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Abstract

The mechanisms by which HBO exerts its potentially beneficial effects are not completely 
clear. Interactions of mechanisms affecting endothelial dysfunction, NO synthesis, EETs 
and HETE formation, CYP expression changes, oxidative stress and antioxidant defense 
system changes, and multiple effects on inflammation take place that might be consid-
ered as mediating factors for the observed positive (or negative) clinical effects in diabe-
tes mellitus (for instance in chronic diabetic wounds). Studies on vasculature in diabetic 
animal models can provide us with more information that can help us understand its 
effects on blood vessel function. This chapter discusses the most relevant studies that 
have assessed the potential mechanisms of HBO-induced vascular functional changes in 
diabetic animal models.

Keywords: hyperbaric oxygen, diabetes mellitus, endothelial dysfunction, cytochrome 
P450, nitric oxide, arachidonic acid metabolites

1. Introduction

Hyperbaric oxygen (HBO) therapy presents medical and experimental administration of 100% 
oxygen (O

2
) at pressures above 1 atm [1, 2]. HBO is widely used for the treatment of various clin-

ical diseases, but numerous studies indicate its benefit in conditions of vascular pathology [2].  

The exact mechanisms that are involved in the actions of therapy with HBO
2
 are largely 

unknown, although its effects have been documented clinically and in  experimental models [2, 3].  

Investigations focusing on physiological effects of hyperbaric oxygen on vascular function 
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still do not provide a clear mechanism of its action. They focus on endothelial function and 
dysfunction, as well as HBO-induced changes in concentrations and actions of physiologi-
cal mediators of vascular function, such as nitric oxide (NO), acetylcholine, metabolites of 
arachidonic acids, and others. Some works also suggest that HBO might cause changes in 
conducted vasomotor responses and in that way influences vascular sensitivity and reactivity 
to vasodilators and vasoconstrictors [4].

2. Endothelial function and dysfunction

Endothelial cells are responsible for vascular tone, supply the thromboresistance, and deter-

mine the extent to which the vasculature is permeable to cells and molecules through the syn-

thesis and release of a wide variety of substances [5]. The pathogenetic concept of micro- and 
macroangiopathy, which are well-known vascular complications of diabetes mellitus (DM) 
[6], is based on an endothelial lesion that is a result of parameters specific for diabetes, which 
damage the endothelium [6]. Although basal tone and myogenic reactivity are intrinsic to vas-

cular smooth muscle, the ambient level of tone is modulated by various vasoconstricting and 
vasodilating mediators released by the endothelium. It is generally accepted that long-term 
diabetes is associated with endothelial dysfunction and reduced endothelium-dependent 
vasodilation [7, 8]. The main endothelium-dependent vasodilatory mediator is NO, but vari-
ous metabolites of arachidonic acid such as prostaglandins, epoxyeicosatrienoic acids (EETs), 
and hydroxyeicosatetraenoic acids (HETEs) also contribute to vascular responses to different 
stimuli [9, 10] and may be essential for vascular response in various physiologic and patho-

logical conditions such as diabetes mellitus [11–13].

Hyperbaric oxygen therapy affects the function and structure of cerebral resistant arteries, 
which is impaired in DM and will have beneficiary effect on vascular function by modulat-
ing mechanisms of vascular responses to various dilator and constrictor agonists, leading to 
restored vascular reactivity. It has been demonstrated that hyperglycemia, acute or chronic, may 
cause several changes in vascular function, including a decrease in endothelium-dependent 
vasodilation and an increase in contractile response of vascular smooth muscle [14]. Impaired 
endothelium-dependent relaxation has been shown in various vascular beds of different ani-
mal models [15]. The mechanisms associated with these observations may include changes in 
synthesis, release, and degradation of various factors that are produced by endothelium. The 
most notable characteristic of endothelium dysfunction in DM is the vascular NO reduction. 
Various multiple mechanisms are involved in this effect, but it seems that increased level of oxi-
dative stress is the first alteration that triggers several others. Furthermore, the vascular smooth 
muscle sensitivity may be reduced, which certifies the vascular studies in human and animal 
models of DM that showed reduced sensitivity of vascular smooth muscle to NO donors [16].

On the other side, endothelial dysfunction may also be related to the release of vasoconstrictor 
factors. In vessels of diabetics, there is an increase in endothelium-dependent vasoconstrictor 
mechanisms, mostly mediated by prostanoids, which play an important role in endothelium 
dysfunction. TxA2 plays a role in the reduced endothelium response in type 1 DM, but it 
may also be involved in the enhanced contractile response to vasoconstrictor stimuli [17]. 

Furthermore, hyperglycemia increases the COX-2 expression, causing enhanced release of 
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vasoconstrictor and prostanoids [18]. Hyperglycemia not only modifies the profile of pros-

tanoids, leading to alteration of vasomotor tone, but also increases the release of arachidonic 
acid by vascular cells [19].

