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Abstract

Pancreatic cancer (PC) remains a leading cause of cancer-related deaths. Currently, con-
ventional chemotherapies have showed only limited benefits for PC patients. Main fac-
tors affecting PC treatment failures are due to late detection, lack of early symptoms and 
biomarkers, and the development of desmoplasia and chemoresistance. Various mecha-
nisms have been implicated in PC chemoresistance that includes stem cells, epigenetic 
changes, and alteration of signaling pathways, among others. Obesity is a modifiable 
factor for PC risk, which is characterized by high levels of the adipokine leptin that is a 
proinflammatory, proangiogenic, survival factor that affects chemotherapy effectiveness. 
Here, we will discuss on the mechanisms of PC chemoresistance and the influence of obe-
sity and leptin signaling. Furthermore, the potential use of nontoxic leptin antagonists as 
a novel sensitization strategy for PC chemotherapeutics will also be discussed.

Keywords: leptin, notch, chemoresistance, pancreatic cancer, obesity

1. Introduction

Pancreatic cancer (PC) is a highly aggressive cancer, characterized by early spread with local 
diffusion and early metastasis to distant organs. PC is a silent disease, without reliable bio-

markers that are commonly detected at an advanced stage. The deep position of the pancreas 
is an additional factor influencing the late detection of most symptoms of PC, when the disease 
is at final stages and the tumor size is large enough to interfere with the liver, gallbladder, 
stomach, or duodenum functions [1]. Patients have rapid disease progression, and few of them 

survive more than a year. Even for patients with localized disease at the time of diagnosis and 
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undergoing curative surgical treatment, the median survival remains low, around 18 months. 

The overall 5-year survival rate is only 8.2% for all stages of PC [2]. Despite the advances in 

understanding PC biology, survival rates remain unmodified in the past years [3]. The under-

lying causes for PC dismal prognosis, among others, are the lack of viable methods for patient 
screening, late detection of specific symptoms, especially in the early stages, and few targeted 
therapies that remain relatively ineffective [4].

2. Pancreas and pancreatic cancer

2.1. Pancreas: structure and function

The pancreas functions as an accessory gland of the digestive system and is composed ana-

tomically and functionally of a mixed, exocrine, and endocrine component. Most of the pan-

creatic tissue (99%) is made up of exocrine tissue that is composed of closely packed serous 
acini that secrete digestive enzymes (proteases, lipases, and amylases). Some of the enzymes 
(e.g., trypsinogen, chymotrypsinogen, and proelastase) are secreted as inactivated precursors, 

to prevent pancreatic cell damage, and are activated upon release in the duodenum. Other 

key digestive enzymes, such as α-amylase and lipase, are present in the pancreas in their 
active forms. The duct cells secrete a watery, bicarbonate-rich fluid that carries the enzymes 
and neutralizes the acidity in the small intestine. The endocrine pancreas is composed of 
islets of Langerhans, clusters of about 3000 cells supported by reticulin fibers, in close contact 
with fenestrated capillaries. They contain three types of cells that secrete the three pancreatic 
hormones: α cells secrete glucagon that rises the glucose blood levels, while β cells secrete 
insulin that decreases the glucose blood levels and Δ cells secrete somatostatin that regulates 
the endocrine system and affects the neurotransmission and cell proliferation. The islet cells 
appear paler on hematoxylin and eosin stain (Figure 1) [5].

2.2. Pancreatic cancer

The incidence of PC continuously raised in the past years, and it is estimated to become the 
second leading cause of cancer-related deaths by 2030 [6]. The highest PC incidence occurred 
in Northern America (7.4 per 100,000 people) and Western Europe (7.3 per 100,000 people), fol-

lowed by other regions of Europe and Australia (equally about 6.5 per 100,000 people). The low-

est rates (about 1.0 per 100,000 people) were observed in Middle Africa and South-Central Asia. 
More than half of new cases (55.5%) were registered in the more developed regions [7]. PC has 

been correlated to exposure to risk factors concerning lifestyle, such as obesity, or the environ-

ment [8]. The incidence of PC is higher in men than in women [9]. PC is a disease of the elderly, 

with most of the cases being diagnosed after the age of 55 [10]. African-Americans have the high-

est incidence rate of PC, that is 28-59% higher than those of other racial/ethnic groups [11].

Most pancreatic tumors are derived from the exocrine tissue. More than 80% of the exocrine 
PCs are classified as pancreatic adenocarcinomas (PAs). Microscopically, these cancers are 
characterized by infiltrating small glands that are lined with low-columnar, mucin-containing 
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cells. Cell nuclei often show polymorphism, hyperchromasia, loss of polarity, and proeminent 

nucleoli [12]. PA shows strong desmoplastic reaction that occurs around cancer cells, which 

is considered a hallmark for this cancer type and may account to up to 90% of the tumor vol-
ume (Figure 2). The stroma surrounding the cancer cells is actively involved in tumor growth 
and dissemination. Desmoplastic stroma is composed of extracellular matrix (ECM), cancer-
associated fibroblasts, stellate and inflammatory cells, and small blood vessels. Desmoplastic 
stroma shows high levels of cytokines and growth factors. The desmoplastic stroma creates 
a barrier for chemotherapeutic drug delivery. Targeted therapies against PC stromal compo-

nents have so far failed to translate into significant clinical benefits [13].

