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Abstract

The increasing prevalence of obesity is a major factor driving the worldwide epidemic of 
type 2 diabetes and metabolic syndrome. Adipose tissue not only stores energy, but also 
controls metabolism through secretion of hormones, cytokines, proteins, and microRNAs 
that affect the function of cells and tissues throughout the body. Accumulation of visceral 
white adipose tissue (WAT) leads to central obesity and is associated with insulin resis-
tance and increased risk of metabolic disease, whereas accumulation of subcutaneous 
WAT leads to peripheral obesity and may be protective of metabolic syndrome. While 
much attention has been paid to identifying differences between white, brown and brite/
beige adipocytes, there is growing evidence that there is functional heterogeneity among 
white adipocytes themselves. This heterogeneity, includes depot-specific differences in 
development, inflammation, and endocrine properties. In addition to the depot-specific 
differences, even within a single fat depot, WAT is composed of developmentally and 
phenotypically distinct subpopulations of adipocytes. The following chapter will intro-
duce this concept of white adipocyte heterogeneity.

Keywords: heterogeneity, subpopulations, inflammation, microRNA, and adipokine

1. Introduction

The prevalence of obesity, characterized by excess of adipose tissue, has been increasing 

worldwide and represents one of the most significant public health problems of our time. 
Obesity is associated with numerous comorbidities, including type 2 diabetes, coronary heart 

disease, hypertension, hepatosteatosis, and even cancer. Adipose tissue is organized in dis-

crete depots in specific locations throughout the body. This chapter will briefly introduce the 
two major types of fat, brown and white. We will introduce the major different WAT depots 
and more fully elaborate the physiology of two more recently defined depots: the dermal and 
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bone marrow adipose tissue. We will then focus on visceral and subcutaneous white adipose 

tissue and discuss the differential developmental, inflammatory, and endocrine properties 
of these depots. The depot-specific expression and roles of inflammatory cytokines, adipo-

kines, and novel signaling molecules, including lipokines and microRNAs will be discussed. 

Finally, we will discuss emerging literature that demonstrate WAT is composed of develop-

mentally and phenotypically distinct subpopulations of adipocytes.

2. White, brown, and brite adipose tissue

The two major forms of adipose tissue include white adipose tissue (WAT) or brown adipose tis-

sue (BAT). Although these tissues are characterized by lipid accumulation, these two tissues dif-

fer dramatically in morphology, developmental lineage, and function. WAT, is characterized by 

adipocytes with large unilocular droplets and is present in far greater amounts than BAT. WAT 

acts as the primary reserve for surplus energy in the body, storing excess nutrients as triacylg-

lycerol (TAG). In contrast, the brown adipocytes actively dissipate energy through the produc-

tion of heat. Brown adipocytes contain multilocular lipid droplets distributed throughout the 

cell. Brown adipocytes contain more mitochondria than white adipocytes, which, along with an 

increased capillary density, is responsible for the brown color of BAT [1]. In the unique thermo-

genic property of brown fat is due to the presence of uncoupling protein-1 (UCP1). UCP1 allows 

the reentry of protons pumped across the inner mitochondrial membrane by respiratory chain 

enzymes. This converts the energy of the mitochondrial proton gradient into heat. The impor-

tance of UCP1 to brown fat function is evident in studies of mice with targeted UCP1 ablation, 

which results in cold intolerance, with variable effects on WAT accumulation and obesity [2, 3].

The identification of a third adipocyte type, termed “brown-in-white”, “brite”, or “beige” 
that has many of the functional characteristics of BAT while being dispersed throughout WAT 

depots. Like its BAT, beige fat has the capacity for thermogenesis, expresses UCP1, and can 

be activated in response to cold exposure or adrenergic stimulation [4]. Although brown adi-

pocytes are largely derived from Myf5-expressing expressing lineage, evidence exists that 

beige adipocytes are formed from both transdifferentiation of unilocular white adipocytes 
and from a unique Myf5 negative precursor population within subcutaneous depots [5, 6]. 

However, more recent evidence suggests the presence of functionally distinct populations of 

beige adipocytes [7] that are molecularly distinct from brown and white adipocytes in both 

mice and humans [8, 9]. Since the discovery that most humans possess active BAT, primarily 

in the supraclavicular regions [10–13], increasing the amount and activation of both BAT and 

beige AT to combat obesity has been an extremely active avenue of research.

3. White adipose tissue depots

WAT serves multitude of functions including storage of lipid, maintenance of insulin sensi-

tivity, and endocrine signaling [14]. Adipocytes in WAT are characterized by low cytoplas-

mic volume, unilocular lipid droplets, and lower numbers of mitochondria compared to 

BAT. WAT can be categorized into two major subdivisions based on the anatomical locations 
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or depots: subcutaneous (fat under the skin in the hypodermis region) and visceral. Increase 
in visceral fat is related to the increased risk of metabolic disorders such as type 2 diabetes 

and cardiovascular diseases [15, 16], whereas subcutaneous fat is not and may even be protec-

tive against metabolic derangements [17]. The differences between these two types of WAT 
are attributable to both intrinsic differences in the cells that comprise these depots as well as 
differences in the micro-environment between adipose tissue depots.