An increasing number of evidence proposes that HBO induces neuronal nitric oxide (NO) 
synthase (NOS) activity, while the influence on endothelial NOS (eNOS) activity and vascular 
NO bioavailability remains unclear [20]. Thom et al. reported that NO bioavailability in rat 
and mouse cerebral cortex was increased during HBO exposure, and cerebral NO production 
was enlarged much more in knockout mice lacking genes for eNOS than in those lacking 
genes for nNOS [21]. Studies on conscious rats with inhibition of NOS were used to assess the 
dynamics of cerebral blood flow during hyperbaric oxygenation and had shown that hyper-

baric oxygen changes cerebral blood flow and modulates oxygen neurotoxicity via eNOS and 
nNOS [22]. eNOS- and nNOS-deficient mice were used to study the contributive roles of the 
NOS isoforms in mediating changes in cerebral vascular tone in response to hyperoxia, and 
results demonstrate that under HBO, eNOS-derived NO is responsible for the early vasocon-

striction, whereas late HBO-induced vasodilation depends upon both eNOS and nNOS [23].

3. Influence on arachidonic acid metabolites and the renin-
angiotensin system

HBO should be viewed as a factor for increased availability of oxygen as an active molecule 
in changing vascular function. HBO, CYP450 activity alternations, and arachidonic acid (AA) 
metabolism are connected in many different pathways. Besides vascular reactivity changes 
due to epoxidation reactions, Hjelde et al. showed that anti-inflammatory effect of HBO is 
mediated by reducing expression of cyclooxygenase-2 and reducing the number of intercel-
lular adhesion molecules and therefore reducing adhesion and infiltration of leucocytes [24].

In various aspects of metabolic diseases, evidence from different studies suggests a role 
for enzymes involved in arachidonic acid (AA) metabolism, including cytochrome P450 
(CYP) epoxygenases and soluble epoxide hydrolase (sEH), and their eicosanoid metabolites 
(epoxyeicosatrienoic acids (EETs)) [25–27]. EETs have been shown to exert beneficial effects 
on diabetes-related endothelial dysfunction, enhanced cardio protection, and alleviation of 
diabetic nephropathy. In contrast, CYP4A proteins were upregulated in the livers of mice 
with genetically induced and diet-induced diabetes [28].

Arachidonic acid in endothelial cell can be metabolized in three different pathways: CYP450 
enzymes (omega-hydroxylase and epoxygenase), cyclooxygenase and lipoxygenase, and non-

enzymatic degradation of arachidonic acid in the presence of free radicals to isoprostane [29].  

Epoxygenase is a cytochrome P450 family of enzymes (primarily CYP2C and CYP2J families), 
which in the endothelial cell produces 4 epoxyeicosatrienoic acid (EETs) isomers (5,6-EET, 
8,9-EET, 11,12-EET, and 14,15-EET), of which 14,15-EETs and 11,12-EETs are the most active 
metabolites [30]. In most cell types and organs, EETs can be present as dihydroxyeicosatrienoic 
acids (DHETs) [31], which are more stable and less bioactive than EETs. DHETs are produced 
by sEH hydrolysis of EETs [32]. There is no evidence of EET production in a smooth muscle 
cell. In a smooth muscle cell, cytochrome P450 ω-hydroxylase  promotes the  production of 

Mechanisms of HBO-Induced Vascular Functional Changes in Diabetic Animal Models
http://dx.doi.org/10.5772/intechopen.76569

89



20-hydroxy-eicosatrinoic acid (20-HETE), which is a vasoconstrictor. Cyclooxygenase (COX) 
is an enzyme existing in two isoformes, COX-1 and COX-2, involved in the synthesis of pros-

tanoid from arachidonic acid (AA). The resulting prostanoids act in contradiction, causing 
vasodilation (prostaglandin D2, prostaglandin E2, and prostacyclin I2) and vasoconstric-

tion (prostaglandin F2α and thromboxane A2). Hypoxia activates the COX pathway, where 
mostly prostacyclin, PGI2, is generated. It diffuses into the smooth muscle cell in which it 
activates the enzyme adenylate cyclase and increases the amount of cyclic adenosine mono-

phosphate (cAMP). cAMP promotes the opening of several types of potassium channels, 
resulting in hyperpolarization of the smooth muscle membrane with consequent vasodilation 
[33]. Lipoxygenase is an enzyme that from AA generates 12- and 15-hydroxy eicosatrienoic 
acids (HETEs) as the major active metabolites in the endothelial cell [29, 34].

Streptozocin-induced diabetes in rats (a model for type 1 diabetes mellitus) reduces the lev-

els of protective EETs, and the reduced EET levels lead to exacerbation of stroke [35]. Tsai 

et al. showed impaired endothelium-dependent vasodilation of coronary arterioles caused by 
reduced CYP activity and EET production due to increased glucose-induced superoxide levels 
in coronary endothelial cells [36]. EETs might constitute a key link between insulin resistance 
and endothelial dysfunction [37]. Endothelial dysfunction in diabetes could also be related 
to the release of vasoconstrictor mediators, e.g., increased production of 20-HETE leading to 
activation of ROS through an NAD(P)H-dependent pathway. Diabetes alters CYP expression 
and 20-HETE formation, leading to upregulation of CYP4A isoforms and to elevated levels of 
20-HETE [37]. Li et al. also suggested contribution of 20-HETE to endothelial dysfunction in 
diabetes and other insulin-resistant conditions showing the attenuation of diabetes-induced 
vascular dysfunction by using the 20-HETE inhibitor HET0016 [38]. Insulin-stimulated vaso-

dilation mediated by the IRS-1/PI3K/AKT/eNOS pathway can be impaired by 20-HETE [39]. 