Figure 1. Representative pictures from hematoxylin and eosin staining of pancreatic tissue. (A) Pancreatic parenchyma 

composed in the vast majority by the exocrine pancreas composed of tightly packed acini that secrete enzymes via a duct 
system in the duodenum. The endocrine pancreas is composed of islets of Langerhans, which appears as clusters of pale 
colored cells (10×). (B) High magnification of pancreatic tissue shows exocrine tightly packed acini and endocrine islets 
of Langerhans. The islets appear pale due to less intracytoplasmic ribosomal content (40×).

Figure 2. Representative pictures from hematoxylin and eosin staining of PC tissue. (A) Biopsy of pancreatic 

adenocarcinoma. The malignant glands invade tissue eliciting a strong desmoplastic reaction. Focally intraluminal 
mucin may be seen (10×). (B) Higher magnification of pancreatic adenocarcinoma shows malignant irregular glands 
composed of cell with loss of polarity, large nuclei with high nuclear-to-cytoplasmic ratio. The nuclei show irregular 
shape and are hyperchromatic or vesiculated with prominent nucleoli (40×).
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Pancreatic neuroendocrine tumors (PNETs), representing 1–2% of PC, are commonly 
called islet cell carcinomas. Functional PNET secretes biologically active hormones (insu-

lin, glucagon, somatostatin, or vasoactive intestinal peptide), causing a clinical syndrome. 

Nonfunctioning PNET does not cause clinical symptoms [14]. Other types of exocrine PC 

include acinar cell carcinomas, adenosquamous carcinomas, colloid carcinomas, hepatoid 

carcinomas, intraductal papillary mucinous neoplasms and pancreatoblastomas [15].

The majority of PC develops silently from pancreatic intraepithelial neoplasia (PanIN) over a 
long period of time that highlights the importance and the challenge for early diagnosis [16].  

Survival of patients with PC depends on the tumor stage at the time of diagnosis. The 
American Joint Committee on Cancer staging system has defined the relationship of pancre-

atic tumor with surrounding tissues, lymph nodes, vessels, and distant organs [17]. The first 
clinical stage of PC refers to tumors that are confined within the pancreas. The second stage 
involves PC that is spread to the adjacent tissues, especially to the lymph nodes. In Stage 3, the 
disease has already spread to the blood vessels, while in Stage 4, the metastasis has occurred 
in distant organs. Unfortunately, at the time of diagnosis, most of the patients have already 

invasion of vascular, lymphatic, and perineural tissue. The most common sites for distant 
metastasis are the liver, lung, pleura, peritoneum, and adrenal glands. Surgery may be offered 
to <20% of patients with PC. An additional challenge is that surgery success rate is gravely 
limited by the extent of early or occult micro metastases [18].

3. Risk factors for pancreatic cancer

There are several factors that pose high risk for PC, such as obesity, chronic pancreatitis, 
diabetes, tobacco, and alcohol usage, exposure to chemicals, such as dyes and pesticides, age, 

and epigenetic changes. High-fat diets activate oncogenic Kras and Cox-2, causing inflam-

mation and fibrosis in the pancreas, leading to PanINs and PC onset. Fat diet that induces 

pancreatic fatty infiltration could play an important role in PC. Moreover, the presence of 
PanINs was associated with intralobular fat accumulations [19]. The risk of PC increases with 
age, more than half of new cases occur in patients over 70 years old. ABO blood types and 

genetic variants may also influence PC risk [20]. Cigarette smoking increases the risk for PC 
by 75% when compared with nonsmoking individuals, and the risk persists for 10 years after 
smoking cessation [7]. Although several risk factors have been identified, the causes of PC are 
not well known. Understanding the mechanisms through which the risk factors might affect 
PC progression and survival is the key to develop a prevention strategy for this disease.

3.1. Obesity

Obesity is pandemic in the USA and has been associated with poor prognosis of several malig-

nancies, including prostate, colon, breast, endometrial cancer, and PC. Both general and abdom-

inal obesity are associated with increased PC risk. Moreover, physical inactivity has been linked 
with increased PC risk [7]. Obesity was linked with increased mortality from PC [21] and the 

promotion of stromal desmoplasia [22].
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The most common method for obesity detection is the determination of the body mass index (BMI) 
that is calculated based on the relationship between body height and weight (BMI 18.5–24.9, nor-

mal; 25.0–29.9, overweight; ≥30, obese). Obesity strongly correlates with body fat levels. Adipose 
tissue has a very strong endocrine function, secreting various adipokines that are involved in 
cancer development and progression, and insulin resistance. Leptin, IL-6, and tumor necrosis 
factor-alpha (TNF-α) are inflammatory factors increased in cancers, but adiponectin is protective 
against tumorigenesis, and its serum levels are usually decreased. Cancer patients show higher 

baseline levels of C-reactive protein and soluble TNFα receptor 2. Lipocalin 2 was associated with 
tumor invasiveness. Resistin, another proinflammatory adipokine, was increased in colon, breast, 
and prostate cancer. To date, many adipokines have been associated with cancer, contributing to 
enhanced inflammation, angiogenesis, cellular proliferation, and tumorigenesis [23].