3.1. Subcutaneous adipose tissue

In rodents, subcutaneous WAT is divided into subcutaneous anterior fat (SAF) and subcuta-

neous posterior fat (SPF). SAF can be further subdivided into cervical, axillary, interscapular, 

and subscapular, and SPF is divided into dorsolumbar, inguinal, and gluteal [18]. In humans, 
two subcutaneous fat regions are also recognized: upper and lower body fat, where they cor-

respond approximately to SAF and SPF, respectively. Upper body subcutaneous fat consists 

of superficial and deep layers separated by the Scarpa’s fascia. Superficial fat is compact, con-

sistent in thickness, and metabolically less active compared to deep layer fat [19]. Lower body 

subcutaneous fat is primarily made up of adipose tissue around the gluteal and femoral (glu-

teofemoral) regions [20, 21]. Accumulation of gluteofemoral fat is associated with improved 

glucose tolerance [22], negatively correlated with insulin resistance [17], and associated with 

reduced aortic calcification related to cardiovascular diseases [23]. However, the protective 

effect of abdominal subcutaneous fat is disputed, potentially as a result of the presence of 

deep subcutaneous fat, which has been suggested to behave similar to visceral fat regarding 

metabolic parameters such as insulin-stimulated glucose utilization [24]. There has been no 

evidence of multiple subcutaneous AT layers in rodents, such as is the case in humans.

3.2. Visceral adipose tissue

Visceral fat is generally regarded as intra-abdominal adipose tissue that surrounds internal 

organs. Under this definition, the major human visceral depots are: the omental, retroperito-

neal, perirenal, mesenteric, and pericardial depots [18, 20]. Notably, only the mesenteric and 

omental adipose tissues drain directly into the portal circulation, and thus release of free fatty 
acids (FFAs) and pro-inflammatory cytokines from these depots is directly delivered to the liver 
and promotes the development of hepatic steatosis and insulin resistance [21, 25]. Mice have 

similar visceral adipose tissues to humans including the mesenteric, perirenal, pericardial, and 

retroperitoneal fat depots. However, rodents have a well-developed perigonadal fat pad, which 

is largely absent in humans, while rodents have a paucity of omental adipose tissue (Table 1).

The enlargement of visceral adipose tissue is largely detrimental to the functions of the sur-

rounding organs. Pericardial fat, including both epicardial and pericardial AT, is associated 

with metabolic disorders and low-grade inflammation, resulting in type 2 diabetes and car-

diac complications. Increase thickness of pericardial AT is associated with the increase of dia-

stolic pressure and fasting insulin [26, 27], arterial calcium [28], and severity of coronary artery 

disease [29]. Similarly, an increase in perirenal (fat between renal fascia and capsule) and 

pararenal AT (immediately external to renal fascia) thickness is correlated with glomerulopa-

thy [30], increased frequency of chronic kidney disease in type 2 diabetic patients [31], and 

hypertension due to compression of low-pressure structures in the renal sinus such as veins, 

The Heterogeneity of White Adipose Tissue
http://dx.doi.org/10.5772/intechopen.76898

179



lymphatic vessels, and ureters [32, 33]. Increased mesenteric fat is associated with increased 
risks of cardiovascular diseases [34], Crohn’s disease [35], and hepatic insulin resistance and 

hepatosteatosis [36]. Together, these studies show that increased visceral, but not subcutane-

ous fat deposition, is associated with numerous disease states and metabolic derangements.

3.3. Other white adipose tissues

3.3.1. Dermal white adipose tissue (dWAT)

Recent research has drawn attention to a newly recognized adipose depot, the dermal white 
adipose tissue (dWAT) [37]. dWAT is the widespread adipose tissue found in the reticular 

region of the dermis, and in mice is separated from the subcutaneous adipose tissue by a 

striated muscle layer. In mice, evidence suggests that adipocytes from dWAT develop inde-

pendently from subcutaneous depot [38]. On the other hand, human dWAT is not clearly 

separated from the underling subcutaneous depot and is defined by dermal cones that con-

centrate around hair follicles [39]. Clusters of dWAT are more densely distributed in areas that 

are highly-prone to scaring [40]. In fact, dWAT is now known to be associated with numer-

ous functions including scar formation, wound healing, and cutaneous fibrosis [41–45]. The 

wound healing mechanism involves inflammatory response and closing of the area by fibro-

blast migration, which the latter is mediated by adipocyte activation. This process is charac-

terized by an intra-conversion between adipocytes and myofibroblasts and also contributes to 
the fibrosis observed in scar formation and autoimmune diseases (i.e. scleroderma) [37, 46, 47].