Issan et al. associated dysfunction of circulating endothelial progenitor cells and angiogenic 
capacity with increased levels of CYP-derived 20-HETE in diabetic patients with cardiac isch-

emia [39]. P450 4A metabolite 20-HETE by vascular tissue is directly dependent on the con-

centration of oxygen within the normal physiological range of blood and tissue PO
2
 [40]. It 

is known that various arachidonic acid metabolites (prostaglandins, EETs, HETEs) and NO 
are of utmost importance in the mediation of vascular reactions to vasodilators and vaso-

constrictors [41–46], including hypoxia and hyperoxia stimuli [46]. In conditions of reduced 
blood flow, the use of HBO can significantly increase tissue oxygenation. Although all P450 
enzymes require molecular oxygen, the majority of them (such as those found in the liver) 
require only very low PO

2
 levels for normal activity. Results from our previous study suggest 

that hyperbaric oxygen increases vascular sensitivity to EETs, instead of significantly increas-

ing EET synthesis [3]. Our studies also show that HBO is a highly effective treatment for 
stroke even in the presence of long-term untreated diabetes, by inhibition of 20-HETE produc-

tion [47]. Unfirer et al.’s study showed changes in the dilatation mechanisms in diabetic rats 
under the influence of hyperbaric oxygenation. It has been shown that hyperbaric oxygen-

ation causes activation of the CYP450 epoxygenase pathway and increased EET production in 
diabetic animals exposed to HBO [13]. Furthermore, Kibel et al. showed a changed relaxation 
response to ANG-(1–7) influenced by HBO in healthy and diabetic animals, where they also 
linked to a changed mechanism and improved relaxation after HBO with CYP450 activation 
and EET synthesis [3, 11]. HBO was shown to increase relaxation responses to ANG-(1–7) in 
rat aortic rings of diabetic animals, and this effect was eliminated with the addition of an EET 
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synthesis inhibitor. There was no effect of HBO on ANGII reactivity of these aortic ring prepa-

rations nor was there a difference in serum concentrations of ANG-(1–7) [3]. mRNA and pro-

tein expression of several CYP isoforms that are involved in EET synthesis were also shown 
to be upregulated in aortic samples of animals, where DM was caused by streptozocin [3].

Both HBO as a treatment and in vitro hyperbaric oxygenation have been shown to change 
reactivity of rat thoracic aortic ring preparations to certain compounds [20, 48]. It is well 

known that changes in oxygen availability are crucial in the control of vascular tone, leading 
to changes in production of, or vessel sensitivity to, vasoconstrictor and vasodilator metabo-

lites of arachidonic acid and nitric oxide (NO) [40, 49, 50]. The production of EETs is known to 
be reduced with a decrease in PO

2
 [42]. EETs have been recognized to induce vasorelaxation 

and enhance K+ current in smooth muscle cells, in addition to others (including pro-angio-

genic, anti-inflammatory, and pro-fibrinolytic effects) [51–54].

CYP P450 3A13 was found to be involved in oxygen sensing, mediating ductus arteriosus 
constriction to oxygen, together with endothelin-1 [55]. Considering this, along with the inter-

action of arachidonic acid pathways with nitric oxide pathways in oxygen sensitivity [49], 
regional differences of arachidonic acid metabolite roles, and various conflicting evidence [49],  
it is clear that role of CYP450 enzymes in oxygen homeostasis is very complex and may be 
significant factor mediating the responses to HBO.

4. Changes in acetylcholine pathways

In the literature, there are a lot of studies on animal models of diabetes mellitus that confirmed 
impaired mechanisms of vasodilation and vasoconstriction. Streptozotocin-induced diabe-

tes mellitus in rats demonstrates attenuated vasodilation response to acetylcholine [56, 57].  

Experiments on healthy mouse coronary arteries demonstrate that vasodilation to acetylcho-

line is accomplished 50% by NO and 50% by EDHF. In spontaneously diabetic mouse type II 
(db/db), that ratio is 81% to production of EDHF [12].