3.1.1. Leptin

One of the main adipokines is leptin, a small protein (16 kDa), which is secreted by white, 
brown adipose tissue and cancer cells [24]. Leptin binding to its receptor, Ob-R, in the hypo-

thalamus controls food intake and energy expenditure. Leptin also influences the reproductive 
function and is a long-term regulator of body weight. Leptin is also expressed in placenta, ova-

ries, skeletal muscle, stomach, and mammary epithelial cells. Leptin can inhibit bone forma-

tion. It regulates the ovulatory cycle and plays an important role in embryo implantation [25].  

Obese and overweight individuals have high levels of leptin in blood but exhibit leptin resis-

tance, failing to control food intake. Leptin blood levels in obese patients are 10 times higher 
(40 ng/ml) than in normal individuals (4 ng/ml). The underlying mechanism of leptin resis-

tance in obese individuals is multifactorial that includes impairment of Ob-Rb signaling, 

hypothalamic neuronal wiring, leptin transport into the brain and Ob-R trafficking, endo-

plasmic reticulum (ER) stress, and inflammation [26]. High-leptin levels can induce cancer 

cell proliferation and thus can provide a link between obesity and cancer progression.

Several cancer cell types express leptin [25, 27, 28]. Both in vitro preclinical studies and patient, 

data suggest that leptin signaling is linked to the development of PC, breast, endometrial, 
colon, esophagus, stomach, thyroid gland, prostatic, hepatic, skin, brain, ovarian, lung and 
colon cancers, and leukemia [28–32]. Leptin can induce the development of nonalcoholic fatty 
liver disease, one of the major causes of hepatocellular carcinoma [33]. Leptin increases the 

proliferation of human myeloid leukemia cell lines and prostate cancer [34, 35]. In breast can-

cer, leptin increases the cancer cell proliferation and the expression of antiapoptosis-related 

proteins like Bcl-2 [36, 37]. Moreover, leptin induces the tumor angiogenesis, by promoting the 
expression of angiogenic factors, such as vascular endothelial-growth factor (VEGF) and fibro-

blast-growth factor 2 (FGF-2) [38]. Leptin has a direct effect on the proliferation of endothelial 
cells that were similar to VEGF [39]. Overall, leptin induces the production of inflammatory 
cytokines (IL-1, IL-6, and TNF-α), which can promote tumor invasion and metastasis [40].

There is a correlation between increased leptin levels and PC. Overexpression of leptin pro-

motes the growth of human PC xenografts and lymph node metastasis in mice [41]. Ob-R is 

expressed by pancreatic cells, but its expression is increased in PC cells. Leptin binding to Ob-R 

induces proliferation, migration, angiogenesis and reduces PC cell apoptosis. The receptor  
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long isoform, Ob-Rb, is found more often in cancer cells and has full signaling capabilities, 

in contrast to the short isoform. Leptin and Ob-R have absolute affinity for binding. Leptin 
binding to Ob-R activates canonical (JAK2/STAT3, MAPK, PI-3 K/AKT1) and noncanonical 
signaling pathways (p38MAK, JNK, AMPK). The first leptin signaling event is the activation 
of JAK2, which phosphorylates Ob-R intracytoplasmic tail, leading to the phosphorylation 
of a tyrosine residue of STAT3 (pSTAT3). pSTAT3 forms a dimer that is translocated to the 
nucleus, inducing the transcription of specific genes, such as SOCS3, which acts as a potent 
negative feedback regulator of the JAK/STAT pathway [26]. Recently, it was reported that the 

central or peripheral administration of an Ob-R antagonist induced comparable changes in 

food intake, body weight, and hypothalamic SOCS3 expression in lean and diet-induced obe-

sity (DIO) mice. These results suggest that endogenous Ob-R signaling may not be reduced 
in the context of DIO, thus challenging the established concept of leptin resistance under 
dietary-induced conditions [42].

4. Mechanisms of chemoresistance in PC

Cancer chemoresistance is a current PC challenge. Intrinsic chemoresistance occurs when che-

motherapy is ineffective from the start of treatment, whereas acquired chemoresistance develops 
only after exposure to anticancer drugs. Although PC cells are more susceptible to Gemcitabine 
when compared with other anticancer agents, most patients develop resistance within weeks of 
treatment initiation, leading to poor survival [2]. Mechanisms of cancer chemoresistance include 
drug modification, reduction or inhibition of drug-induced apoptosis, overexpression of drug 
efflux proteins, increased expression of survival factors and deregulation of pathways, such as 
Notch, and expansion of cancer stem cells (CSCs), among others [43].