In addition to wound healing effect, dWAT plays an important role in hair follicle cycling. 
Preadipocytes, but not mature adipocytes in the dWAT have been suggested to activate the 

growth of hair follicles [48, 49]. As dWAT develops independently from subcutaneous depot, its 

emergence in embryonic stage coincides with the development of hair follicles, at least in murine 

fetuses [38], further supporting the relationship between dWAT and hair follicle development.

Dermal adipose tissue has also been suggested to function in other processes including pro-

tection of skin from bacterial infection and whole-body thermoregulation. Infection with  
S. aureus promotes rapid proliferation of pre-adipocytes, leading to large expansion of dWAT 

and increased production of antimicrobial cathelicidin [50], suggested a protective response of 

dWAT to bacterial infection. Loss of syndecan-1, an important adipocyte differentiation protein, 
leads to reduced thermoregulation and loss of dWAT, implying a role of dWAT in regulating 

temperature [51].

Subcutaneous Visceral Other

Humans Upper body: superficial and deep abdominal 
(separated by Scarpa’s fascia)

Omental, retroperitoneal, perirenal, 

mesenteric, pericardial

Bone marrow, 

dermal

Lower body: gluteofemoral (butt and thigh)

Rodents Anterior: cervical, axillary, interscapular, 
subscapular

Perigonadal, perirenal, pericardial, 

mesenteric, retroperitoneal

Bone marrow, 

dermal

Posterior: dorsolumbar, inguinal and gluteal

Table 1. Major adipose depots in humans and mice.
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3.3.2. Bone marrow adipose tissue (BMAT)

Bone marrow adipose tissue (BMAT) is, as the name suggests, is located within the bone 

marrow. Bone marrow adipocytes are known to share common origin with osteocytes, 

chondrocytes and hematopoietic cells, as indicated by lineage tracing models [52]. As a fat 

depot, BMAT makes up 10% of human fat mass and up to 70% volume of bone marrow [53]. 

The BMAT adipocytes consist of two types in mice: constitutive bone marrow adipocytes 
(cBMA) and regulated BMA (rBMA) [54]. cBMAs are large adipocytes that densely populate 

regions of distal tibia and caudal vertebrae. These adipocytes develop early in life, con-

tain high levels of unsaturated fatty acids, and are resistant to insulin and beta-adrenergic 
stimuli. On the other hand, rBMAs are distributed across the trabecular regions of proximal 

tibia, distal femur, and lumbar vertebrae. These adipocytes are smaller and have higher 

saturated fat than cBMAs and subcutaneous adipocytes [55]. Additionally, rBMAs respond 

to beta-adrenergic stimuli and dietary changes [54]. Interestingly, BMAs exhibit charac-

teristics of both WAT and BAT and express both WAT and BAT markers. BMAs express 

adipogenic markers and resemble WAT in terms of the unilocular appearance and the capa-

bility to secrete adiponectin and leptin [56, 57]. However, like BAT or brite adipocytes, the 

distribution of these cells are dependent on temperature and location within the body [54, 

58]. The BAT characteristics of BMAT decrease with age and in pathological condition such 

as diabetes [59].

Numerous physiological and pathological processes influence BMAT physiology. BMAT 
expansion occurs in normal aging, primarily due to an increase in rBMA over time [54, 

60]. Expansion of BMAT and reduction of bone volume are observed in human subjects 

with osteoporosis [61]. Steroid hormones also modulate BMAT expansion, as both estro-

gen deficiency [62, 63] and excess glucocorticoids, observed in Cushing’s disease, have 
also been shown to increase BMAT [64, 65]. On the other hand, in a location and sub-

type dependent manner, leptin potentially antagonizes adipogenesis in bone marrow as 

observed in both caloric restriction and leptin-deficiency [66–70]. Furthermore, high-fat 

diet (HFD) causes BMAT expansion and bone loss [71–73]. Treatment of type 2 diabetes 

with thiazolidinedione (TZD) increases BMAT mass. Although the relationship between 

increased BMAT and reduced cortical and trabecular bone mass remain controversial, 

these studies could possibly discourage TZD administration to patients with high risk of 

bone fracture [72, 74–77].

The physiological functions of BMAT in normal and pathological conditions are beginning to 

be explored. Inflammatory cytokines have been found to be secreted by BMAT and the secre-

tion of these molecules may be altered by diet induced obesity [71, 78, 79]. Bone marrow adi-

pocytes have also been shown to produce adiponectin. Particularly during caloric restricted 

state and anorexia nervosa during which all adipose tissues except BMAT are depleted, 

BMAT is a major source of circulating adiponectin [53, 80–83]. Additionally, BMAT influ-

ences hematopoiesis and osteogenesis in the marrow environment. BMAT has been shown 

to negatively regulate hematopoiesis [84] and bone marrow adipocytes may also play a role 

in bone remodeling. Increased bone marrow adipocytes leads to the increased expression of 
RANKL, which induces the activity of osteoclasts and reduces bone density [85]. Similarly, 

osteoporosis is accompanied by a marked increase BMAT mass [86]. Future studies will add 

to our understanding of the regulation and physiological contribution of BMAT.
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4. Intrinsic differences between visceral and subcutaneous 
adipocytes

Recent lineage tracing studies have indicated that visceral and subcutaneous WAT are derived 

from different developmental lineages [87]. This finding supports earlier findings that pre-

adipocytes and adipocytes from these depot have intrinsic depot-specific differences in both 
gene expression and function.

