]. Both the humic fraction and the con-

centrations of metal adsorbed to insoluble phases decrease as the pH decreases [64, 65]. The 

Mn2+ ion released at the bottom, forms organic complexes or the hexacuous ion Mn (H
2
O)

6
2+ 

that is very stable. When the redox conditions are adequate, a precipitate of MnO
2
 (Pyrolusite) 

is formed; it forms incrustations even at concentrations of 0.02 mg L−1. The environmental 

problem of Mn in reservoirs has been correlated with thermal and chemical stratification, 
since some bacteria use Mn4+ as an oxidizing agent of organic matter in its metabolic pro-

cesses, reducing it to Mn2+ and releasing it to the water column. It has even been considered 

that oxide-reducing bacteria of Fe also act on manganese [66].

4.3. Application of the BCR methodology, results, discussion and conclusions

The application of BCR geochemical fractioning of Mn in the Riogrande II reservoir is pre-

sented, starting from the design of research, applied methodology, results, discussion and 

analysis, finally arriving at the proposed model of Mn entrance to the reservoir, the distribu-

tion of its forms in the sediment and release mechanisms towards the water column.

4.3.1. Used methodology

A sediment sampling was carried out in two different months (March and June 2008), in 
seven stations within the reservoir, using the Ekkman dredger and through AA, the total Mn 
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was determined. For the geochemical fractions, the BCR methodology was applied. The sam-

pled stations were characterized by: E1. Rio Chico entrance: station located at the entrance 
of the Chico River in the reservoir, in the extreme west, depth of sampling 13 m., E2. Middle 
Riochico: located in the middle part of the Chico River, depth of sampling 27 m., E3. Rio 
Grande entrance: located at the entrance of Rio Grande, depth of sampling 12 m., E4. Middle 
Rio Grande: located in the middle part of Rio Grande, similar to the E2 by the amplitude of 
the reservoir, depth of sampling 35 m., E5. Las Animas river mouth: located at the entrance 
of Las Animas Creek, depth of sampling 11 m., E6. Intake Tower: located in the reservoir 
dam site, its importance is that in this site the water is captured by the treatment plant, depth 

18 m. and E7. Dam Zone: it was located in the dam area, depth of sampling 42 m. After tak-

ing the sediment, the analyzes were carried out in situ by introducing the electrodes into the 

sediment-water mixture of factors such as: pH, dissolved oxygen, redox potential and electri-

cal conductivity. After reading the interstitial water variables, the sediment-water mixtures 

of each sampled station were packed in vacuum polypropylene bags and immediately pre-

served in cold temperature until their arrival to the laboratory, where they were stored in the 

refrigerator until further analysis of Mn [67].

The analyzed factors for the water matrix (bottom hypolimnion and interstitial) were pH, dis-

solved oxygen, ORP-Eh potential and electrical conductivity, and in the sediment the percent-
age of organic matter (%OM). For the dependent variables in the sediment, were analyzed: 
total Mn, the Mn fractions according to the BCR protocol (interchangeable Mn and associated 
with carbonates, Mn associated with oxides, Mn associated with organic matter and sulfides), 
and the residual fraction (Mn associated with silicates). Finally, the identification of the pos-

sible mineral phases associated with Mn in some of the sediment samples was carried out by 

means of the analysis of X-ray diffractometry coupled to scanning electron microscopy (XRD-
SEM). To the water samples of the bottom hypolimnion and interstitial water were measured 
pH and temperature with the WTW-model 330 equipment with a glass electrode, the electri-

cal conductivity with the WTW-model 720 conductivity meter, the ORP-Eh potential with 
the WTW-model 330 equipment with a platinum electrode and dissolved oxygen with WTW 

brand oximeter with Cellox® cell. The organic matter (% OM) of the sediment was deter-

mined in the same way as for the soil, through the volumetric method of Black and Wlakley.