4.1. Pancreatic cancer stem cells (PCSCs)

The hierarchical model of cancer states that tumors arise from CSC or cancer-initiating cells 
that can reproduce all tumor cell types. CSCs have common characteristics associated to 
normal stem cells. CSCs are tumorigenic, show self-renewal capabilities, and can be differ-

entiated into multiple cancer cell types. CSCs hide in the tumor niche causing relapse and 
metastasis. The tumor niche is composed of stromal and inflammatory cells, cytokines, ECM, 
and vasculature. It provides signals helping CSCs to maintain their undifferentiated state. 
The accumulation of ECM destroys the normal PC architecture and enhances the expression 
of PCSC markers [44].

PCSCs express various markers, including CD24+CD44+, CD133+, CD24+CD44+ESA+, ALDH+, 
or c-Met+. Metastatic PCSCs express CXCR4+CD133+. PCSC markers CD133 and CD44 corre-

lated to CXCR1 expression. PCSC could be identified using Hoechst 33342 dye by flow cytom-

etry. Hoechst-negative cells were called “side population” and were linked to chemoresistance 
[45]. ALDHs are a class of enzymes that oxidize aldehydes. ALDH + PCSC show clonogenic and 
metastatic potential that affects survival in PC. Positive PC cells for PCSC markers form tumors 
in mice, in contrast to negative PC cells. ALDH1 mediates resistance to Cyclophosphamide and 
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Gemcitabine in PC. TGF-β negatively regulates ALDH1 in PC in a SMAD-dependent manner. 
That can be disrupted by SMAD4 mutations and deletions. Therefore, targeting PCSC could 
induce sensitization of PC to chemotherapeutic treatment [46].

Chemotherapeutic agents target the bulk of the tumor but unfortunately allow the prolifera-

tion of CSC that exhibits chemoresistance. Gemcitabine kills tumor cells but increases PCSC 
(CD24+ and CD133+) that expresses stemness-associated genes, such as Bmi1, Sox2, and 
Nanog. PCSC expansion increased cell migration, chemoresistance, and tumorigenesis [47]. 

Drug resistant cells showed activated c-Met and increased expression of CD24, CD44, and 
ESA. The use of a c-Met+ cell inhibitor (Cabozantinib) abrogated Gemcitabine resistance in 
PC patients [48]. Administration of anti-CD44 monoclonal antibody to a human PC xenograft 

mouse model increased Gemcitabine sensitivity [49]. Similarly, Metformin enhanced the anti-
proliferation effects of Gemcitabine by inhibiting the proliferation of CD133+ cells in PC [50].

Another PCSC marker, Dclk1, was found in PanIN lesions, and PC at invasive stages [51], 

suggesting that PCSC may be used as diagnosis biomarkers. PCSCs show transcription fac-

tors found on embryonic stem cells (Oct-4, Sox-2, and Nanog). Increased levels of Oct-4 and 
Nanog correlate with early stages of carcinogenesis and worse prognosis. Oct-4 contributes to 

metastasis and cancer multidrug resistance. Sox-2 expression alone in PC could induce self-
renewal and differentiation [24].

PCSC marker expression correlates with lymph node metastasis and poor survival. There 
are several factors that could affect PCSC maintenance and proliferation. For example, PCSC 
maintenance and survival are affected by miRNA34. In addition, stem cell factor (SCF) bind-

ing to its receptor, c-Kit, induces an increase in HIF-1α synthesis, which is involved in PC 
progression and chemoresistance [26].

Our data suggest that 5-FU (a common chemotherapeutic used in PC treatment) decreased 
PC tumorsphere formation. PC cells that expressed CD24 + CD44+, CD24 + CD44 + ESA+, 
and pluripotency (Oct-4, Sox-2, Nanog) markers were spared by the 5-FU treatment [30]. 

Therefore, the development of specific treatments against PCSC remains a challenge.

4.2. ATP-binding cassette proteins

Overexpression of drug efflux proteins (ATP-binding cassette proteins and ABC family of 
proteins) increases the elimination of anticancer drugs and decreases their accumulation 

inside the cancer cells. ABC proteins (ABCB1, ABCC1, and ABCG2) are found in PCSC and 
contribute to their resistance to Gemcitabine [52]. Indeed, ABCB1 was significantly increased 
in CD44+ PC cells during the acquisition of resistance to Gemcitabine [53]. PC chemoresis-

tance correlated with increased expression of CXCR4, CD133, and ABCB1 by PCSC [54]. 

Interestingly, ABCG2 localization and activity were not confined only to the plasma mem-

brane, as intracellular vesicles containing ABCG2 were detected within CSC in PC, colorectal, 
and hepatocellular cancers. Moreover, a direct relationship between the presence of these 
vesicles in CSCs and the maintenance of their stem-like properties, including chemoresis-

tance, was found. Furthermore, the vesicles accumulated ABCG2-dependent substrates, such 
as the fluorescent vitamin riboflavin (vitamin B2). In addition, the vesicles could accumulate 
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ABCG2-depedent therapeutics, such as Mitoxantrone, to avoid apoptotic cell death [55]. Our 

data showed that PC tumorspheres treated with 5-FU were enriched in cells that overex-

pressed ABCC5 and ABCC11 efflux proteins [30].

