
Selection of our books indexed in the Book Citation Index 

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us? 
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected. 

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International  authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800



Chapter 7

Ultra-Low-Power Embedded SRAM Design for Battery-

Operated and Energy-Harvested IoT Applications

Arijit Banerjee

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.76765

© 2016 The Author(s). Licensee InTech. This chapter is distributed under the terms of the Creative Commons 
Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited. 

Arijit Banerjee

Additional information is available at the end of the chapter

Abstract

Internet of Things (IoT) devices such as wearable health monitors, augmented reality 
goggles, home automation, smart appliances, etc. are a trending topic of research. Various 
IoT products are thriving in the current electronics market. The IoT application needs 
such as portability, form factor, weight, etc. dictate the features of such devices. Small, 
portable, and lightweight IoT devices limit the usage of the primary energy source to a 
smaller rechargeable or non-rechargeable battery. As battery life and replacement time 
are critical issues in battery-operated or partially energy-harvested IoT devices, ultra-
low-power (ULP) system on chips (SoC) are becoming a widespread solution of chip 
makers’ choice. Such ULP SoC requires both logic and the embedded static random 
access memory (SRAM) in the processor to operate at very low supply voltages. With 
technology scaling for bulk and FinFET devices, logic has demonstrated to operate at low 
minimum operating voltages (VMIN). However, due to process and temperature variation, 
SRAMs have higher VMIN in scaled processes that become a huge problem in designing 
ULP SoC cores. This chapter discusses the latest published circuits and architecture tech-
niques to minimize the SRAM VMIN for scaled bulk and FinFET technologies and improve 
battery life for ULP IoT applications.

Keywords: IoT, SoC, ULP, SRAM, FinFET, assists, canary sensor SRAM

1. Introduction

The revolutionizing Internet of Things (IoT) devices connect us to a new horizon of smart 

wearable gadgets, home appliances, health monitors, home automation controllers, etc. 

According to a growth projection of IoT devices by CISCO in 2013, the number of these 
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connected IoT devices could reach 50 billion by the year 2020 [1]. Among these IoT devices, 
a significant amount of products would be of wearable or portable categories. Thus, the por-

tability and form factor of such smaller devices restrict the use of power source to smaller 

batteries. Besides, these mobile IoT devices could harvest energy from ambient light, body 
heat, etc. energy sources. Based on the power consumption of these IoT devices, the battery 
life would vary for different applications [2]. However, power storage capacity of smaller 

batteries, both non-rechargeable and rechargeable, is limited. Therefore, all of these so-called 
battery-operated portable devices are limited by the battery life, and battery replacement of 
millions of IoT devices per year could result in millions of dollars in replacement cost.

On the other hand, energy harvesters could transform light, radio wave, and vibration 
energy to electrical energy that could be a potential solution for battery life and replace-

ment issues. However, the limited harvested power [2] from various energy sources may be 

insufficient to power IoT devices for applications requiring milliwatt or even hundreds of 
microwatts of power with the constraints of a smaller form factor. Also, guaranteed avail-
ability of energy sources may not be available for long-term application usage. Therefore, 

batteries remain the primary power source and choice for most of the IoT applications. 
However, due to self-leakage and energy consumption in IoT applications, the battery life 
and replacement time of IoT devices are major concerns, which last much less than the 
shelf-life of batteries of about 10 years. As battery energy density doubles every 10 years 
[3], which is much slower than Moore’s law of the number of transistors doubling every 2 
years [3], the low-power circuit solutions show great promises to empower IoT devices for 

longer battery life.

Every modern-day electronic gadget that has a digital processor in its circuit board, starting from 

the household micro-oven to Apple’s iPhone and the commercial Amazon’s cloud servers, uses a 
fast and power-efficient on-chip memory called the static random access memory (SRAM). The 
SRAM has three operations: one can write some desired data into a particular memory address 
location or read some data from a specific memory address or hold the written data to access in 
the future. Hence, the usual metrics to evaluate an SRAM are (1) the ability to write (write-ability), 
(2) ability to read (readability), and (3) ability to retain data (data retention) without any opera-

tion. Also, there is another metric called read stability that evaluates the stability of unselected 
bitcell columns while writing a data in selected columns. A simple architecture of the SRAM is 
given in Figure 1(a), which shows it has an address bus to select an address for a write or read 

operation. The other pins are a data input bus DIN, a data output bus DOUT, a chip enable signal 
EN, a synchronous clock signal Clk, and a write and read select signal WRRD. More advanced 
SRAMs can have additional pins, such as test pins, write and read margin control pins, power 
management pins, etc. SRAMs are nonvolatile: disconnecting the power supply from the SRAM 
would result in loss of memory data stored previously. The SRAM typically shares the power rail 
with the microprocessor’s digital circuits (logic core). The SRAM and microprocessor logic core 
can also have a separate supply rail at the cost of power rail routing, silicon area of the DC-DC 

converter, chip design time, and overheads. Figure 1(b) and (c) shows the two usual topologies 

used in system on chip (SoC) integrated circuits. The advantage of SRAM power rail topology 
shown in Figure 1(b) over Figure 1(c) is that it saves silicon area required by the additional on-

chip DC-DC converter blocks; those are usually very large compared to the other blocks in the 