In general, preadipocytes derived from subcutaneous regions are more pro-adipogenic and 
readily differentiate into adipocytes, whereas visceral preadipocytes express anti-adipogenic 
genes and require additional components for differentiation [88–91]. The increased differ-

entiation of subcutaneous-derived preadipocytes may due, at least in part, to high levels of 

expression of pro-adipogenic genes, PPARy and C/EBPs coupled with the high number of 
rapidly replicating preadipocytes derived from subcutaneous tissue [92–96]. These intrinsic 

differences could contribute to the protective effect of subcutaneous fat during obesity, where 
hyperplasia in subcutaneous fat allows the uptake of excess fat and prevents ectopic deposi-

tion. On the contrary, visceral fat has lower lipoprotein lipase activity and higher rates of 

catecholamine-induced lipolysis. This leads to an increase in free fatty acid release from vis-

ceral adipose tissue into the portal circulation [97–100]. These differences in gene expression, 
differentiation, and replication are retained after numerous passages of cultured subcutane-

ous and visceral preadipocytes, thus revealing intrinsic, cell-autonomous differences which 
contribute to the regional differences in mature adipocytes.

In addition to the large differences between visceral and subcutaneous adipocytes, inter-depot 
differences also exist even with subcutaneous and visceral adipose tissue. Within subcutane-

ous depot, abdominal preadipocytes express higher pro-adipogenic marker PPARγ, are more 
susceptible to apoptosis upon inflammatory cytokine exposure, and are smaller in size due to 
increased lipolysis compared to gluteofemoral subcutaneous fat [90, 99, 101]. Similarly, not all 

visceral adipose tissues are the same. Mesenteric adipocytes are intermediate between abdom-

inal subcutaneous and omental in terms of replication and differentiation [92, 93, 95, 96].  

Furthermore, the perirenal depot contains a higher percentage of rapidly dividing cells than 

perigonadal fat [96, 102–104]. Together, these studies demonstrate that variations in subcuta-

neous and visceral depots are dependent not only on anatomical location, but also upon the 

intrinsic properties of the adipocytes found within the depots.

5. Associations of WAT depots with metabolic health

As previously mentioned, accumulation of visceral fat, termed central obesity, is associated 

with increased risk of diabetes, and cardiovascular diseases [23, 105–107] while subcutaneous 

fat has been linked to protection from metabolic diseases [17, 22, 108]. The differential effects 
of subcutaneous and visceral adipose tissue on metabolism have been directly tested by trans-

plantation and surgical removal of adipose tissue. While transplanting subcutaneous adipose 

tissue improved the glucose tolerance of the recipient animals, transplantation of visceral fat 
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did not have this effect [109, 110]. Similarly, removal of visceral fat restores insulin sensitiv-

ity in rats and in humans, but removal of subcutaneous did not improve metabolic profiles 
[111–113]. Thus, visceral WAT is strongly associated with metabolic syndrome. The following 

section of this chapter will discuss the depot-specific regulation of inflammation, immune 
cells, and cytokines and how these factors impact whole-body physiology.

5.1. The role of immune system in obesity-related metabolic syndrome

Macrophages have an established role in regulating angiogenesis during tissue repair [114]. 

In the early expansion of obese adipose tissue, remodeling of extracellular matrix occurs 
along with increased angiogenesis to support growing adipocytes [115, 116]. However, con-

tinued hypertrophy of adipocytes in later stage of obesity leads to reduced oxygen tension, 

and expression of hypoxia-inducible factor 1α (HIF1α) is induced in the adipose tissue. HIF1α 
has been shown to be elevated in obese mice and humans [117–120]. Increased HIF1α is asso-

ciated with the development of fibrosis, inflammation, and insulin resistance [119, 121–123].

The negative impacts of visceral fat depots on metabolism are, at least in part, attributable to 
the macrophage infiltration and inflammation that occur primarily in the visceral adipose tis-

sue. The immune system plays an intricate role alongside of adipose dysfunction during the 

development of obesity-related metabolic syndrome. Obesity-induced metabolic disease is 

now classified as a chronic-inflammatory disease due to the presence of immune cells and ele-

vated levels of inflammatory cytokines. In lean mice and humans, low levels of macrophages 
are found in adipose tissue. However, obese mice and human subjects have an increased 

number of macrophages, especially in the visceral adipose tissue, with numbers correlating 

with the increased size of adipocytes and body fat mass [124, 125]. The Infiltrating macro-

phages in obesity are polarized towards a classically activated M1 pro-inflammatory pheno-

type and surround dying adipocytes in the form of multinucleated giant cells and crown-like 

structures [126, 127]. The number of alternatively-activated M2 macrophage number does not 

change during obesity but is overwhelmed by the increased presence of recruited M1 macro-

phages, leading to an overall shift in the ratio of these macrophages [128].