4.3. Epithelial to mesenchymal transition (EMT) and PC metastasis

To gain invasive and migratory capacity, and resistance to apoptosis, cancer epithelial cells 
undergo EMT. The expression of transcription factors, including Snail, Slug, zinc finger E-box-
binding homeobox 1 (ZEB1), and Twist, among others, induces EMT. ZEB1 deletion had a 
negative effect on tumor progression, invasiveness, and metastasis, reaffirming EMT’s role 
in PC metastasis [55]. Gemcitabine-resistant PC cells had increased Vimentin and decreased 
E-cadherin expression. These alterations are hallmarks of EMT.

Our data showed that the use of 5-FU rendered different outcomes on EMT markers in tumor-

spheres derived from different PC cell lines. In BxPC-3 tumorspheres, 5-FU did not change the 
levels of expression of EMT markers (Vimentin and N-cadherin), while in MiaPaCa-2 tumor-

spheres, it slightly increased the expression of N-cadherin. Moreover, 5-FU spared PC cells that 
were N-cadherin+ [30]. Recently, the EMT concept was challenged by studies demonstrating 
the existence of a hybrid epithelial/mesenchymal phenotype in cells transitioning from EMT 
to mesenchymal to epithelial transition (MET). Because MET has been considered crucial for 
metastasis seeding in distant organs, this hybrid phenotype seems to be linked to drug resis-

tance and tumor-initiating potential. Moreover, MET could allow tumor cells to collectively 
migrate in clusters to form metastases in a more effective way than pure EMT single cells [55].

4.4. Tumor microenvironment

PC desmoplasia results from proliferation of cancer-associated fibroblasts and increased 
deposit of ECM. This process reduces elasticity of tumor tissue and increases interstitial pres-

sure, leading to decreased perfusion of chemotherapeutic agents [56]. The proliferative pan-

creatic stellate cells are the primary source of many of the ECM components in PC. These cells 
show increased proliferation and sensitivity to mitogenic factors. Fibrous proteins (e.g., col-

lagen) and polysaccharide chain glycosaminoglycans (e.g., hyaluronan) are ECM factors that 
constitute the noncellular components of PC desmoplastic tissue. A significant overproduction 
of ECM components can be described as the failed resolution of a healing wound, which leads 
to fibrosis in PC. Immune cells (macrophages, neutrophils, and regulatory T cells [Treg]) con-

tribute to PC desmoplasia. Therapeutics reducing the contribution of the desmoplastic reaction 
to chemoresistance are being actively pursued as a potential therapeutic approach [57].

4.5. Changes in signaling pathways

From the early lesions, PC cells harbor alterations in signaling pathways that remain throughout 

carcinogenesis. These changes not only impact tumor cells but also the surrounding stromal 
cells. Components of the Hedgehog (Hh) signaling pathway have essential roles in PC patho-

genesis. In a global genomic analysis of PC, all tumors tested had alterations in at least one of 
the Hedgehog signaling genes. Hh signaling induced desmoplasia, playing a key role in chemo-

resistance [56]. Wnt signaling pathway is mainly involved in PC cell growth. The Wnt pathway 
is activated when ligands bind to the cell membrane Wnt receptor, resulting in the release of 
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β-catenin into the cytoplasm. Increased β-catenin levels and activity have been found in PC but 
not in the normal pancreas [58]. Wnt pathway induces PC formation by actions not only on the 

tumor cells but also on the stromal compartment through increases in ECM formation [59].

There are other dysregulated pathways in PC. The nuclear factor-κB (NF-κB) proteins con-

stitute a family of transcription factors associated with mediating inflammatory responses. 
However, these transcription factors also control diverse genes involved in development, 

apoptosis, and cell proliferation. NF-κB has an important role in PC. Additionally, Notch and 
IL-1 induce NF-κB in PC [60]. NF-κB signaling crosstalks with other signaling pathways, onco-

genic or cancer-related proteins, such as STAT3, p53, ALDH1, PI-3 K, and MAPK. A recent 
study that evaluated a large number of human PC samples along with a few PanIN lesions 
found amplification of c-Myc in 30% of the tumors [61]. c-Myc deregulation, in cooperation 
with other oncogenic pathways, such as Kras, is sufficient to promote tumorigenesis [62]. The 
complexity of the PC altered signaling pathways affects pathogenesis and could explain why 
there is no successful PC treatment. Relationships among tumor cells, stroma, and signaling 

pathway crosstalks demonstrate the importance of developing combined therapies targeting 
both compartments and altered signaling in PC.