SoC. Due to the square-law dependency of power with supply voltage, one of the best ways for 
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low-power operation of an SoC is to lower the supply voltage (V
DD

) and operate the entire digital 

 microprocessor block at the scaled V
DD

. Digital logic has been demonstrated to work at subthresh-

old [4] supply voltages [4–6] (100 mV and lower) that is lower than the threshold voltage (V
T
) of 

bulk MOSFETs, as shown in Figure 2, in a MOSFET I
D
-V

GS
 curve. However, the conventional 6T 

SRAM bitcell (Figure 3(a)) being a ratioed logic, which shares the same M5 and M6 transistors 

Figure 1. (a) SRAM architecture, (b) digital core and SRAM sharing the same rail, and (c) digital core and SRAM having 
dual-rail architecture.

Figure 2. Drain current (I
D
) vs. gate-to-source voltage (V

GS
) plot for an NMOS transistor showing on and off states 

in 130 nm bulk predictive technology model from Arizona State University. Below the threshold voltage (V
T
) of the 

MOSFET, the transistor is still operable.
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Figure 4. (a) Conventional 8 T SRAM bitcell, (b) Kulkarni’s 10 T bitcell, (c) Chiu’s 8 T bitcell, (d) Chang’s 10 T bitcell,  
(e) Feki’s bitcell, and (f) Arijit’s 9 T bitcell.

Figure 3. (a) Conventional 6T SRAM and (b) its write and read waveforms.
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for write as well as read operation, faces write-ability and read stability challenges across process  

variation, and the minimum operating voltage (VMIN) of SRAM increases. Thus, sharing the 
same power rail of the logic core with SRAMs limits the voltage scaling of the SRAM with logic 
core for low-power operations. Additionally, with technology scaling in nanometer domain, the 
14-nm FinFETs experience huge process variation [7], and the conventional high-density (HD) 

6T FinFET bitcell (Figure 3(a)) with 1:1:1 M1:M2:M5 beta ratios has insufficient write-ability and 
read stability across process variation. With further technology scaling in 7 nm and smaller pro-

cesses, it will be very challenging to make the conventional 6T SRAM memory to work, which 
has been there for decades.

There are mainly two available solutions to address these challenges of 6T SRAM by trading 
off SRAM area such as alternative bitcells and a write-read peripheral assist (PA) to improve 
VMIN of 6T SRAM bitcell. The alternative bitcells are a class of bitcells that has lower VMIN or 

lower energy consumption than the conventional 6T SRAM bitcell. A very popular alternative 
bitcell is 8 T bitcell, as shown in Figure 4(a). Here, the write and read path are decoupled to 

improve the write-ability, readability, and read stability of the 8 T SRAM compared to the 6Ts. 
However, after a certain V

DD
, even alternative bitcells are inoperable, and one of the popular 

SRAM schemes comes into the play for further VMIN lowering: peripheral write and read assist 
techniques. Although the PAs reduce the worst-case SRAM VMIN, it does not remove the SRAM 
VMIN guardbanding across process variation, which costs additional area and energy penalty 

in the typical and best case dies. A couple of recently published works address this VMIN guard-

banding issue by tracking it using canary sensor SRAM. The canary SRAM extends the SRAM 
operating range by reducing VMIN guardbanding across process variation, which promises to 

enable a multitude of IoT applications. This chapter will discuss aforementioned three major 
techniques that could enable ULP low-VMIN SRAMs for IoT applications as follows. Before 
delving details into these topics, we need to understand the SRAM design metrics as follows.

2. SRAM write and read design metrics

As discussed earlier SRAM has four different categories of design metrics such as write-ability, 
readability, read stability, and data retention. The first three categories of design metrics can 
have static and dynamic measures. Here the static measures are obtained using DC SPICE sim-

ulations, and dynamic measures are obtained using transient simulations. Static measures for 

write and read metrics are easy to evaluate and are widely being used to quantify the SRAM 
static VMIN across process and temperature corners. On the other hand, dynamic measures for 
write and read metrics are more accurate to represent an actual SRAM write or read operation; 
however, they are harder to evaluate and time-consuming. The static measures for write-ability 

are called write margin (WM) and write static noise margin (WSNM). Both WM and WSNM 
assume an infinitely long wordline pulse. The WM during a write is defined in two ways: 
the margin between V

DD
 and WL while BL and BLB are fixed at V

SS
 and V

DD
 and the margin 

between V
DD

 and BL while WL is fixed at V
DD

. On the other hand, WSNM has a single defini-
tion for measuring the SRAM static noise margin (SNM) when the wordline is turned on. The 
static measure of readability is the DC read current (I

read
) drawn from the bitline while reading 

a bitcell. The static measure of read stability is read static noise margin (RSNM), which assumes 
an infinitely long wordline pulse too. The measurement technique of RSNM and WSNM using 
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the SNM measurement technique shown in [8] is widely used across industry and academia. 