Unfirer et al. [13] first investigated mechanisms of vasorelaxation in diabetic animal mod-

els after HBO exposure. Thoracic aortal rings from SD rats were used to evaluate vaso-

relaxation responses to acetylcholine after preconstruction with noradrenalin. With 
NG-nitro-L-arginine methyl ester (L-NAME)-(NOS inhibitor), indomethacin-(COX inhibitor), 
and N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MS-PPOH)-(CYP 450-epox-

ygenase inhibitor), they investigated which pathway is involved in enhanced vasorelaxation 
responses in diabetic and healthy rats after HBO exposure. HBO exposure protocol was per-

formed in therapeutic range [58]. DM duration of 6 weeks did not change vasorelaxation 
response in diabetic group, and after application of inhibitors, results showed that the NO 
pathway is dominant in macrocirculation. In the diabetic and healthy groups, after HBO expo-

sure, there was partial inhibition of vasorelaxation after NOS inhibition, which indicates that 
other pathways were included in vasorelaxation mechanisms. MS-PPOH partially blocked 
vasorelaxation in both HBO groups, which indicates that HBO changes vasorelaxation mecha-

nisms to alternative pathways—enhanced production or sensitivity to EETs. Indomethacin 
did not inhibit vasorelaxation in any group, so COX pathway did not have influence. These 
findings were verified with upregulation of eNOS and COX-1 enzymes in the diabetic HBO 
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group and higher protein expression of CYP450-4A1/A2/A3 in both HBO groups when com-

pared with their respective controls. Also in this study, there was not oxidative stress caused 
by HBO because thiobarbituric acid-reactive substances (TBARSs) were elevated in DM group 
but were normal in the healthy HBO group. This difference between studies is probably a 
result of different experimental protocols (intermittent hyperbaric oxygenation—2 hours, 4 
days at 2.0 atm abs vs. 90 minutes, 7 days at 2.4 atm abs in Matsunami study [59]).

Same authors investigate HBO effect on microcirculation (middle cerebral arteries) in dia-

betic animal model, 6-week duration of DM. Preliminary results shown impaired vasodilation 
response in diabetic rats and restored vasodilation after HBO exposure. Using inhibitors such 
as indomethacin (COX), NG-monomethyl-L-arginine (L-NMMA) (NOS), and clotrimazole 
(nonselective CYP 450 inhibitor), they notice shift in vasodilation mechanisms from mainly NO 
pathway toward two other pathways COX/CYP 450 because in both HBO groups, L-NMMA 
did not blocked vasodilation to acetylcholine. Further investigation is necessary [60].

In normal condition, vasodilation response to hypoxia is made by activating cyclooxygenase 
(COX) and production of prostacyclin (PGI2) [61]. There is evidence that CYP 450-epoxige-

nase enzyme in minor part causes vasodilation in healthy vessels [62]. Experiments on middle 
cerebral arteries (MCAs) of 6 weeks diabetic rats that underwent HBO exposure were used 
to evaluate the effect of HBO in acute hypoxia. They used COX inhibitor indomethacin and 
selective CYP 450 epoxygenase inhibitor MS-PPOH. COX inhibition partially preserved vaso-

dilation in HBO groups, and eliminated vasodilation in response to hypoxia in the presence 
of MS-PPOH in both HBO groups suggests that HBO activates CYP450-epoxigenase in MCAs 
of healthy and DM rats and shifts vasodilation mechanisms in response to acute hypoxia [63].

5. Effects on oxidative stress [reactive oxygen species (ROS)]

Life on Earth is impossible without oxygen that is in our atmosphere, which consists of 21% 
oxygen. Paradoxically, oxygen can also potentially be very toxic for organisms that use it. 
Free radical formation occurs continuously in cells as a consequence of both enzymatic and 
nonenzymatic reactions [64]. The main compartments of these kinds of reactions in cells are 
mitochondria. Mediated by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, 
mitochondria are the site of significant reactive oxygen species (ROS) production [65]. The 

term “ROS” is generally used to describe reactive molecules containing oxygen. Such mole-

cules have many common and similar characteristics; they also exhibit very different features, 
resulting in potentially beneficial or even toxic effects [66]. On the other hand, the term reac-

tive oxygen species (ROS) can be defined as highly reactive oxygen-centered chemical species 
containing one or two unpaired electrons, where an unpaired electron is one that exists in 
an atomic or molecular orbital alone. The unpaired electron containing chemical species can 
also be called “free radicals.” Furthermore, the term “ROS” can also be used as a “collective 
term” to include both radicals and nonradicals, the latter being devoid of unpaired electrons. 
So, ROS is classified into two categories: (1) oxygen-centered radicals and (2) oxygen-cen-

tered nonradicals. Oxygen-centered radicals include superoxide anion (∙O2−), hydroxyl radical 
(∙OH), alkoxyl radical (RO∙), and peroxyl radical (ROO∙). Oxygen-centered nonradicals are 
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hydrogen peroxide (H
2
O

2
), singlet oxygen (O

2
, high-energy form of oxygen), and hypochlo-

rous acids (HOCl) [67]. Sometimes when ROSs break the upper concentration limit of cellular 
antioxidant defense system capacity, based on high ROS intracellular concentration or low 
cellular antioxidant defense system, oxidative stress will show up and manifest with nucleic 
acids, proteins, and lipids damage, leading to carcinogenesis, neurodegenerative disorders, 
atherosclerosis, diabetes, and aging [68]. Under normal physiological conditions, ROS and the 
peroxidized molecules are neutralized by a powerful antioxidant system involving superox-

ide dismutases, catalases, glutathione S-transferases, and thioredoxins [69].