4.6. Inhibition of apoptosis

Apoptosis or programmed cell death regulates the tissue homeostasis. Chemoresistance is 

in part due to impairment of apoptosis in cancer cells. Antiapoptotic protein Bcl-2 is not fre-

quently overexpressed in PC, which differs from other cancer types. In contrast, an imbalance 
between antiapoptotic Bcl-XL and proapoptotic Bax was found in the TGF-α murine model 
of PC [63]. Moreover, inhibitors of apoptosis, such as survivin, are overexpressed in PC when 
compared with normal pancreatic tissue. Resistant PC cells can be sensitized to death recep-

tor–mediated apoptosis by inhibiting the NF-κB prosurvival pathway or by decreasing the 
expression of antiapoptotic proteins. The p53 pathway plays an important role in cancer cells 
avoiding the apoptosis, with mutations in p53 gene leading to increased drug resistance in PC 
cell lines and poor survival in PC patients [63]. Our data showed that 5-FU treatment of PC 
tumorspheres reduced RIP and Bcl-XL levels and increased Bax. Moreover, 5-FU increased 
caspase-3 activation and decreased uncleaved PARP in PC [30]. These data indicate that 5-FU 
actions on PC induce apoptosis through several components of the pathway. Numerous che-

motherapeutic drugs target DNA synthesis in cancer cells, leading to increased apoptosis.

4.7. Leptin and chemoresistance mechanisms in pancreatic cancer

Leptin induces a wide range of prooncogenic effects. We have shown, for the first time, that 
leptin could be secreted by PC cells and derived tumorspheres. Moreover, leptin induced 
PCSC in tumorspheres [28]. In line with these data, a study of a pool analysis from PC patients 
showed that leptin levels and elevated Ob-R expression correlated to Oct-4 [64]. Our data 

demonstrated that leptin increased PC cell proliferation, tumorsphere formation, and xeno-

graft growth in an immunocompromised mouse model. Moreover, leptin induced cell cycle 
progression, PCSC markers (CD24 + CD44 + ESA+, ALDH+), and ATP-binding cassette pro-

tein expression (ABCB1) in PC cells [28]. Leptin has been shown to increase the expression of 

miR21, while the tumor suppressors (miR200a, miR200b, and miR200c) decrease the expres-

sion of Ob-R. Furthermore, these tumor suppressors could also interact with some of the 
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PCSC markers (c-Met, ABCB1, and CD44), which decrease their expression. Oncogenic miR21 
increases the expression of ABCB1, ALDH, and CD44.

Leptin can directly regulate the expression of HDAC4 and HDAC5 and indirectly affect the 
expression of other HDAC via microRNA or PCSC markers. We have suggested that leptin 
can increase the expression of miR21, which in turn can increase the expression of HDAC3. 
Analysis of data from PC biopsies (TCGA databank) suggested that HDAC, miRNA21/200, 
and leptin could have complex signaling crosstalk that could be a novel therapeutic target 
for obese PC patients. We further determined the effects of leptin on HDAC expression in PC 
tumorspheres. HDAC3 and HDAC8 expression was increased by leptin. Furthermore, the 

Gemcitabine-induced decreased expression of HDAC2, HDAC3, and HDAC8 was reversed 
by leptin. Thus, we have shown that leptin through its effects on PCSC, ABCB1, and HDAC 
could be involved in PC chemoresistance [65]. Moreover, using another chemotherapeutic 
agent commonly used in PC treatment, 5-FU, we demonstrated that leptin impaired 5-FU 
cytotoxicity by increasing the expression and number of PCSC+, pluripotency+, and EMT+ PC 
cells. ABCC5 and ABCC11 expression as well as the number of positive cells for these ATP-
binding cassette proteins were increased by leptin in PC tumorspheres. These leptin’s effects 
protected the survival of PC tumorspheres treated with 5-FU and reduced its cytotoxicity. The 
survival of PC tumorspheres treated with 5-FU and leptin was linked to reduced apoptosis. 
Leptin increased the levels of PARP, Bcl-XL, and RIP and decreased Bax. 5-FU increased cas-

pase-3 activation, which was reduced by leptin. These data could help to unravel the multiple 
mechanisms through which leptin signaling contributes to drug resistance in PC [30].

4.7.1. Leptin-Notch crosstalk in pancreatic cancer

Notch signaling controls the cell proliferation, PCSC maintenance and differentiation, apopto-

sis, invasion, and metastasis in cancer. Overexpression of Notch receptors (Notch1 and Notch2) 
was found in PCSC when compared with nonmalignant pancreatic stem cells [66]. DLL4 

increase in PC cells stimulated the expression of Oct-4, Nanog, and stem cells [67]. PCSCs that 
express Oct-4, Sox-2, and Nanog show an increased aggressivity and chemoresistance. Notch4 
overexpression was linked to PC chemoresistance to Docetaxel [68]. Expression of Notch3 and 

Hey1 was associated with reduced survival in PC [69]. Resistance to Gemcitabine correlated 
with Notch2, Notch4, and JAG1 overexpression [70]. The inhibition of Notch1 by siRNA sup-

pressed proliferation, induced apoptosis, and reduced migration and invasion of PC cells [71].