The wordline is turned off during a standby operation, and the corresponding hold metric is 
called hold static noise margin (HSNM). During the read operation, the internal nodes of the 6T 
SRAM bitcell are read stressed, and thus, RSNM is the worst-case SNM among the RSNM and 
HSNM. On the other hand, the quantifiable metric to retain data at the lowest supply voltage is 
called the data retention voltage (DRV) or at the supply voltage at which the HSNM is almost 
zero. Due to the reason that the static metrics assume an infinitely long wordline pulse, the 
measurement of WM is optimistic, and the measurement of RSNM is pessimistic. Moreover, the 
static metrics does not represent the true nature of the SRAM write and read operations, which 
has a finite wordline pulse-width. Thus, dynamic metrics play an important role to accurately 
determine the write-ability, readability, and read-stability metrics and their corresponding VMIN 

of SRAM. There can be many measures of dynamic metrics, such as dynamic write-ability and 
readability margins; the critical wordline pulse-width [9] for write-ability, readability, etc.; the 

failure rate of write-ability, readability, or read stability for a given wordline pulse-width; etc. 

Among these measures, the measurements of failure rates are the more popular choice to deter-

mine the VMIN of SRAM. This section concludes the discussion of SRAM write and read design 
metrics, which paves the path for discussion to alternative bitcell in the next section.

3. Alternative bitcells for low-power IoT applications

As broad categories of ULP and mid-high performance IoT applications demand to run on 
modern IoT SoCs, the SoC must be operable throughout a wide range of supply voltages. The 

SRAM in the SoC for such IoT application is no exception. However, at a lower supply voltage, 
the conventional 6T high-density (smallest area) bitcell has poor write-ability, readability, and 

read-stability metrics, such as WM, I
read

, and RSNM. Across process and temperature varia-

tion, these metrics degrade even more, and the conventional 6T SRAM becomes inoperable 
at lower supplies. Device sizing for write improvement hampers the read stability and vice 

versa due to shared write and read path and thus is not an option for ULP IoT applications. 

Moreover, near and below the subthreshold supplies, sizing does not work well to improve 
WM and RSNM metrics. On the other hand, at lower supply voltage, the soft error rate (SER) 
[10] increases. The SER can cause soft error disturb (SED) caused by high-energy particle 

strike that can flip the internal content of the bitcells in an SRAM. Error-correcting codes 
(ECC) [10] are essential to fix the SED errors; however, it requires additional ECC hardware 
and memory row or column to fix single-bit single-word errors. Detecting and correcting a 
multi-bit single-word (MBSW) error is expensive regarding ECC hardware and layout area. 
An MBSW error is usually lowered using bitline interleaving scheme, which is also known 
as column muxing. However, in a column mux scenario, selecting a 6T bitcell row for a write 
using the so-called wordline boosting-type peripheral write assist for VMIN lowering degrades 

the read stability of the half-selected bitcells, which is known as the half-select issue [16]. The 

root of the problem in the conventional 6T is the shared write and read path that degrades 

both the write and read operations in a column mux scenario. Thus, separating the shared 
path for write and read operation is the desired solution for low-V

DD
 operation of SRAMs.

State-of-the-art alternative bitcells’ [11–16] innovations in the last decade, having separate 

write and read path, show promises for low-V
DD

 operations. Among these bitcells the 8 T 
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(Figure 4(a)) bitcell is very popular and widely used in register files. Here, the write opera-

tion is performed using the 6T part of the 8 T bitcell, which is exactly the same as the conven-

tional 6T operation. According to the data, one of the WBIT or WBITB lines goes high while 
the write wordline (WWL) is turned on. The read operation uses the two transistor read 
buffers M8 and M9. During a read, the read bitline (RBL) is initially precharged to V

DD
, and 

after the read wordline (RWL) turns on the RBL discharges if the internal node Qb is holding 
a logic “1,” else not. This RBL discharge directly drives an inverter or logic gate or a single-
ended sense amplifier to generate the read-out signal. Although the 8 T bitcell separates the 
write and read paths, it suffers from read-stability issues in column mux scenario due to the 
half-select problem. Thus, an ultra-low voltage (ULV) operation using 8 T may not be viable 

in scaled technology across process and temperature variation. On the other hand, some 
of the other alternative bitcells that are shown in Figure 4, which includes Kulkarni’s [12], 

Chiu’s [13], Chang’s [14], Feki’s [15], and Arijit’s [16] bitcells, show promise for ULV opera-

tion. Kulkarni’s bitcell (Figure 4(b)) uses Schmidt-trigger type topology to have higher read 

stability and shown to operate down to 160 mV. However, due to feedback in the Schmidt-
trigger-type topology, the write and read energy, as well as leakage current of the bitcell, is 

higher than the other state-of-the-art alternative bitcells. It also suffers from the half-select 
issue. Chiu’s and Wang’s bitcell has a unique data-aware cross-point selection in the topol-
ogy itself, which not only avoid the half-select issue but also serve as a lower energy bitcell. 