Macrophage recruitment relies on chemoattractant proteins, such as monocyte chemoattrac-

tant protein (MCP)-1 or chemokine (C-C motif) ligand 2 (CCL2). The initial dose of MCP-1 

release was found to be secreted by pre-adipocytes [129], supporting the hypothesis that 

initial recruitment of macrophages is necessary for extracellular matrix remodeling and tis-

sue expansion. Post-recruitment, macrophages are activated by other immune cells, in par-

ticular cytotoxic cells, initiating an inflammatory cascade. Adipose CD8 cytotoxic T cells that 
normally kill virus-infected cells are activated by obese adipocytes, which leads to subse-

quent activation and M1 polarization of macrophages. This macrophage polarization event 
precedes macrophage infiltration and occurs as an early response to high-fat-diet (HFD) 
exposure in mice [130]. Natural killer (NK) cells, which are cytotoxic cells that participate in 

innate immunity, recruit and activate macrophages through secretion of MCP-1 and IFN-γ. 
Activated macrophages, in return, recruit via the secretion of CCL3, CCL4, and CXCL10, and 

stimulate the proliferation of NK cells through release of IL-15 [131]. Other immune cells, 

including B and different types of T cells, indirectly contribute to pro-inflammation state of 
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adipose tissue. B cells are important participants of humoral immunity, secrete inflammatory 
cytokines (IL-8, IL-6, IFN-γ), and activate both CD4 and CD8 T cells [132]. B cells support adi-

pocyte hypertrophy and the pro-inflammatory T-cell function in obesity/T2D through cellular 
contact-dependent mechanisms. Thus, reducing the interaction between antigen presenting B 

cells and T cells decreases the inflammatory response and can lead to improvements in glu-

cose and insulin metabolism [132, 133]. While the effects of pro-inflammatory immune cells 
are principal regulators of adipose tissue in the obese state, anti-inflammatory cells (i.e. M2 
macrophages, regulatory T cells (Treg), and T helper type 2 cells (Th2)) also have defined roles 
in adipose tissue homeostasis [134].

5.2. Inflammatory cytokines

The macrophage infiltration which occurs during obesity, particularly visceral adipose tissue, 
lead to increased local and systemically levels of inflammatory cytokines [135]. In the fol-
lowing section, we will discuss the regulation and action of some of the major inflammatory 
cytokines within adipose tissue.

5.2.1. Tumor necrosis factor-α (TNF-α)

TNF-α was the first identified cytokine derived from adipose tissue macrophages that links 
both obesity and inflammation. TNF-α mRNA and protein levels have been shown to be ele-

vated during obesity in the adipose tissue both animal models and human subjects. Increased 
TNF-α is positively correlated with increased degree of obesity and circulating insulin level, 
whereas TNF-α level decreases with weight loss and increased insulin sensitivity [136–140]. 

These effects are directly attributable to TNF-α, as infusion of a TNF-α neutralizing antibody, 
or ablation of TNF-α or its receptor in mice leads to improved insulin sensitivity [140–142]. 

Despite these clear results in mouse models of obesity, the use of TNF-α neutralizing anti-
bodies and inhibitors has had inconsistent success in treating insulin resistance and glucose 

intolerance in obese human subjects [143–146].

TNF-α affects a myriad of various pathways to alter adipose tissue metabolism. TNF-α 
impairs insulin signaling via downregulation of insulin receptor through phosphorylation 

of insulin receptor substrate-1 (IRS1) and suppresses adipogenesis by controlling the tran-

scriptional regulation and activity of the adipogenic factors PPARy and C/EBPs [14, 147, 148]. 

Furthermore, TNF-α induces lipolysis through the downregulation of anti-lipolytic genes 
perilipin, FSP27 and G0S2 and inhibition of lipoprotein lipase activity. TNF-α can directly 
cause apoptosis in visceral pre-adipocytes and adipocytes [149–155]. Taken together, the 

actions of TNF-α function to reduce adipocyte size and number, leading to the release of free 
fatty acids into the circulation.

5.2.2. Interleukin-6 (IL-6)

Interleukin-6 (IL-6) is secreted by numerous cell types including the adipocytes and macro-

phages, with only 10% of IL-6 being contributed by adipocytes [124, 156, 157]. Multiple lines of 

evidence point to visceral adipose tissue as the major contributor of circulating IL-6 [158, 159]. 