Notch signaling induced EMT phenotype in Gemcitabine-resistant PC cells overexpressing 
Notch2, Notch4, and JAG1. Furthermore, the inhibition of Notch signaling decreased EMT 
markers, including Vimentin, Snail, Slug, and ZEB1, in human PC cell lines [72]. MiR200 
members increased Notch activation by ZEB1 that regulates the expression of JAG1 and the 
mastermind-like coactivators (Maml2 and Maml3). In PC cells, miR200 expression showed an 
inverse correlation with JAG1 and ZEB1 levels [73]. Therefore, miR200 inhibits EMT by inter-

acting with ZEB1/2 and the Notch pathway and represses self-renewal and differentiation in 
CSC. MiR200 is also involved in apoptosis [72].

Our data showed that leptin induced the expression of Notch family components in PC 

(Notch1–4, DLL4, JAG1, survivin, and Hey2), PCSC markers (CD24CD44ESA, ALDH, CD133, 
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and Oct-4), ABCB1 (MDR1), tumorsphere formation, cell cycle progression, proliferation, and 
tumorigenesis. These effects were reduced by GSI [28]. Moreover, mouse and human PC and 
cell lines treated with adiponectin, or an adiponectin receptor agonist, AdipoRon, suppressed 

leptin-induced STAT3 signaling in vitro and reduced PC growth in vivo [74]. The addition of 
leptin to 5-FU treated tumorspheres decreased 5-FU-induced cytotoxicity and increased col-
ony forming ability, number of cells expressing pluripotency and EMT markers, drug efflux 
proteins (ABCC5 and ABCC11), and Notch. Leptin also reduced the 5-FU effects on apoptosis 
by decreasing proapoptotic (Bax, caspase-3 activation, and PARP degradation) and increas-

ing antiapoptotic factors (RIP and Bcl-XL). Leptin’s effects on PC tumorspheres were mainly 
Notch signaling dependent [30]. Therefore, the leptin-Notch axis could be a target to develop 
novel strategies for PC treatment.

5. Pancreatic cancer treatment

5.1. Chemotherapy

To decrease the risk of local and distant metastasis, adjuvant therapy is usually started 
1–2 months after PC surgery. Although no regimen has been proven significantly more effective 
than others, a regimen based on 5-FU or Gemcitabine for 6 months is usually the option used 
to reduce PC patients’ mortality [75]. The activity of 5-FU/Leucovorin has been compared to 
Gemcitabine as an adjuvant therapy in the European Study Group for PC (ESPAC)-3 trial [76].  

However, the study showed that median overall survival for patients treated with 5-FU/
Leucovorin was 23 months when compared with 23.6 months for patients treated with 
Gemcitabine. The ESPAC-4 study measured the efficacy of a combination treatment with 
Gemcitabine plus Capecitabine when compared with monotherapy with Gemcitabine alone. 
The results showed a survival of 28 months in the combined therapy when compared with 
25.5 months in the monotherapy group. Because the dual therapy was well tolerated, the com-

bination of Gemcitabine and Capecitabine has been used as a standard in the clinical setting [77].  

Currently, regimens with Gemcitabine plus nanoparticle albumin-bound Paclitaxel (nab-
Paclitaxel) and a combination of 5-FU, Irinotecan, and Oxaliplatin (FOLFIRINOX) are evalu-

ated in the clinical setting [78]. Gemcitabine has usually some efficacy as an adjuvant therapy, 
but often patients develop chemoresistance. Nab-Paclitaxel, a water-soluble compound, has 

enhanced distribution properties within the tumor microenvironment when compared with 

Paclitaxel. However, studies have shown that nab-Paclitaxel treatment neither decreased 

tumor stroma nor increased tumor vascular perfusion in a mouse patient-derived xenograft 

(PDX) tumor model [79]. The infiltration of neoplastic lesions by CD8+ T lymphocytes is asso-

ciated with improved prognosis. However, a CD40 monoclonal antibody that activated CD8+ 
T cells in Phase I clinical trial had only a partial response [80]. FOLFIRINOX and nab-Paclitaxel 
plus Gemcitabine have the potential to downstage local advanced disease and to improve 
tumor resection rates. The use of chemoradiation therapy as an adjuvant is controversial and 
with minimal effects on survival in clinical trials so far [81]. New studies that incorporate 

modern radiation techniques and current chemotherapy regimens are still needed to deter-

mine if radiation is beneficial in PC treatment.
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5.2. Targeted therapy

A comprehensive genetic analysis of PC showed that these tumors contain an average of 63 

genetic alterations in 12 cellular signaling pathways, including Notch pathway [82]. A Phase Ib 
trial for PC using a combination of Demcizumab (OMP-21 M18), a monoclonal antibody against 
Notch ligand, DLL4, with Gemcitabine and Abraxane, showed some clinical benefits [60]. 

An antibody against Notch2 and Notch3, Tarextumab, was tested in Phase 2 clinical trials in 
combination with Gemcitabine and nab-Paclitaxel in patients with metastatic PC. For these 
patients, the median progression-free and overall survival were 5.6 and 11.6 months, respec-

tively. Gamma secretase inhibitors (GSIs) have been used in clinical trials in PC. For example, 

a GSI called RO4929097 was safely tolerated in combination with Gemcitabine and achieved 
clinical antitumor activity and more than 4 months of stable disease. However, the use of GSI 
has limitations and still represents a challenge because of the increased drug toxicity and lack 
of high specificity to Notch besides other substrates of γ-secretase [83].