For total Mn and BCR fractions, the sediment brought from the reservoir was dried at envi-

ronmental conditions for 1 week; for the total Mn, to 1 g of the dry sediment, a mixture of 

hydrochloric acid (HCl) and nitric acid (HNO
3
) was added in a 1:3 ratio for the extraction, 

following the ISO 11466 protocol. The interchangeable fraction and soluble in carbonate (Mn) 
-BCR1) was obtained by stirring 1 g of dry sediment for 16 h with 40 ml of 0.11 M acetic acid 
at 400 rpm and then centrifuged, and then the supernatant was filtered, the reducible frac-

tion (Mn-BCR2) was obtained by stirring the previous residual sediment for 16 h with 40 ml 
of 0.5 M hydroxylamine chloride, acidified to pH 1.5 with nitric acid, stirred at 400 rpm and 
subsequent centrifugation, extraction and filtration of the supernatant, for the oxidable frac-

tion (Mn-BCR3) Initially double oxidation was performed with 20 ml of 0.88 M hydrogen 
peroxide for 2 h, and then agitation of the remaining sediment with 40 ml of 1 M ammonium 

acetate for 16 h and centrifugation, extraction and filtration of the supernatant, and finally for 
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the remaining residual sediment fraction, it was treated with a mixture of hydrochloric acid 

(HCl) and nitric acid (HNO
3
) in a ratio of 1:3.

The readings for the total Mn as well as for the fractions were carried out by Atomic Absorption 

in a GBC Plus equipment, the detection limit (LD) was 0.01 mg L−1 and the limit of quantifica-

tion was 0.05 mg L−1. All analyzes were performed by duplicate. As a decision rule, the effi-

ciency of the geochemical fractionation for each sediment sample was calculated by using the 

percentage of recovery (% Recovery), which relates the total metal and the resultant of the sum 
of the fractions BCR1, BCR2, BCR3 and residual (Res), the optimal condition establishes that 
there should not be more than ±10% in the difference of both concentrations (100 ± 10%, [68]),  
this range is considered a quality standard of the extraction process.

The averages, standard deviations and the level of variability were determined by the coefficient of 
variation, both for the total Mn dependent variables and the Mn fractions (BCR1, BCR2, BCR3 and 
residual) and for the independent variables: pH, redox potential, electrical conductivity, dissolved 
oxygen and organic matter. To evaluate the hypothesis, the analysis of components of variance was 
initially started in order to determine the factors (sampling time and station) that contributed to the 
Mn (total and fractions), afterwards a Pearson multiple correlation was made (p < 0.05), to establish 
the physicochemical factors that have a statistically significant correlation with the response vari-
ables, moving on to an analysis of variance between the values of Mn (total, BCR1 and BCR2) and 
the factors: sampling, station and the physicochemical conditions of the bottom hypolimnion water 
and sediment (p < 0.05). Before proceeding with the calculations, the assumptions of the parametric 
statistics were corroborated, for this vector was evaluated in the matrix of the following dependent 

variables (Mn-Total, Mn-BCR1 and Mn-BCR2), normality was evaluated with the Shapiro Wilks 
(SW) Test and homoscedasticity with Bartlett’s Contrast Value (β). Statistical calculations were per-
formed in the Statgraphics Centurion XVI program with significance 0.05.

4.3.2. Results of the geochemical fractionation

The results of the total Mn (mg kg−1) are summarized in Table 1.

Table 1. Synthesis of results of the Total Mn for the geochemical fractionation.
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For both samplings, the results showed the highest concentrations in the two main entrances 

to the reservoir: E1 and E3, while in the middle of the Riochico, it had the lowest concentra-

tions; when comparing these values against the considered threshold value (400 mg kg−1 [69]), 
it was found that stations E1, E3 and E4 (Middle of Rio Grande), had at least the threshold 
value. There were practically no significant differences between the two sampling periods. At 
the level of the BCR1 geochemical fraction, the results were summarized in Table 2.

Similar to the Total Mn, the highest concentrations were found at the entrances to the reser-

voir (E1 and E3), in none of the stations and climatic periods, the threshold of 400 mg kg−1 

was exceeded. There were practically no significant differences between the two sampling 
periods. At the level of the BCR2 geochemical fraction, the results were summarized in 

Table 3.

Table 2. Synthesis of Mn-BCR1 results.