In diabetes and hyperglycemia in general, NADPH oxidase represents the principal 
source of ROS production in different organs [67]. The most acceptable thesis is that oxi-

dative stress, as a main result of HBO, is a major trigger of most of its effects, but the 
exact mechanisms are not completely clear. It could be confusing to understand different 
consequences of HBO depending on protocol type that was used. For example, the dura-

tion of exposure, the used oxygen pressure, the subject species, and the underlying dis-

ease are factors that may play a role in changes of blood pressure levels [70], and changes 
of specific oxidative parameters depend on lapsed time after exposure or on the number 
of repeated exposures (analyzing rat lung tissue) [71, 72]. Although increased superoxide 
dismutase and glutathione peroxidase activity and increased thiobarbituric acid-reactive 
substance levels are documented, after some hyperbaric protocols, there is no change in 
aforementioned enzyme concentrations in red blood cells. On the other hand, a significant 
induction of heat shock protein HSP70 in lymphocytes after even a single HBO

2
 treatment 

was noted—this might be due to activation of compensatory mechanisms by HBO
2
 [70].  

After hyperbaric treatment with high oxygen concentration, an increased ROS production is 
noticed, but paradoxically, HBO induces an antioxidant environment in plasma by increas-

ing the plasma catalase activity. Different studies have documented increases in the total 
plasma antioxidant capacity determined after a session with HBO [73]. The therapeutic use of 
HBO can give positive results by activation of ROS resulting in increased perfusion, reduced 
edema, decreased inflammatory cytokines, increased fibroblast proliferation, increased col-
lagen production, and angiogenesis promotion. Finally, increase of ROS may improve the 
regulation of antioxidant enzyme activity of tissues [74].

6. Inflammation

Pathological effects of DM on the vascular wall include enhanced ROS production and endo-

thelial activation leading to inflammation, atherogenesis, and vascular dysfunction, which 
further results in clinical impairment of the micro- and macrocirculation. Interestingly, posi-
tive therapeutic effects of HBO

2
, such as antioxidative and anti-inflammatory effects, have 

been attributed to the enhanced ROS production induced by the HBO
2
 treatment [1].

Numerous studies on experimental DM animal models revealed ongoing vascular inflammation 
under diabetic/hyperglycemic conditions, characterized by (a) increased proinflammatory cyto-

kine levels, including interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α); (b) endothelial 
activation followed by increased expression of vascular cellular adhesion molecule-1 (VCAM-1);  
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and (c) increased leukocyte homing to the vessels and tissues induced by excessive secretion of che-

mokines like monocyte chemoattractant protein (MCP-1) [75–77]. In addition to that, same noxa 

that lead to inflammation also precipitate development of vascular dysfunction, marked by sub-

stantial decrease in NO bioavailability, which is discussed in more detail elsewhere in this chapter 
[78]. Studies on diabetic (db/db) and control (db/+) mice have shown that DM prolongs the inflam-

matory response to a bacterial stimulus through cytokine dysregulation, particularly the TNF-α 
[79]. Similar results were also obtained from experiments using type 1 DM animal model (mice 
receiving multiple low-dose streptozotocin treatments), suggesting that the observed proinflam-

matory status of diabetic mice is predominately linked to hyperglycemia rather than pathomech-

anism involved in the development of a specific type of DM [80]. Additionally, impaired function 
of macrophages, including reduced efferocytosis and anti-inflammatory cytokine expression, has 
been attributed to the prolonged and ineffective resolution of inflammation in the wounds of 
diabetic mice, which is a leading complication in diabetic humans [81]. This was further con-

firmed by intravital microscopy that allowed researchers to real-time follow-up leukocytes in live 
diabetic and healthy control mice, which was followed by leukocyte isolation and functional tests 
that all together revealed enhanced recruitment but defective function of leukocytes during the 
inflammation in mouse models of type 1 and type 2 DM resulting in defective bacterial clearance 
[82]. Studies have also shown that hyperglycemia changes the intrinsic TCR-induced naïve T 
activation to increased T cell responsiveness in diabetes [83]. In the kidneys, the observed proin-

flammatory condition in DM animals has been linked to oxidative stress-induced JNK activation 
[84]. It has also been shown that diabetic condition facilitates binding of monocytes to vascular 
smooth muscle cells and their subsequent differentiation through induction of key chemokines 
in the vasculature, which can lead to enhanced atherogenesis [85]. In addition, endothelial cells 
(EC) express pattern-recognition receptors including Toll-like receptors (TLR) that have a central 
role in recognizing pathogens and damage signals and initiating immune responses [86]. It seems 

that in the vessels of diabetic animals/individuals, increased oxidative stress, free fatty acids, and 
hyperglycemia are directly involved in the pathogenesis of vascular inflammation via several 
cellular mechanisms, including TLR-mediated activation of protein kinase C (PKC) and NF-κB 
pathways resulting in increased expression of the proinflammatory molecules such as IL-6 and 
TNF-α. In turn, secretion of cytokines IL-1 and TNF-α increases NF-κB activity and production 
of cellular adhesion molecules by endothelial cells, further aggravating the inflammation [87].