Like TNF-α, IL-6 also negatively regulates insulin signaling through degradation of IRS1 [148].
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5.2.3. Interleukin-1 receptor antagonist (IL-1Ra)

IL-1Ra is a natural antagonist to inflammatory cytokine interleukin-1α and β. IL-1Ra is 
expressed in numerous tissues, and is highly expressed in adipose tissue during obesity, and 

its expression is positively correlated with leptin level. Indeed leptin is capable of inducing 
IL-1Ra; and as a negative feedback loop, IL-1Ra antagonizes leptin activity [97, 160]. Targeting 

IL-1Ra has intriguing therapeutic potential, as treatment of diabetic patients with a recom-

binant human interleukin-1-receptor antagonist increased insulin secretion from pancreatic 

islets [161]. Interestingly, a single nucleotide polymorphism in IL-1Ra is highly associated 
with body fat mass [162].

5.2.4. Plasminogen activation inhibitor-1 (PAI-1)

PAI-1 is another inflammatory cytokine more highly expressed in visceral than subcutaneous 
adipose tissue. In human subjects. Plasma PAI-1 level correlates with body mass index [163]. 

PAI-1 is expressed in mature adipocytes, monocytes, as well as other stromovascular cells 
from the adipose tissue [164, 165]. Ablation of PAI-1 in mice leads to improved glucose and 
insulin metabolism [166], and PAI-1 has been found to negatively regulate adipogenesis [167]. 

IL-6, but not TNF-α, stimulates PAI-1 expression in human adipose tissue [163, 165].

6. Depot-specific effects of adipokines and other signaling molecules

As an endocrine organ, WAT secretes a variety of hormones and cytokines, also known as 

“adipokines”. While another chapter in this book will provide a broader overview of the 
endocrine functions of AT, we would be remiss if we did not mention the depot-dependent 

adipokine profile of AT. In addition, we will discuss two recently discovered classes of endo-

crine signaling molecules derived from adipose tissue: distinct lipid species, known as “lipo-

kines” and circulating microRNAs.

6.1. Adipokines

Adiponectin is an adipokine that has anti-inflammatory and insulin-sensitizing action [168]. 

The majority of reports suggest that adiponectin secretion is primarily driven by subcutane-

ous rather than visceral fat, and that adiponectin level are low in obese and insulin resistant 

patients [97, 169–171]. Inflammatory cytokines reduce adiponectin secretion, especially in the 
visceral adipose tissue [169]. Not only is reduced adiponectin involved in insulin resistance, 

but albuminuria, a marker of kidney damage, is related to adiponectin deficiency [172], fur-

ther extending the protective effects of adiponectin in metabolic health.

Leptin is a satiety hormone primarily secreted by adipocytes that acts on the hypothalamus 

to decrease food intake and increase energy expenditure, among other functions. As such, 

mice and humans with mutations of leptin or its receptor exhibit marked obesity [173–175]. 

Leptin is secreted by adipocytes and levels are positively correlated with the amount of body 

fat  [135, 176]. Secretion of leptin appears to be depot-dependent, with subcutaneous WAT 

producing greater amounts than visceral WAT [89, 159, 170, 177, 178].
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Resistin is a peptide hormone expressed in adipose tissues of both rodents and humans. In 
rodent, the primary source of resistin are the mature visceral adipocytes, but in humans the vis-

ceral fat macrophages are the major contributor of circulating resistin [179–182]. Anti-resistin 

treatment or loss of resistin signaling improves insulin sensitivity and glucose homeostasis, 

while recombinant resistin treatment impairs glucose and insulin metabolism [181, 183, 184]. 

Although the cellular source of resistin is different between humans and mice, macrophage-
derived human resistin is also sufficient to exacerbate adipose tissue inflammation and insulin 
resistance in mice [185].

Visfatin (or pre-B cell colony enhancing factor PBEF) is an adipokine named for the sugges-

tion that it would be predominantly produced and secreted in visceral fat [186]. Visfatin was 

found to be released predominantly from macrophages rather than from adipocytes in vis-

ceral adipose tissue, and plasma visfatin significantly correlates with BMI and body fat [187]. 

Visfatin has been shown to have endocrine, paracrine, and autocrine action, and may function 

through binding of the insulin receptor [186].

Retinol binding protein 4 (Rbp4) is a secreted factor from adipocyte tissue that has marked 

metabolic effects both on liver and skeletal muscle. Ablation of Rbp4 leads to improvements 
of glucose and insulin metabolism while addition of Rbp4 impairs insulin signaling in muscle 

[188]. Rbp4 expression is dramatically increased by obesity and insulin resistance in humans, 

and is much more highly expressed in visceral than subcutaneous adipose tissue [189, 190].

Apelin is an insulin-regulated adipokine expressed in mature adipocytes whose expression 

is increased in obesity. Apelin appears to be equally expressed in visceral and subcutaneous 
adipose tissue [191]. Apelin inhibits diet-induced obesity through increasing lymphatic and 

blood vessel integrity and enhancing brown adipogenesis [192, 193].