Table 3. Synthesis of Mn-BCR2 results.
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The reducible geochemical fraction Mn-BCR2 did not exceed 80 mg kg−1, unlike the total Mn 

and Mn-BCR1, this fraction increased in the dry period with respect to the rainy period, but 

not significantly. The whole analysis of the shown fractions as a proportion, indicated a pre-

dominance of Mn in the BCR1 and BCR2 fractions, with respect to the Mn of BCR3 and resid-

ual; however, comparing both sampling times, the proportions in the dry period in stations 

E1, E2, E3, E4, E5 and E6 (Rio Chico, Rio Grande and Las Animas, Intake tower), exceeded the 
concentrations of the rainy period (Figure 3).

BCR1: co-precipitated, interchangeable and associated with carbonates Mn.

BCR2: reducible (associated with oxyhydroxides) Mn.

BCR3: oxidizable (Associated with sulfides and insoluble organic matter) Mn.

Res: associated with the residual fraction (silicates) Mn.

Finally, establishing the proportion of available Mn as the ratio between the sum of the BCR1 

and BCR2 fractions and the Total Mn. It was found that more than 80% of the Mn of the sedi-
ment was available in the stations: E1 (Rio Chico entrance), E4 (Middle of Rio Grande), E5 
(Las Animas) and E6 (Intake tower) for the dry period and E2 (Middle of Rio Chico) for the 
rainy period. The recovery percentage for the fractionation produced values between 80 and 

90%, and indicated that the sequential extraction scheme could not solubilize the whole Mn, 
it was probably due to the formation of very stable organo-metallic compounds, especially 

in the samples taken during the rainy period. Likewise, the E2 sample (Middle of Rio Chico) 
presented a recovery of 135%, and could be associated with contamination during the extrac-

tion process.

Figure 3. Proportions of the fractions of Mn in two sampling periods in seven stations. Note that the available fractions 
BCR1 Mn and BCR2 Mn, exceed 60% of the total Mn.
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4.3.3. Results-physicochemical analysis of sediment and bottom water

The results of the physicochemical analysis of two types of water in the bottom of the reser-

voir were compared: bottom hypolimnion water and interstitial waters (sediment water and 
pore water). This comparison was carried out with the purpose of identifying the changes in 
geochemical conditions between the water on the sediment (bottom hypolimnion) and the 
water under the water-sediment limit (interstitial water) and its relation with the results of 
total Mn and Mn in the fractions.

The results indicated an oxic bottom hypolimnion and sub-toxic interstitial water (sediment 
water) during the rainy period, the redox potential was more variable in the waters of the 
bottom hypolimnion where positive and negative redox potentials were present, compared to 
the same potential in interstitial waters, where the records always showed negative potentials 

(−128.4 mV in the rainy period and −120.3 mV in the dry period); for the sediment, the organic 
matter had values between 25.01% in the rainy period and 24.5% in the dry period, neutral 
pH in the water of the bottom hypolimnion, and more acid for the interstitial waters. The frac-

tionation showed that more than 50% of the Mn in the sediments is present in available form 
(69% in the rainy period and 79% in the dry period), probably co-precipitated and adsorbed 
in the organic matter.

pH: the pH of both types of water (bottom hypolimnion and interstitial), presents values close 
to neutrality; however, while the waters of the bottom hypolimnion is practically neutral; the 
interstitial waters were more acidic in the rainy period.

Redox potential-Eh: the waters of the bottom hypolimnion changed significantly from positive 
redox potentials in the rainy period to negative values in the dry period, but always remained 

under reducing conditions with a maximum of +82.5 mV. In general, the water of the bottom 
hypolimnion of Riogrande II reservoir can be considered as a reducing agent, despite having 

positive redox potentials, and the interstitial or sediment waters can be considered as strongly 

reducing agent.

Dissolved oxygen (DO): in terms of dissolved oxygen, the waters of the bottom hypolimnion, 
maintained both oxic and hypoxic concentrations, while the sediment waters remained 

hypoxic. The dissolved oxygen presented a different behavior between the waters of the bot-
tom hypolimnion and the interstitial waters. The decrease in dissolved oxygen, both in the 

water of the bottom hypolimnion and in the interstitial water for the dry period could be 
associated with a higher concentration of soluble organic matter.