Some of the beneficial anti-inflammatory effects of HBO include reduced proinflammatory 
cytokine expression, suppressed development of T helper cells, shrinking of spleen and lymph 
nodes, decreased responses to antigens, recruitment and differentiation of circulating stem 
cells, and reduced frequencies of circulating leukocytes [88, 89]. However, these effects were 
mainly observed in studies exploring experimental animal models of colitis, while in the par-

ticular case of DM, data on the effects of HBO on the vascular inflammation are scarce. This is 
in contrast to our knowledge about the effects of the HBO on the wound-healing mechanisms 
that have been subjects of intensive investigations for many years, which lead to profound 
understanding of the clinically observed positive effects of HBO [90].

Beneficial effects of HBO on the wound-healing processes include facilitation of the neovas-

cularization through enhanced regional angiogenic stimuli and increased recruitment and 
differentiation of circulating stem cells from the bone marrow [1]. Under ischemic and hyper-

glycemic conditions, HBO further promotes wound repair by increasing tissue perfusion 
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and collagen deposition [91]. A study on an experimental wound model revealed increased 
synthesis of vascular endothelial growth factor (VEGF) in damaged tissue during HBO

2
, 

which is the most specific growth factor for neovascularization [92]. It is controversial that 
HBO

2
-induced oxidative stress leads to hypoxia-inducible factor (HIF)-1 and 2 mediated tran-

scriptions of many genes involved with neovascularization, including stromal-derived fac-

tor-1 (SDF-1) and its counterpart ligand, CXCR4, as well as VEGF [1]. These effects could be 
especially beneficial for DM individuals whose stem cell mobilization is compromised by 
impaired NOS activity in the bone marrow [1].

It has been shown that HBO inhibits ischemia reperfusion induced β2-integrin-dependent 
adhesion of neutrophils to the endothelium by blocking CD18 surface polarization and through 
S-nitrosation of β2-integrin, with no effect on the cell-surface expression of β2-integrins [93]. 

Studies on monocyte-macrophages retrieved from healthy humans and animals exposed 
to HBO in vivo or cells exposed to HBO under in vitro condition revealed lower stimulus-
induced proinflammatory cytokine production upon exposure to HBO

2
 [1, 94].

Studies on ApoE KO mice that exhibit accelerated atherosclerosis and related complica-

tions showed that HBO
2
 reduces the circulating levels of antibodies to MDALDL and damp-

ens delayed hypersensitivity response to oxLDL challenge. The same studies demonstrated 
significant reduction in the production of proinflammatory cytokines, along with marked 
increase in the constitutive production of the anti-inflammatory cytokine IL-10 in splenocytes 
stimulated by LPS [95]. This effect was independent of antigen specificity, as indicated by 
polyclonal activation of T cells.

7. The role of HBO in stroke

Approximately 25% of all stroke patients have DM and 40% have hyperglycemia, which is 
associated with worse neurologic outcome as well as higher risk of recurrence of stroke [96, 97].  

Diabetic patients, compared to nondiabetics, are known to be more sensitive to cerebral isch-

emia. Thus, the same duration of ischemia results in more severe neurologic deficits and larger 
brain infarcts in diabetic patients. Female patients with DM have 4.8-fold higher risk for devel-
oping ischemic stroke than the general population (compared to 3.7-fold for men) and more 
often suffer fatal strokes (standardized mortality ratios of 3.1 for males and 4.4 for females) 
[98–100]. The outcome is frequently lethal, regardless of any therapy undertaken, including 
recombinant tissue plasminogen activator (rtPA) and mechanical thrombectomy. Possible 
underlying causes are chronic hyperglycemia, which leads to free oxygen radicals and cyto-

kines production and increases ischemic brain cells predisposition to apoptosis [101]. In addi-
tion, the intimal artery thickening and arteriolar occlusion occur in diabetes, contributing by 
impaired vascular function to inadequate tissue perfusion. Moreover, DM is, in some cases, 
such as treatment of recurrent stroke with thrombolysis, one of the exclusion criteria [102].

A total of 90–95% diabetic patients are type 2 DM of noninsulin dependence and 5–10% are type 
1 DM of insulin dependence. Type 2 DM patients have asymptomatic period of hyperglycemia 
for about 4–7 years that leads to most important problems—chronic complications of diabetes, 
leading to disability and premature death [103]. First diabetic complications are associated with 
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microangiopathy of retina, kidney, and peripheral neuropathy and next with macroangiopathy 
causing myocardial infarction, stroke, hypertension, and peripheral artery lesion. Patients with 
DM have progressive cerebrovascular atherosclerosis and increased cerebral vascular reaction 
to vascular constrictors, a deregulated reaction to vascular dilators and damaged automatic 
regulation of brain-blood stream. Damaged endothelium and vascular motor function of small 
arteries can lead to hypoperfusion of certain areas of the brain in diabetic patients.