6.2. Lipid mediators “lipokines”

Recent studies have determined that specific lipid species communicate from adipose tissue to 
distal sites, and act as a new class of molecules termed “lipokines”. The first lipokine, C16:1n7-
palmitoleate, is derived from adipose tissue and regulates gene expression and insulin sen-

sitivity of both muscle and liver [194]. Another class of lipokine, fatty acid esters of hydroxy 
fatty acids (FAHFAs) are reduced in serum and adipose tissue of insulin-resistant people and 
high-fat diet-fed mice. Administration of FAHFAs increases insulin-mediated glucose uptake 

into the liver and skeletal muscle [195, 196]. Finally, a BAT specific lipokine, 12,13-dihydroxy-
9Z-octadecenoic acid (12,13-diHOME) has also recently been identified. 12,13-diHOME is a 
stimulator of BAT activity and its circulating levels are negatively correlated with body-mass 

index and insulin sensitivity. 12,13-diHOME increases fatty acid uptake into brown adipo-

cytes by promoting the translocation of the FA transporters to the cell membrane [197].

6.3. MicroRNAs

MicroRNAs (miRNAs) are non-coding RNAs that are ~22 nucleotides in length that regulate 

mRNA translation. Each miRNA can regulate multiple mRNA targets, and each mRNA tar-

get can be regulated by multiple miRNAs. Primary miRNAs are transcribed, and cleaved in 
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a multi-step process by ribonuclease enzymes, including Drosha and Dicer, to form mature 

miRNAs. The mature miRNAs are then loaded into the RNA-induced silencing complex 

(RISC), and are directed to the 3′ untranslated region (UTR) of the target mRNAs to modify 
their translation [198–200].

6.3.1. Circulating MicroRNAs as endocrine signaling molecules

Adipocyte-specific ablation of Dicer (ADicerKO) produces mice with a lipodystrophic pheno-

type marked by insulin resistance, dyslipidemia, and a reduction in both local and circulating 

miRNA (packaged within exosomes), suggesting important roles of miRNAs in adipocyte func-

tions [201, 202]. Transplantation of wild-type adipocytes into ADicerKOs leads to improved 

metabolism. Notably, a depot-specific contribution of adipose tissue to the circulating exo-

somal miRNA transcriptome was observed. Furthermore, these adipose-derived circulating 

RNAs can also modify gene expression in other tissues, including the liver [203]. Likewise, 

exosomal transfer of macrophage-derived miRNAs can control gene expression and metabo-

lism in adipocytes [204, 205]. Thus, like adipokines or lipokines, miRNAs can function as both 

paracrine and endocrine signals molecule to alter the physiology of distinct target tissues.

6.3.2. Cell autonomous actions of MicroRNAs in WAT

6.3.2.1. MicroRNA regulation of preadipocyte determination and adipogenesis

The formation of adipocytes from mesenchymal stem cells is based on inhibition of other lin-

eages (chondrocyte, osteocyte, and myocyte) and promotion of adipocyte lineage (Figure 1). 

Runt-related transcription factor 2 (Runx2) and bone morphogenetic protein (BMP)-2, both 

osteogenic factors, are inhibited by adipose tissue expressed miRNAs. Chondrogenesis is con-

trolled by TGF-β, which is regulated by miR-21, a miRNA that is known to be increased in 

human obesity and type 2 diabetes [206–208]. miR-148 and -124 target adipogenic inhibitors 

Wnt1 and Sox9, respectively, at the initiation of adipogenesis [200, 209, 210].

After committing to adipocyte lineage, lipid accumulation in differentiating adipocytes is con-

trolled, at least in part by the expression and activity of PPAR and C/EBP proteins. miR-375 sup-

presses ERK1/2 phosphorylation which allows the activation of PPARγ [211]. miR-143 and -103 

are both increased during adipocyte differentiation and have clear roles in lipid accumulation, 
especially within subcutaneous WAT, as confirmed by both over-expression and inhibition stud-

ies [212, 213]. miR-519d inhibition of PPARα reduces fatty acid oxidation and increase lipid stor-

age [214], and reduced adipocyte size in human subjects is correlated with reduced expression of 

miR-519d [215]. On the other hand, miRNAs that target PPARγ including miR-27 and miR-130 
act as anti-adipogenic regulators [216, 217] (Figure 2A).

6.3.2.2. MicroRNA regulation of adipocyte metabolism and inflammation

MicroRNAs target all aspects of adipocyte metabolism and a comprehensive examination 

of these effects is not possible within the confines of this chapter. However, we will briefly 
discuss how miRNAs directly regulate insulin signaling and modulate the inflammatory 
response of adipocytes. miRNAs can impair insulin signaling by targeting many of the key 
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molecules involved, including: effects on insulin receptor, IRS1, and GLUT4 (Figure 2B). 