Desmoplasia is a target in PC treatment. Hyaluronan, a component of the ECM of PC, is 
a naturally occurring nonsulfated glycosaminoglycan that was targeted using pegylated 

hyaluronidase (PEGPH20). In a Phase II study combining Gemcitabine, nab-Paclitaxel, and 
PEGPH20, there was no difference seen in the survival of PC patients that had this addition to 
their treatment. Also, due to the ubiquitous nature of hyaluronan, there were unexpected side 

effects, such as thrombosis. For the Gemcitabine, nab-Paclitaxel, and PEGPH20 study, a sub-

set analysis was performed on the high-hyaluronan patients. In the arm receiving PEGPH20, 
the response rate was 45% when compared with 31% in controls, which was encouraging, 
and led to a Phase III clinical trial (HALO301) for patients that had high hyaluronan. In these 
studies, Lovenox was included for anticoagulation [84].

STAT3 inhibition has been shown to decreased PC growth in mouse models. Napabucasin 
decreased STAT3 transcription and tumorsphere formation and showed some efficacy in 
PC. Napabucasin induced a median progression-free survival of >7.1 months and a median 

overall survival of >10.4 months in PC patients. Based on these encouraging results, it is now 

being evaluated in a PC Phase III study in combination with Gemcitabine and nab-Paclitaxel 
(NCT02993731) [85].

The expression of leptin in gastroesophageal adenocarcinomas was associated with chemore-

sistance. Therefore, the addition of leptin antagonists to current chemotherapeutic treatment 
could represent a new strategy to overcome drug resistance and to improve survival of PC 

patients. SHLA, a leptin antagonist, increased the sensitivity of resistant gastric cancer cell 
line, AGS Cis5, and the esophageal adenocarcinoma, OE33, to cisplatin [86].

LPrA2 was designed and tested in vitro and in vivo in PC xenograft mouse models in our 
laboratory. LPrA2 is composed by a leptin sequence corresponding to its binding Site III of the 
leptin molecule. LPrA2 was conjugated to iron-oxide nanoparticles (IONP-LPrA2) to increase 
its bioavailability and effectiveness to block leptin signaling in cancer cells [28]. IONP-LPrA2 
showed no toxicity and did not affect energy balance (body weight or food intake) or gen-

eral health when it was administered to mice. IONP-LPrA2 reduced the expression of Ob-R, 
Notch, and PCSC markers. Furthermore, specific inhibition of leptin signaling by IONP-LPrA2 
delayed tumor onset and decreased tumor growth in a PC xenograft mouse model. Our data 

also showed that IONP-LPrA2 could be used as an adjuvant therapy to 5-FU. In PC cells treated  
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with 5-FU and leptin, IONP-LPrA2 reduced tumorsphere formation and cell proliferation, the 
number of Notch+, ABCC5/11+, and PCSC+ cells, and increased apoptosis. Thus, IONP-LPrA2 
resensitized PC cells to 5-FU actions [28, 30]. In view of leptin multiple effects on PC and 
the involvement of Notch signaling in leptin’s effects, targeting leptin-Notch crosstalk in PC 
patients might be a new treatment strategy for this deadly disease (Table 1). The addition of 
leptin antagonists to current chemotherapeutic treatment could represent a new strategy to 

overcome drug resistance and to improve survival of PC patients.

6. Conclusions

PC is a lethal systemic disease that is difficult to detect and treat. This is mainly due to the fact that 
even patients diagnosed with early stages eventually develop metastasis. The deep abdominal  
position of the pancreas is an additional factor that delays the onset of specific PC symptoms. 
Early PC diagnosis and potential cure remain important challenges due to the lack in screen-

ing methods and specific biomarkers. PC risk factors, such as high-fat diet, obesity, tobacco, 
and alcohol consumption, can be modified, leading to prevention of disease occurrence and 

Table 1. Inhibition of leptin signaling using IONP-LPrA2 resensitizes PC cell lines to chemotherapy.
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increased survival. PC desmoplastic stroma, which decreases chemotherapeutic drug delivery 

to the tumor, is an another current challenge to improve PC survival. Currently, combined che-

motherapy strategies are used in selected patients with PC metastatic disease. The identification 
of novel PC targets is the key for the development of new individualized strategy for prevention 
and treatment. An emerging and promising area is the relationship between obesity and leptin-

induced prooncogenic effects in PC, which could also affect chemoresistance and metastasis. In 
this respect, the use of leptin signaling antagonists as a novel sensitization adjuvant for current 
chemotherapeutic drugs appears as a potential new strategy to improve treatment effective-

ness and patients’ survival. The use of leptin signaling antagonists could also make possible the 
reduction of drug dosage and the improvement of patient quality of life.
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