On the other hand, Feki’s bitcell has two wordlines (Figure 4(e)) that separated the write 

from read operations and has lower leakage numbers. All of these ULV alternative bitcells 
show improvement in VMIN or dynamic energy or leakage numbers. However, it does not 

necessarily mean that any capacity ULV SRAM using any of these alternative bitcell would 
be suitable for all the ULV application. Where the battery life is extremely important, such as 
invasive or noninvasive ECG, EEG, or EMG monitoring for patients for a long time, a careful 
selection of bitcells is required based on total energy per cycle consumption and the duty 

cycle of the active IoT device.

With the voltage scaling in subthreshold supplies although the dynamic energy per cycle 
decreases, the cycle time increases due to the exponential relationship of MOSFET drain 
current with gate supply voltage. Thus, with voltage scaling the leakage energy per opera-

tion increases in SRAMs, and there can be a minimum energy point (MEP) [16]. Hence, 

arbitrary scaling down supply voltage for alternative bitcell arrays using different methods 
may not be fruitful from the standpoint of energy consumption or battery life. Authors in 
[16] compare Kulkarni’s, Feki’s, Chiu’s, and Chang’s bitcells with Arijit’s 9 T that shows the 
MEP contours are best for Arijit’s 9 T bitcell for low-energy biomedical applications due to 
its lower read, write, and leakage energy per operation. Figure 5(a) and (b) shows across 

design knobs (word width and size) the MEP comparison of the abovementioned bitcells 
as described in prior work [16], which is useful for selecting greener bitcells for low-energy 

consumption for extending battery life of biomedical devices. Note that all of the alternative 
bitcells have area penalty and energy tradeoffs compared to the high-density 6T SRAMs. 
Although alternative bitcells allow us to somewhat lower the VMIN of SRAMs for low-energy 
operation, there is another widely used design knob, called peripheral assists (PAs), for 
achieving a low-VMIN in SRAMs. Without the VMIN lowering PAs, even for alternative bitcells, 
below some V

DD
 doing write and read operation is challenging, such as subthreshold V

DD
s. 

The VMIN lowering PAs are discussed next.
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4. Write and read peripheral assist techniques for low-V
MIN

 

applications

In moderate- to high-speed IoT applications, such as 100 MHz–1GHz, an alternative bitcell 
may not be the choice of SRAM designer due to high timing as well as area penalty. Thus, the 
lowest area 6T bitcell is still a popular choice for mid- to high-speed IoT applications. However, 

the 6T VMIN is heavily guardbanded due to process and temperature variation. Thus, lower-

ing VMIN requires write and read peripheral assist [17] (PA) techniques. Moreover, alternative 
bitcells in ULV application involves the help of PA to have correct write and read functional-
ity across process variation. We define the PAs as a class of circuit techniques used in SRAM 
periphery that improves the write-ability, readability, and read stability of SRAM bitcells. 
Mainly, a PA technique would either bump up or lower the wordline or bitline control volt-
ages of the SRAM to make the write or read operation successful, as shown in Figure 6(a).  

A PA can also decrease the SRAM cycle time by shortening the write or read operations. The 
PAs are transient in nature and can be classified into write-ability, readability, and read-
stability PAs. For the conventional 6T SRAM bitcell, the control signals are mainly wordline 
and bitline. Thus, an example of write-ability PA would be wordline boosting (WLB) [17] or 

negative bitline (NBL) [17]. Although V
DD

 and ground (V
SS

) signals are usually static, they 

can serve as control signals for SRAM write operation. Thus, V
DD

 lowering and V
SS

 rising 

[17] are also write assist techniques. On the other hand, to improve the readability or dif-
ferential development or shorten the differential development time, one can apply a small 
percentage of WLB (as bigger percentages could induce read-stability issues in half-selected 
bitcells in column mux scenario) or negative V

SS
 (NVSS). Applying a suppressed wordline 

in write improves the read stability in half-selected bitcells, which have better RSNM num-

bers; however, it degrades the write-ability in selected bitcells. Additionally, column-wise 
boosting the V

DD
 or making the V

SS
 negative during the write operation in half-selected  

Figure 5. Minimum energy point (MEP) vs. (a) word width and (b) size of SRAM [16].
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bitcells also improves the read stability. Note that usually increasing the percentage of 
assist further enhances the write-ability, readability, and read stability but has a limit called 

assist line contour [17], which is controlled by the VMAX of the process technology. The list 

of possible PAs for write-ability, readability, and read stability can be found in [17]. PAs can 
affect the VMIN and yield of SRAMs differently in different technology. Thus, evaluations of 
PAs are necessary for new scaled-technologies, as past technology trends may not hold true 
in newer ones.

