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Abstract

In this chapter, the problem of the electrical conduction in powdered systems is analyzed.
New equations for computing the effective electrical resistivity of metallic powder aggre-
gates and sintered compacts are proposed. In both cases, the effective electrical resistivity
is a function of the bulk material resistivity, the sample porosity and the tap porosity of the
starting powder. Additional parameters are required to describe the case of non-sintered
powder aggregates: one of them describes a certain residual resistivity and another
describes the rate of mechanical descaling during compression of the oxide layers cover-
ing the particles. Laws for the thermal dependence of these two parameters are also
suggested. These new equations modeling the effective electrical resistivity are valid in
all the physical range of porosity: from zero porosity to the tap porosity. Links between
the proposed equations and the percolation conduction theory are stated. The proposed
equations have been experimentally validated with powder aggregates (both in as-
received state and after electrical activation to eliminate oxide layers) and sintered com-
pacts of different metallic powders, resulting in a very good agreement with theoretical
predictions. In addition to their general interest, the proposed models can be of great
interest in modeling electrical consolidation techniques.

Keywords: electrical resistivity, powder metallurgy, modeling, effective properties,
electrical consolidation techniques, FAST

1. Introduction

The theoretical prediction of the effective (or apparent) properties of heterogeneous materials

(including multiphase materials, composites, porous materials, etc.) has a remarkable history,

on times stimulating the interest of some eminent scientists, including Maxwell, Rayleigh and

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Einstein, among others. In 1873, Maxwell derived an expression for the effective resistivity of a

dispersion of spheres within a different material, although only accurate for dilute sphere

concentration [1]. In 1892, Rayleigh developed a method to calculate the effective resistivity of

an otherwise uniformmaterial interrupted by a rectangular arrangement of spheres of different

nature, which is still useful today [2]. In 1906, Einstein determined the effective viscosity of a

diluted suspension of spheres, in a work which began the way to model the effective properties

of heterogeneous materials [3]. From those first works until today, there has been an upsurge in

the number of works dealing with this subject, not only because of the extraordinary intellec-

tual challenge that they represent but also because of their undoubted technological interest.

Porous materials are a good example of heterogeneous materials of technological interest, and

we will focus this work on them. Porous materials can be considered as two-phase materials: a

phase consisting of the bulk material (fully dense material) and the other constituted by pores.

But, how to model the properties of heterogeneous materials? It is tempting to use ‘mixture

rules’, with the appropriate weighting factors. In the case of porous materials, these rules result

in particularly simple expressions, since the properties of one of the phases (the pores) are

usually zero. In this way, in order to know the effective properties of porous materials, it

would be sufficient to know the properties of the bulk material and the degree of porosity of

the sample under consideration. However, for some properties, especially those related to

transport phenomena, the aforementioned approach is not sufficient; other factors such as the

average size of the pores, their size distribution, etc. are particularly important.

Even the indicated details are not sufficient when the porous materials are made of metallic

powders (i.e. the powder metallurgy field). If this is the case, other details must be considered:

the material may be the result of cold compacting a mass of powders or the result of compacting

and then sintering in a furnace. There are more than mechanical differences between these two

situations. From an electrical point of view, for example, in the first situation, metal–metal

contacts between particles are not guaranteed. However, in the second case, the sintering process

guarantees the electrical continuity (metal–metal contacts) in all the particle junctions. For this

reason, the designation of ‘porous materials’ is too ambiguous. However, with ‘powdered

porous compacts’, we refer to compacted powder aggregates or sintered compacts. Other

authors prefer the expression ‘granular materials’ to refer to the same idea.

Regarding sintered materials, some expressions proposed for generic porous materials may be

applicable. Table 1 shows some of the reported expressions to model the effective electrical

resistivity of porous media, obtained by theoretical, empirical or semiempirical means. The

expressions in Table 1 refer to relative (or normalized) resistivity, i.e. the ratio between the

effective resistivity of the porous material and the resistivity of the bulk material (rR = rE/r0).

Some of them were proposed to describe thermal resistivity, but the problem is quite similar

(although the transport mechanisms are not exactly the same.)

As can be seen in Table 1, most expressions include an empirical parameter. Resistivity is

closely dependent on the microstructure (including pore shape and size), and this empirical

parameter helps to model the effect of these details. Therefore, a simple mathematical expres-

sion based solely on the porosity degree, without any additional empirical parameter, can

never accurately describe the electrical resistivity.

Electrical and Electronic Properties of Materials12



Naturally, the resistivity must increase with the porosity. The greater the porosity, the smaller the

electric flow transfer section and the longer the path it must travel, contouring the pores. Most of

the expressions in Table 1 verify that relative resistivity increases from 1 to infinity as porosity

varies from 0 to 1. However, this does not apply to powdered materials, as their maximum

porosity is always lower than 1. Only the expressions of Loeb [5], McLachlan [10] and Montes

et al. [11–13] take this into account, being even applicable in the range of high porosities.