The principles of HBO are based on physical laws and mechanisms of oxygen transport in 
human body. At sea level (1 ATA), almost all hemoglobin is saturated with oxygen, and HBO 
can increase its saturation only slightly. However, HBO increases the amount of oxygen dis-

solved in plasma from 0.3 to 5.6% at 2.5 ATA, and due to this mechanism, it increases tissue 
oxygenation even in areas where erythrocytes cannot pass [104]. Due to oxygen pressure gradi-
ent, HBO promotes diffusion of oxygen to longer distances in ischemic region. HBO

2
 raises oxy-

genation of ischemic penumbra by 20% and improves mitochondrial function [105, 106]. Single 
or multiple exposures to HBO create environment of intermittent relative hypoxia that can not 
only prepare tissue for longer hypoxia but also save tissue until other salvation strategies (such 
as thrombolysis, mechanical thrombectomy, stenting, and endarterectomy) take effect [47, 107]. 

Not only oxygen in ischemic core and penumbra itself plays a vital role in surviving tissues; 
HBO also influences on many different pathophysiological mechanisms. HBO improves oxy-

gen delivery to ischemic brain tissue due to the higher arterial blood-brain oxygen gradient.

In animal models, it stabilizes blood-brain barrier (BBB) and therefore reduces brain edema for-

mation. It improves brain microcirculation and brain metabolism, creating sufficient energy and 
ion homeostasis needed for survival of cells until reperfusion or collateral circulation creation. 
Some concern was about vasoconstriction of arteries under HBO. This can be applied to normal, 
but not ischemic vessels, where secondary vasodilatation is salvation mechanism and vasocon-

striction does not appear. HBO actually improves microcirculation in ischemic areas [108, 109]. 

HBO reduces poststroke inflammation by various mechanisms, reduces the number of brain 
cells undergoing apoptotic pathways and necrotic death, and if applied early, it can reduce isch-

emia-reperfusion injury and reduce oxidative stress. These combined effects reduce brain edema 
and modulate cerebral vascular flow resulting in reduced intracranial pressure. Longer effects 
of HBO include promotion of angiogenesis and neurogenesis in ischemic tissues with positive 
effect on neurorehabilitation. In numerous animal experimental models, HBO was effective in 
reducing brain infarction after stroke. However, few human studies were so successful.

HBO has been used in humans in many different stroke types (hemorrhagic, ischemic, large 
and small artery stroke, global ischemia, etc.) using different pressures, protocols of applica-

tion (single or multiple) and in different poststroke time windows. Due to these inconsistent 
standards, some studies showed lack of effect and other benefits. Another point of concern is 

that only the small number of these studies were well-designed randomized controlled tri-
als and that their limitations include the small number of patients, which means that precise 
conclusions cannot be drawn. Some cautious conclusions could be suggested. HBO is so far 
the only effective early treatment of air embolism (mostly after surgery). HBO early after 
stroke improves recovery after stroke, but this effect progressively decreases if treatment is 
applied later. The most significant results are achieved in first 3 hours after stroke (similar 
to thrombolysis and other revascularization trials). Time window for HBO is 3–6 hours in 
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acute ischemic stroke. The question of later and repetitive administration of HBO shows some 
promising results; however, they are still based on a few clinical cases and lack scientific 
proof and larger number of cases. Multiple repetitive HBO has positive effect on cognitive 
recovery after stroke and metabolism of temporal lobe. In one clinical trial, HBO combined 
with antidepressants showed better results than any of these therapies alone. HBO reduces 
cerebrovascular vasospasm and secondary brain infarctions after aneurismal subarachnoid 
hemorrhage (SAH). In intracerebral hemorrhage patients, HBO also provided improvement 
if started early, and the patient is stable [110].

When one thinks about treating acute stroke in diabetic patients with HBO, a few still unan-

swered questions arise, mostly due to the paucity of experiments in these settings. There are a 
few experiments conducted in animal models, but they vary in criteria for its use. In humans, 
we can rely only on a small number of cases with very diverse inclusion criteria and different 
results. Therefore, we can only draw some direct and more indirect conclusions about it from 
experiments on nondiabetic stroke experiments.

There is a question of optimal model of animal stroke in diabetic animals. The most com-

monly used experimental model of stroke in rats is a model of middle cerebral artery occlu-

sion (MCAO) by intra-luminal suture. There are variations of this model in terms of use of 
permanent or transitory MCA occlusion-induced ischemia. The duration of occlusion var-

ies in models from permanent MCAO to transitory MCAO (t-MCAO) of 180, 120, 105, or 
60 minutes [111]. Taking into account the observed differences in clinical presentation of dia-

betic vs. nondiabetic patients with stroke, there are few issues that variations in experimental 
approach to stroke study are brought to light. For example, in diabetic rat stroke models, the 
same duration of MCAO as in nondiabetic rat models is used.