More than a decade ago, when bulk CMOS technology scaling at 65 nm and lower was facing 
challenges of higher process variation, the single write or read PAs showed enormous prom-

ises to improve the VMIN and yield of 6T SRAMs. However, with the introduction of scaled 
28 nm technology, the process variation was so high that the HD 6T bitcell was not writeable 
in all process corners, especially for the worst case. Post 28 nm bulk the FinFETs become a 
device fabrication option, and the trend of write-ability issues in the HD 6T bitcell persisted 

due to huge process variation. Thus, from 28 nm onward applying a particular single write 
or a read assist may not lower the SRAM VMIN across process variation anymore. Authors 
in [18] show the use of dual write and read PAs that reduces the VMIN and improves the 

yield. Moreover, authors in [19] discussed some appropriate combination of PAs (CPAs) that 
could lower the VMIN further for FinFETs at near-subthreshold supplies, such as a combina-

tion of negative bitline with boosting the V
DD

, etc. One could employ different CPAs based on 

VMIN lowering application needs. Because write-ability and read stability are more important 
metrics in FinFET SRAM design, and they often contradict the use of certain assists, such as 
wordline boosting for write improvement, the SRAM designer must make a careful selection 
of CPA. Usually, a widely used CPA combination for FinFETs nowadays is V

DD
 underdrive 

with wordline underdrive [18] schemes.

Moreover with technology scaling the metal width and pitch scale. Thus, there exist chal-
lenges of electro-migration, IR drop, and cross talk issues, which could restrict the use of a 

specific assist or limit the size of an SRAM bank. With the explosion of IoT application needs, 
ULP SoCs are targeted to run ultra-low energy as well as high-speed applications from time 

to time. Thus, voltage scaling down to near-subthreshold or deep-subthreshold supplies for 

SoC is a need nowadays. As logic VMIN easily scales down to lower V
DD

s, but SRAM VMIN is 

Figure 6. (a) Example of write assists using wordline boost and negative bitline techniques and (b) measured CDF of 
256 kb SRAM VMIN showing 90th percentile VMIN improvement of 240 mV using combined assists [V

DD
 boosting (VDDB), 

WL boosting (WLB), negative bitline (NBL)] [20].
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 comparatively higher due to process and temperature variation, the overall VMIN of IoT SoCs 

increase that has a logic core and SRAM sharing the same power rail. Note that splitting the 
logic and SRAM power rail, called dual-rail technology, requires additional silicon area and 
power routing costs due to additional DC-DC converters. Thus, lowering SRAM VMIN is essen-

tial for wide-range ULP IoT applications depending on the speed requirements of the applica-

tions. Authors [20] show for the first time the use of three combined PAs (NBL + VDDB + WLB) 
that lowered the conventional 6T VMIN from 0.71 V (90%) to 0.47 V as shown in Figure 6(b) 

using a measured cumulative distribution function. The work reports the total VMIN improve-

ment as 240 mV in a commercial bulk 130 nm technology. This work shows more than 300X 
active power lowering using the triple CPA technique.

However, it is not imperative that always lowering the VMIN would help to reduce the SRAM 
energy consumption. Lowering VMIN requires energy penalty due to the use of assists, which 

could lead to the cause of overall SRAM energy could increase in some case. The total SRAM 
energy could increase with certain higher assist percentages and lower VMIN is not always an 

intended requirement for low-energy applications. However, if the SRAM shares the same 
power rail with the logic core, as shown in Figure 1(b), the energy savings from voltage scal-

ing in the logic core could be much higher than the energy increase in SRAM, and thus, in this 
scenario only it might help.

Although write and read PAs usually improve the VMIN guardbanding, it does not remove it 

entirely. Moreover, due to design and application of PAs, we trade off additional silicon area 
and energy for SRAM and overall SoC sharing the same power rail with SRAM. Additionally, 
with the design for the worst-case approach, the nominal and the best-case corner dies suffer 
from additional area and energy overhead. Thus, an important research question emerges: 
how to minimize this additional VMIN guardbanding of SRAMs across process and tempera-

ture variation? The answer lies in tracking the SRAM VMIN using in situ canary sensor SRAMs 
that helps to apply CPA for individual dies differently across process and temperature varia-

tion. The next section describes the canary SRAM techniques.