Electrical conductivity (EC): first, when analyzing the values, it is found that the electrical con-

ductivity is almost 9 times higher than the values of the hypolimnion of the bottom with 
respect to the interstitial waters; then, the conductivity values do not show significant vari-
ability depending on the time of sampling.

Organic matter (% OM): in the month of the rainy period, the average value in the stations was 

25.01 ± 3.9% of organic matter, with a CV of 3.9%, the highest proportion was found in the 
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sediment of E2 with 32.28% and the minimum in E5 with 21.01%; for the dry period, the value 
was similar with 24.05 ± 2.9%, and a CV of 12%. From the rainy period to the dry period, it was 
increased the % of organic matter, at stations E4 (Middle of Rio Grande), E6 (Intake Tower) 
and E7 (Dam Zone).

4.3.4. Results of the EDX-SEM analysis

Sediment samples taken during the rainy period were analyzed; the results showed that in 

the E2 station the Mn is associated with particles of Pb and calcium carbonate (Figure 4), in 
station E4 there were Zn sulfide (Characteristic of reducing conditions) and in the associated 
diffractogram, besides the Zn, Mn is associated with Fe within a matrix that is composed of 
Si, Al, C and O, probably associated with aluminosilicates and carbonates; in E6 the sample 
did not present evidence of Mn, only Ti within a matrix of aluminosilicates. Finally, the E7 
sample shows some mineral phases associated with Mn carbonates, free spherical forms (less 
than 1 μm), and carbonates associated with Pb that are abundant in the sediments of this sta-

tion (Figure 5).

Figure 4. Image and diffractograms of the sediment in E2, observed in (a), a clear point corresponding to Pb associated 
with Mn and calcium carbonate, the gray part of the particle is mainly calcium carbonate. In the image (b) there are 
particles containing Mn associated with Ti.
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4.3.5. Discussion and analysis of results

• Of the geochemical fractionation and its relation with the physicochemical conditions of 
the bottom water and interstitial water

The entries of the Chico and Rio Grande Rivers (E1 and E3), correspond to the tributaries in 
which the highest concentrations of Mn reached the sediment of the reservoir, and although 

statistically it was not significant, there was a greater contribution at the time of rains, possi-
bly due to an increase in the soluble and bottom charge of both streams. Conditions associated 
with the dry weather period could be the reason that the available fractions of Mn (MnBCR1—
Interchangeable Metal and Carbonate Associated and MnBCR2—Oxyhydroxides) have been 
higher compared to the rainy period, possibly associated with the decrease in the redox 

potential during the dry period, especially in the water of the bottom hypolimnion, and 
could be associated with the decrease in the flow rate and a decrease in dissolved oxygen, 
however statistically it was not significant. The low values of redox potential, both in the 
bottom hypolimnion (less than 100 mV) and in the sediments (up to −150 mV), shows that in 
this anoxic-reducing environment, it would be changing from a post-oxic zone in the bottom 
hypolimnion to a sulfidic zone in the sediments [60], where Mn2+, Fe2+ and NH4+ occur due 

to the presence of Zn sulfide in the sediments; the probability of finding oxides of Mn in this 
environment is minimal and the Mn found is in a reduced form, complexed and adsorbed to 

other mineral phases. However, no pyrite was found in the EDX-SEM analyzes, which could 
mean that the presence of HS- and H

2
S necessary for the formation of this mineral, is below 

10 cm.

Figure 5. Images and diffractograms of the sample in E7, the particle in the image above corresponds to Pb carbonate and 
Mn carbonate, the diffractograms showed signal for Mn.