The usual duration of t-MCAO used in non-diabetic rats was 60-120 minute [112]. In diabetic 
rats the same duration of t-MCAO produced massive stroke with malignant brain edema, 
devastating neurological deficits (such as inability to move, eat and drink) that become worse 
over time, leading to unconsciousness and death of animals within the first 24 hours (mostly 
due to massive edema and a rise in intracranial pressure). If ischemia lasts too long, laser 
Doppler flowmetry (LDF) finds lesser than expected reperfusional values. This brain vascular 
sign could be a marker of point of no return in stroke treatment [111]. Therefore (to develop 
the adequate diabetic female rat model, using transitory middle cerebral artery occlusion 
(t-MCAO) that would produce treatable stroke conditions in rats with diabetes), one has to 
significantly shorten the duration of t-MCAO to avoid already-irreversible brain infarct with 
brain vascular derangement. One study suggests that 30-minute t-MCAO could be a more 
appropriate stroke model than the usual 60-120 minute t-MCAO models, consistently pro-

ducing medium-sized stroke, which affects 30–50% of ischemic hemisphere [111] (865443). 
Similarly, patients with the most severe strokes of the whole MCA territory and high National 
Institute of Health Stroke Score (NIHSS) not only are poor candidates for treatment with 
thrombolysis and mostly die due to brain edema and complications of dysphagia and immo-

bility, but also have higher risk of secondary hemorrhage.

In conclusion, it is questionable to compare results of artery occlusion for rats with and with-

out diabetes, even if the duration of t-MCAO is equal.
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The only effective pharmacological therapy of acute ischemic stroke in humans is throm-

bolysis with recombinant tissue plasminogen activator, but DM is sometimes an exclusion 
criterion in recurrent stroke treatment. The time window for the therapy is narrow, and no 
other pharmacological agents have demonstrated efficacy in improving outcomes after isch-

emic stroke [1–4, 100, 102]. Thus, the searches for alternative approaches are welcomed. HBO 
[113] improves oxygen delivery and postischemic metabolism, restores ion pump function, 
and allows time for collateral circulation to develop [107]. In normal tissue, it causes vasocon-

striction, but in ischemic brain tissue, it increases microvascular flow and improves oxygen 
dissolution and transport [109]. Time window for HBO application may be up to 6 hours 
[108], which is longer than the time window for thrombolytic therapy. HBO raises oxygen-

ation of ischemic penumbra by 20% and improves mitochondrial function [107, 108]. It has 

anti-inflammatory effect by reducing expression of cyclooxygenase-2 and reduces the num-

ber of intercellular adhesion molecules and therefore reduces adhesion and infiltration of 
leukocytes [24]. However, guidelines do not recommend HBO treatment for acute ischemic 
stroke due to somewhat inconclusive data [102]. Some data imply that the intervention may 
be harmful causing middle ear trauma, epileptic seizures, and claustrophobia, while others 
found no firm evidence that HBO improves clinical outcomes for acute stroke. However, the 
main disadvantage of these trials used in meta-analysis was delay from stroke onset to initia-

tion of HBO and the need for care delivery in a specialized chamber [114].

To conclude, HBO is currently not recommended for patients with acute ischemic stroke out-
side of clinical trials (except caused by air embolism).

On the other hand, some preclinical experiments suggest that if administered shortly after the 
stroke, HBO is highly effective treatment of stroke in diabetic female rats, even in the pres-

ence of long-term untreated DM [109]. Experiments that did not show effectiveness of HBO 
were possibly unsuccessful due to the unrecognizing the vulnerability of neurons. They used 
prolonged ischemia and applied HBO treatment too late after stroke.

8. Conclusion

The mechanisms by which HBO exerts its potentially beneficial effects are not completely 
clear. They cannot be simply explained as a consequence of supplementation of the oxygen 
deficit in certain conditions where oxygen is lacking, but it was demonstrated that HBO 
affects signaling cascades in cells and has multiple interacting complex mechanisms that 
might contribute to functional changes of blood vessels. Interactions of mechanisms affecting 
endothelial dysfunction, NO synthesis, EETs formation, CYP expression changes, oxidative 
stress and antioxidant defense system changes, and multiple effects on inflammation take 
place that might be considered as mediating factors for the observed positive (or negative) 
clinical effects in diabetes mellitus (for instance in chronic diabetic wounds). Studies on vas-

culature in diabetic animal models can provide us with more information that can help us 
understand its effects on blood vessel function, and Table 1 summarizes the most relevant 
mechanisms that have been described in this text regarding functional vascular changes in 
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animal  experimental models of diabetes. However, this represents only a part of the com-

plete picture, and further studies are necessary to completely elucidate all the mechanisms 
involved in the effects of HBO on blood vessels.
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Target group of mechanisms or 
single mechanism

Effect References

Endothelial dysfunction ↑ NO bioavailability [20–23]

Arachidonic acid metabolites ↑ EETs synthesis, CYP epoxygenase expression, vascular 
sensitivity to EETs (?)

↓ 20-HETE

[2, 3, 11, 13, 47]

Oxidative stress ↑ ROS

↑ Antioxidant defense systems (?)

[2, 70–74]

Inflammation ↓ Proinflammatory mediators

↑Angiogenic mediators

[1, 2, 90–94]

Renin-angiotensin system ↑ Vascular reactivity to ANG-(1–7) [2, 3, 11]

Physical effects ↑ Dissolved oxygen in plasma and tissues [104–106]

Table 1. Major potential mechanisms of HBO-induced vascular functional changes in diabetic animal models.
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