5. Canary sensor SRAMs for V
MIN

 tracking and guardband lowering

The story of canary SRAMs ties to the story of the canary in a coalmine. Eighteenth-century 
coal miners used to carry this beautiful yellow canary bird for poisonous gas, such as meth-

ane detection. A moderate presence of such gases could be fatal to human beings. If there 
is a significant level of methane being present in the mines, the canaries used to feel sick. 
By observing the canaries, thus, the miners get enough time to evacuate the coalmines. The 
Canaries from the standpoint of a circuit could mean a weak circuit that fails earlier than the 

main circuit. The canary circuits are first being introduced as canary flip-flops [21]. Later in 

the year 2007, the authors in [22] show canary techniques could reduce the data retention volt-

age (DRV) of an SRAM, thus saving a huge amount of leakage power for ULP applications. 
This work indicates that canary SRAM bitcells are a modified version of the SRAM cells; those 
use an additional bias control knob to weaken the DRV of sets of canaries to tune to fail them 
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earlier than the population of the core SRAM bitcells [22]. A bias generator circuit is used to 
generate the bias voltage for the canaries in a row. A failure detector senses the canary reten-

tion failures in a closed loop. Thus, canaries could achieve a failure point before the SRAM 
DRV in each dies fabricated that lower the SRAM DRV and leakage current. This technique 
avoids the design for the worst case using canary-based DRV tracking.

In the year 2014, the authors in [23] demonstrated a theory for dynamic write VMIN tracking 

for the conventional 6T SRAM. This work introduces the term reverse assists (RA) as one of 
the canary design knobs. As discussed earlier, the peripheral assists (PA) improve the write-
ability or readability of the SRAMs. On the contrary, the RA Figure 7(a) degrades the write-

ability or readability of the canaries to fail earlier than the population of core SRAM, as shown 
in Figure 7(b). Thus, with the increase of the RA percentage, the canary distribution of write 
VMIN would shift to the right-hand side from distribution A to B to C. A user can tune the 
failure point of the canaries by selecting the proper reverse assist percentages or settings [23]. 

Another input design knob that helps to tune the canaries at a desired VMIN failure point is the 

failure threshold condition (F
th

) [22], which defines the no. of canary failures that correspond 
to a threshold failure point. The work also derives a mathematical formulation for dynamic 

write VMIN tracking as shown in Eqs. (1) and (2) [23]. Here the meanings of the variables of the 

equations are described in [23]. Here, the two equations relate the input and output SRAM 
design knobs and metrics to the canary design knobs and metrics. The work explains how to 
calculate the output metric named canary chip failure probability. The intended SRAM bit 
failure rate vs. VMIN data is calculated first. Then from the canary failure rate vs. VMIN data, the 

corresponding canary bit failure rate p
f
 is calculated. This serves as the input data to Eq. (2) 

[23] for the calculation of the output metric of canary chip failure probability P
fc
. The authors 

show that one can achieve the desired canary-chip-failure-probability either by selecting a 

smaller no. of canaries with larger reverse assist voltage strength or the vice versa, as shown 

in Figure 8 [23]. The work further shows that for a fixed reverse assist voltage to track the VMIN 

of a bigger SRAM, more number of canaries are required. Moreover, with the same reverse 
assist voltage, increasing the SRAM yield requires more number of canary bitcells to track the 
corresponding SRAM’s VMIN and so on.

Figure 7. (a) SRAM write operation using bitline-type reverse assist and (b) write VMIN distributions with a reverse assist 

(A, B, Cs are canary VMIN distributions) [23].
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The work [23] shows the proposed bitline-type peripheral reverse assist circuit, as shown in 

Figure 9. The peripheral RA circuit uses a configurable NMOS-NMOS voltage divider to pass 
the generated voltage using an analog demultiplexer to the BL or BLB lines controlled by data 
D and data-bar Dbar. The reverse assist voltage generation can be disabled for normal write 

mode by asserting the AON signal to logic ”0.” The proposed block diagram of the integrated 
canary SRAM architecture is shown in [23], which is physically adjacent to the SRAM itself that 
shares the power rails. However, for independent write and read operations, at the canary and 

SRAM boundary, the bitlines are disconnected. The advantage of canary being an independent 
memory permits simultaneous operation to track voltage droops occurring at the SRAM-canary 
power rails to take actions if the canary SRAM fails. Such actions include either stopping the 
SRAM operation or lowering the SRAM clock frequency to prevent voltage scaling further or 
selecting an apt PA to lower the VMIN further. The proposed algorithm in this work starts with 

an initial VRA voltage and writes and reads canary rows to compare if the data written is correct. 
If the canary write operation is successful, the VRA is increased else lowered gradually to reach 

the minimum VRA settings. Unless the minimum VRA setting is reached, the dynamic voltage 
and frequency scaling (DVFS) is allowed else the DVFS has to be stopped, as reaching the mini-

mum VRA would indicate the SRAM VMIN is reached. The minimum VRA setting would vary with 
the SRAM and canary input design knobs. The work also shows the area and power tradeoffs 
for SRAM and canary design knobs. It shows that for an increase in the number of canary bits, 
the normalized canary area and power overhead are amortized in bigger SRAM and increase 
with smaller capacity and so on. The work [23] showcases interesting results revealing that due 

to write VMIN tracking, the canaries can save a minimum of 31% in SS corner dies and a maxi-
mum of 51.5% in FS corner dies compared to the worst-case SF corner dies.