Insulin receptor stability is partially dependent upon the protein caveolin-1, which itself 
is a target of miR-103. Inhibition of miR-103 thus increases insulin receptor stability and 
leads to improved insulin sensitivity [218]. IRS1 is downregulated by miR-139-5 and -144  
[219, 220] while insulin-stimulated glucose uptake through GLUT4 is downregulated with 

high expression of miR-93 and -223 [221, 222] (Figure 2B). Macrophage infiltration is directed 
by expression of chemokine (C-C motif) ligand 2 (CCL2 or MCP-1). CCL2 expression is 

increased by miR-145, but is reduced by miR-126 and miR-193b [223]. miRNAs also control 

polarization of classically activated pro-inflammatory (M1) macrophages and alternatively 
activated anti-inflammatory (M2) macrophages. Increasing miR-223 reduces expression the 

Figure 1. The roles of microRNAs in adipogenesis and insulin signaling. (A) miRNAs play an important role in 

promoting adipogenesis and inhibiting osteogenesis and chondrogenesis. (B) miRNAs participate in insulin resistance 

by targeting IRS1, insulin receptor stabilizer (caveolin-1), and GLUT4 expressions.
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pro-inflammatory factor Pknox1, and leads to switch to M2 macrophages [224, 225]. Taken 

together, these studies and others demonstrate that miRNAs controls adipose tissue biology 

and obesity-associated pathologies through autocrine, paracrine, and endocrine actions.

7. Intra-depot heterogeneity of white adipose tissue

In addition to the differences between visceral and subcutaneous adipose tissue, growing evi-
dence suggest that adipocytes, even within a single fat pad, are heterogeneous in nature. This 

heterogeneity is observable in metabolic measurements of adipocytes. These studies found 

that glucose uptake, lipogenesis, lipolytic response, lipid accumulation, glycolysis vs. oxida-

tive phosphorylation, and uptake of fatty acids were markedly heterogeneous even within 
size-matched adipocytes of a single fat depot [226–230]. Similarly, heterogeneity in the lipo-

lytic response of human omental adipocytes to catecholamines was previously described. 

These differences were at least in part, attributed to the expression of different adrenergic 
receptors [231]. Furthermore, ablation of hormone-sensitive lipase (HSL) or fat specific abla-

tion of the insulin receptor lead to a polarization of adipocytes into large and small cells, thus 

unmasking an intrinsic heterogeneity [232, 233].

Figure 2. Intra-depot heterogeneity of WAT in mice. Bone marrow-derived adipocytes makes up about 5–10% 
perigonadal depot without induction of rosiglitazone or high-fat diet. Endothelial cell-derived adipocytes were also 

found in perigonadal depot. Myf5 and Pax3 share overlapping distribution, mostly in the anterior subcutaneous and 

retroperitoneal WAT. Prx1-derived pre-adipocytes were mostly found in the posterior subcutaneous WAT (75%), with a 

small degree in the anterior subcutaneous WAT (15%). Wt1-derived pre-adipocytes were present in only visceral depots 

including perigonadal (77%), pericardial (66%), retroperitoneum (50%), and mesenteric WAT (28%).
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Lineage tracing analysis has been instrumental in elucidating both inter- and intra-depot het-

erogeneity, and the developmental origins of adipocyte lineages. In both chicken embryos 
and mouse embryos, populations of adipocytes in the head and thoracic regions are devel-

opmentally derived from neural crest cells [234, 235]. Although some reports suggest that 

adipocytes can be derived from an endothelial cell lineage both in vitro and in vivo [236, 237], 

other reports dispute this claim [238]. Furthermore, studies indicate that a subset of visceral 

adipocytes are derived from a hematopoietic origin [239–241]. Another subpopulation of vis-

ceral adipocytes are derived from the mesothelial cells [242]. Finally, the myogenic lineage, 

once thought to only give rise to muscle and brown fat, gives rise to a subpopulation of white 

adipose tissue as well. This lineage, marked by the expression of myogenic factor 5 (Myf5) 

and paired box gene 3 (Pax3) give rise to adipocytes predominantly in the dorsal-anterior 

region, including adipocytes from the anterior subcutaneous and retroperitoneal visceral 

depot. This adipocyte subpopulation is dynamically distributed and its contribution to fat 

depots is altered in response to high fat diet and age [243] (Figure 2).

8. Conclusions

In summary, WAT is highly heterogeneous endocrine organ. The compartmentalization of 
adipose tissue into separate depots within the body is due to different developmental origins 
of the precursor cells. In addition, even within adipose tissue depots, individual adipocytes 
display developmental, genetic, and functional differences. The inter- and intra-depot hetero-

geneity of both preadipocytes and mature adipocytes have profound effects on whole-body 
metabolism, due to cell-autonomous differences in glucose and fatty acid metabolism. This 
heterogeneity also results in the differential inflammatory response between WAT depots. 
Furthermore, the differential expression of inflammatory cytokines, adipokines, and novel 
signaling molecules including lipokines and miRNAs between adipose depots impact the 

action not only of adipose tissue, but of other target tissues as well. Almost all of these factors 

are influenced by obesity, diet, gender, and age. Further studies to refine current knowledge 
on the heterogeneity of WAT may provide unique ways to manipulate physiology and lead 
new targets in the treatment of obesity and related disorders.
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