Fractionation30



• Possible causes of the release of Mn and its remobilization to the water column

One of the possible causes of the release and remobilization of Mn in the sediments of the 
Riogrande II reservoir were the highly reducing conditions of the sediments generated by 

microbial oxidation and the decrease in pH. These conditions reduce the phases of oxidized 

metal, releasing Mn2+ among other ions, which are solubilized and complexed with soluble 

organic matter such as fulvic acids [59]. The strongly reducing conditions in the interstitial 

waters remained practically the same for both sampling periods (−120 mV), and as for the 
pH, it went from acidic conditions (5.4) in the rainy period to almost neutral (6.7) in the dry 
period; however for the bottom hypolimnion waters, if there was a significant reduction in the 
redox potential in the dry period, without significant changes in the pH, which could suggest 
that the change from reducing to strongly reducing conditions in the bottom hypolimnion 
facilitates the remobilization of metals such as Mn.

The release of metals from the sediment of the water column may be due to processes such as 

the desorption and formation of soluble organic complexes, associated with the decomposi-

tion of organic matter [70], processes such as dissolution reductive metal oxides are possibly 

the cause of the release and mobility of Mn in the water sediment interface of the Riogrande 

II reservoir; however, it should be considered that the process of reducing the oxides of Mn 

is at the highest level in the column of water over the limit water-sediment [71]. One of the 
characteristics of the sediment found in the reservoir is the continuous presence of sulfides 
as demonstrated by the EDX-SEM analysis, it indicates strongly reducing sediment conditions 
during sampling; however, the presence of some carbonates in stations such as E2 (Middle 
of Riochico), E3 (Rio Grande Entrance) and E7 (Dam area), added to the pH values in inter-

stitial waters, especially in the dry period, allows us to conclude that the sediments in the 

Riogrande II reservoir are strongly of reducing characteristics with conditions from neutral 

to acidic. The fractionation results indicate that although the Mn would not be found in high 

levels of sediment contamination, there is an environmental risk for the water quality of 

the reservoir due to the high proportion (more than 50%) of this metal in the more mobile 
fractions. (BCR1 and BCR2), especially in the dry period for E1, E3 and E4, these fractions 
are highly bioavailable [72]. It can be established that the Mn that enters the Riogrande II 

reservoir, probably makes it both soluble (organic and inorganic complexes) and insoluble 
(Oxyhydroxides-aluminosilicates), and when precipitated towards the bottom of the water 
column.

• Proposed model of Mn remobilization

Despite the presence of significant concentrations of total Mn in the sediment (values between 
121.17 and 651.25 mg kg−1), only Mn carbonate evidence was found in the sediment in the prey 
area. The results of the geochemical fractionation show that this metal is mainly in adsorbed 

form to other minerals, followed by Mn associated with organic matter and some oxides and 
hydroxides of Mn (Figure 6).

From the geochemical fractionation, the EDX-SEM findings and complementary studies of the 
sediment water interface along with geochemical modeling allowed to identify the following 
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processes for the Mn in the Riogrande II reservoir: entrance to the reservoir in mineral form 

(silicates and oxides), and complex form, beginning of the reductive dissolution in terms that 
the oxides enter the water with reducing potentials, release in the hypolimnion of Mn2+ ions, 

adsorption of Mn2+ to other minerals and organic compounds, precipitation in the reservoir 

and finally formation of organic and inorganic complexes of Mn2+ in the same water column.

5. Conclusions

• The proportion of Mn available (BCR1 and BCR2) in the sediments was in a range above 
50% of the total Mn in both climatic periods, which indicates that for the sediments of the 
Riogrande II reservoir, most of the Mn corresponds to fractions possibly adsorbed to min-

eral phases and organic compounds, where physical processes such as resuspensions gener-

ate chemical changes of pH, redox potential and conductivity, among others. It allows the 

transfer of insoluble phases with little mobility to mobile phases in the water column. This 
condition creates a danger to the water quality of the reservoir, because whenever there are 

falls of redox potential and/or the pH in the sediment water limit is lowered, reductive dis-

solution and desorption processes will be generated and will mobilize heavy metals towards 

the column of water.

• With the results and statistical analysis obtained, we accept the hypothesis about mobili-

zation scenarios of the Mn present in the sediment to the water column, where the reduc-

ing conditions, acid pH and high conductivity increase the concentration of Mn available, 

product of processes of remobilization in the sediment.
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