Authors in [24] first show a working prototype of the canary SRAM in a commercial 130 nm 
technology that reveals the necessary properties of canary SRAM to track SRAM VMIN. 

The work further shows a proof of concept VMIN tracking canaries that fail earlier than the 

SRAM starts to fail, which is controllable using the canary design knobs (F
th

 and RAS) post- 
fabrication. The architecture of the SRAM is shown in Figure 10, which is similar to the [23]. 

Figure 8. Canary chip failure probability vs. reverse assist voltage for 1 million SRAM bitcells with 95% yield @ TT_85C [23]. 
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The testchip includes an 8kb core SRAM, 512 kb canary SRAM, a memory BIST (MBIST), a 
canary BIST (CBIST), and boundary scan chain blocks. The 6T bitcells used in both canary 
and core SRAM are same; it uses an external BLVRA voltage to apply as reverse assists to the 
canary SRAM. Both the MBIST and CBIST architecture are similar to a traditional MBIST [25]; 

however, they are specialized in measuring the number of bit failures in the core and canary 

SRAM. This work characterizes some important properties of canary SRAM that helps to 
track the core SRAM write VMIN (WVMIN). The authors show that using BLVRA and WLVRA 
reverse assists across different voltage, frequency, and temperatures (VFT), the canary failure 
curve shifts distinctly compared to each other. Without this distinction in shifting of failure 
curves, canary SRAM would not work, as there will be no way to tell if the input design knobs 
are changed, such as VFT. As discussed earlier, this work shows the first silicon proof that 
canaries can be tuned to fail earlier than the core SRAMs.

With the intuition presented in [23, 24] the authors in [20] show a closed-loop 256 kb self-
tuning SRAM that can automatically track the SRAM VMIN using canaries and apply apt 

write-read PAs to improve the VMIN based on frequency needs for ULP IoT application. This 

work shows a 67% extension of operating voltage from 1.2 to 0.38 V deep into subthresh-

old supplies. Reverse assists are used to track the core SRAM VMIN using canaries to allow 

Figure 9. (a) Canary SRAM reverse assist circuit. (b) Canary write driver. (c) Reverse assist waveforms [23].
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a closed-loop control of the system supply voltage at an intended operating frequency. The 

system uses write and read combined PA (CPA) along with in situ canary sensor SRAM-based 
VMIN tracking to maximize the operating range of the SRAM into subthreshold supplies. This 
work meets the design needs for SRAMs of highly variable IoT applications while retaining 
the density of the conventional 6T bitcells. As the battery-operated or harvested energy IoT 
devices have an operating range of 10kHz to 10 MHz [26, 27], it is needed as a highly versa-

tile feature to expand the 6T SRAM operating range to ULV supply voltages for low power 
operation. PAs can lower SRAM VMIN; however, selecting the best CPA depends on the supply 
voltage that could influence the power-performance tradeoff.

This work uses write assists NBL and WLB along with read stability assist VDB to achieve 
a 90% VMIN of 0.47 V compared to the other assist combinations as well as a no-assist case 
(shown in the CDF plot in Figure 6 [20]). However, CPA alone requires a VMIN guardbanding 

that ensures all chips functioning across PVT variation, hampering potential power savings. 

Canaries play a vital role to extend the power saving achieved using CPA using runtime 
determination of VMIN that allow us to reduce the guardbanding. The block diagram of the 

proposed system is shown in Figure 11. The SRAM testchip comprises a 256 kb SRAM with 
2 kb integrated canaries, a PA controller (ASC), a frequency to digital converter (FDC), an 
MBIST, and a CBIST. This architecture shares the SRAM periphery with canary sensors, such 
as write drivers, sense amplifiers, pre-charge circuits, etc. The RA circuit uses a wordline 
slope degrading programmable control for canaries.

The work [20] employs a self-tuning algorithm described in [20] that tracks SRAM VMIN 

dynamically, which also adjust the supply voltage and the selection of PAs. The algorithm 
uses the FDC to measure and convert the input clock frequency to a digitized output and to 

initialize the off-chip low dropout (LDO) regulator to an initial V
DD

 programmed by a given 

look-up table (LUT). Using the ASC the algorithm chooses required PAs based on the LUT, 

Figure 10. (a) Block diagram (not in scale) of the memory block and (b) block diagram (not in scale) of the canary SRAM 
column periphery (I/O) and BL-type reverse assist [24].
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and the CBIST iterates the canary write and read operations across all canary addresses to 
compare and determine if the canary failure (Fc) crosses the canary failure threshold con-

dition (F
th

). Based on the comparison, the CBIST generates a control signal for the ASC to 
increase or decrease the LDO supply voltage accordingly. Therefore, the closed loop track-

ing using self-tuning completes once the canary failure point is reached, which indicates the 

approaching SRAM VMIN. Once the canary VMIN is tuned to the SRAM VMIN using F
th

 and RA 
settings, the worst-case SRAM bitcells are mapped into canaries, and the canary sensors track 
properties of the worst-case SRAM bitcells across a range of voltage, frequency, and tem-

perature (VFT) variations. The authors show measured tracking of SRAM VMIN across VFT 

variation as shown in Figure 12 [20]. The canary sensors, system components without the 

BISTs, and CPA have reported overheads of 0.77, 1.8, and 2.8%, respectively. The work allows 
V

DD
 scaling using CPA at the 90th percentile worst-case VMIN of 0.47 V with guardbands that 

reduces 337X active power. Moreover, enabling canary-based VMIN tracking provides a 4.3X 
power savings by removing the VMIN guardbanding to achieve up to 1444X active power sav-

ings at 0.38 V [20]. The authors show using CPA and in situ canary-based tracking down to 
0.38 V gives a 12.4X leakage savings, too. The canary-based VMIN tracking is scalable to lower 

technologies such as 45 and 32 nm, which shows promise to reduce the effect of process varia-

tion in FinFET SRAM in the highly-variant 7 nm and beyond technology nodes for a wide 
range of IoT applications.

Figure 11. System-level block diagram for the 256 kb 6T self-tuning SRAM subsystem showing subcomponents [20].
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6. Discussion

Energy consumption in billion node IoT networks is expected to increase, as the total no. of 
IoT devices may reach 50 billion by the year 2020. A portion of these massive numbers of 
IoT devices will be plugged into the outlets in homes, factories, and outdoor settings. On 
the other hand, a huge number of IoT devices will be battery-operated or energy-harvested 
portable systems. The billions of IoT devices plugged into the outlets will draw power from 

the energy grid resulting in millions of dollars in energy bills and will increase the carbon 

footprint of this planet. Moreover, with a shorter battery life and replacement time, support-
ing billions of battery-operated IoT devices will require a massive production of portable 
batteries increasing the carbon footprint of Earth, too. Reducing the carbon footprint of these 
IoT devices requires reduction of power consumption, usage of low voltage operation for 

quadratic energy savings, and harvesting energy from the environment, which will require 

ULP IoT SoCs to reduce the energy cost and improve the battery life for a greener IoT elec-

tronics. However, technology scaling in the latest 7 nm FinFET and beyond will become a 

hindrance to lower operating voltage of the widely used embedded SRAMs, which shares 
the same power line with the digital core in ULP IoT SoCs. This chapter reviews some of the 

state-of-the-art SRAM design techniques, which are promising candidates for reducing power 

Figure 12. Measured canary VMIN tracking across clock frequencies [1 or 10, 50, 100, and 150] MHz and temperatures  
(a) 27°C, (b) 85°C, and (c) −20°C, showing VMIN tuning range, and (d) the distribution of overall VMIN reduction using 

assist and tracking [20].
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consumption in greener IoT applications, such as alternative bitcell topologies, a combination 

of peripheral assists, and in situ canary-based VMIN tracking for guardband lowering.

7. Conclusions

Technology scaling in FinFET devices 7 nm node and beyond is going to experience a higher 
degree of process variation, which could affect the design and production of so-called low-

est area 6T SRAM memory cells used in modern IoT system on chips. Based on the latest 
published works, there are three key directions to solve this issue. One of the directions is 
to use appropriate alternative bitcells for SRAMs trading off core array area that will enable 
ultra-low energy and lower leakage memory operation to sustain a longer battery life for por-

table home automation, wearable, and biomedical IoT applications. For low-cost system on 

chips using 6T SRAMs supporting low-power and mid- to high-speed applications, the use of 
appropriate combined peripheral assists is essential for a low-VMIN application. Although the 
combined assist lowers the VMIN and improves the SRAM yield, it does not eliminate the costly 
VMIN guardbanding due to process and temperature variation. To remove or minimize this 

VMIN guardbanding, the in situ canary sensor SRAM shows great promises for VMIN tracking 

across voltage, frequency, and temperature variation. Combined peripheral assists along with 

canary sensor SRAM show promise for improvement in the power consumption of IoT sys-

tems by more than 1000X supporting a wide range of IoT application in a single SoC. Hence, 
to support a wide range of greener IoT applications, SRAM designers need to choose appro-

priate design techniques, such as alternative bitcells, combined peripheral assist, and in situ 

canary sensor SRAMs to enable technology scaling for SRAMs in 7 nm node and beyond.
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