Regarding powder aggregates under compression, modeling is always more difficult. The

electrical resistance of the powder mass logically depends on its porosity, decreasing by

increasing pressure. So, the bigger the pressure, the lesser is the porosity and therefore the

lower is the electrical resistance. But pressure not only helps to reduce the porosity but also,

due to the friction between particles, can force the descaling of the dielectric layers (mainly

oxides but also hydrides and other chemical compounds) that normally cover the powder

metallic particles. Both phenomena lead to decrease the effective resistivity of the powder

mass by increasing pressure. These oxides have a high influence on the apparent value of the

electrical resistance, to the point that may have more influence than the porosity itself. The

influence of oxide layers (with a dielectric behavior) is crucial, since, despite their small

thickness, they dramatically influence the conduction process. Some interesting experimental

studies, focused on the electrical behavior, have helped to identify the complexity of the

phenomena involved [14–16]. Some theoretical studies carried out by Montes et al. [13] have

Authors Year Relative resistivity

(rR = rE /r0)

Upper boundary condition

rR ! 1…

Lower boundary condition

rR ! ∞…

Maxwell [1] 1873 2þΘ
2 1�Θð Þ

Θ! 0 Θ! 1

Fricke [4] 1924 1þc1Θ

1�Θ
Θ! 0 Θ! 1

Loeb [5] 1954 1� c2Θð Þ�1 Θ! 0 Θ! 1=c2

Murabayashi et al. [6] 1969 2þΘ
3 1�Θð Þc3� 1�Θð Þ

Θ! 0 Θ! 1

Aivazov et al. [7] 1971 1þc4Θ
2

1�Θ
Θ! 0 Θ! 1

Meyer [8] 1972 c5þΘ
c5 1�Θð Þ

Θ! 0 Θ! 1

Schulz [9] 1981 1�Θð Þ�c6 Θ! 0 Θ! 1

McLachlan [10] 1986
1� Θ

Θc

� ��3
2Θc Θ! 0 Θ! Θ

c

Montes et al. [11] 2003
1� Θ

ΘM

� ��2 Θ! 0 Θ! Θ
M

Montes et al. [12] 2008 1� Θ

ΘM

� ��u

u ¼ 1þ 1�ΘMð Þ
4
5

Θ! 0 Θ! Θ
M

Montes et al. [13] 2016
1� Θ

ΘM

� ��3
2 Θ! 0 Θ! Θ

M

The parameters c1 to c6 are material constants, Θc is a critical porosity (related to the percolation threshold) and ΘM is the

tap porosity of the starting powder (later described)

Table 1. Several expressions for the relative resistivity as a function of the porosity degree (Θ).
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attempted to identify the most relevant parameters of the problem, ensuring the applicability

of the proposed expressions throughout the physical range of porosity and trying to maintain

a minimum level of mathematical complexity. The proposed models incorporate parameters as

the porosity of the sample, the initial porosity of the starting powder (tap porosity), the

resistivity of the metal and the thickness and resistivity of the oxide layers. However, the

models also need to incorporate two empirical parameters to describe the mechanical

descaling of the oxide layers during the compaction process.

In this chapter, two new models to compute the effective electrical resistivity of metal powder

systems under pressure (constituted by oxide-free metallic particles or by oxide-coated metal-

lic particles) will be developed. These models can be considered valid for describing the

electrical behavior both of sintered compacts and of powder aggregates, which will be tested

to validate the proposed models. The new expressions will be useful to model the electrical

consolidation techniques of metallic powders, which are commonly known as field-assisted

sintering techniques (FAST).

2. Modeling of the effective resistivity

2.1. Effective areas and effective paths

Let us consider two cylindrical samples of the same material and equal dimensions, the first

one being completely solid and the second one with a porosity Θ, as illustrated in Figure 1.

As a consequence of the porosity, the electrical resistance cannot be the same in the second

sample. The electrical resistance (R) of a bulk material can be calculated from its resistivity. So,

for a specimen with nominal section SN and uniform nominal height of length LN, the electrical

resistance is

R ¼ r0

LN

SN
(1)

with r0 being the resistivity of the bulk material.

Figure 1. Diametrical cross sections of two cylindrical samples. Obviously, in the porous material, the electric flow path

will be longer and more tortuous, while the transfer cross section will be smaller.

Electrical and Electronic Properties of Materials14



For the porous specimen, which may be produced by uniaxial press and sintering of metallic

oxide-free powders, the resistance R’ (higher than the one of the bulk specimen) can be

calculated in two different ways. On the one hand, it may be considered that the porous

material behaves as having an effective electrical resistivity, rE, upper than r0, and this is

R0
¼ rE

LN
SN

(2)

On the other hand, assuming that the resistivity of the porous material is equal to r0, the

effective section for the electrical flow to pass, as well as the path length that the flow has to

travel, must be different. Being SE and LE the effective values of, respectively, the mean transfer

section (smaller than the nominal) and mean effective path (longer than the one corresponding

to a bulk specimen), the resistance of the porous specimen could be expressed as

R0
¼ r0

LE
SE

(3)

It is possible to express SE and LE as functions of the specimen porosity (Θ). Thus, by equalling

Eq. (2) and Eq. (3), it would be possible to obtain an expression for the effective resistivity, rE,

as a function of r0 and the porosity degree. The problem is knowing how the effective

magnitudes, SE and LE, depend on the porosity. A simple reasoning provides the solution. Let

us assume that the porosity of the second specimen in Figure 1 is completely removed by

concentrating the material toward the inside, by decreasing its diameter, as is illustrated in

Figure 2. The result will be a new, fully dense cylinder of the same height (LN), cross-sectional

area SE and volume Vfully dense = SE�LN.

According to the definition of porosity

Θ ¼
Vvoid

V total
¼

VN � V fully dense

VN
¼ 1�

V fully dense

VN
¼ 1�

SE � LN
SN � LN

¼ 1�
SE
SN

(4)

and therefore

Figure 2. Initial porous sample and final sample obtained by concentrating all the material and preserving the same

nominal height.

Electrical Resistivity of Powdered Porous Compacts
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SE ¼ SN 1�Θð Þ (5)

This expression is well known in stereology and widely used in quantitative metallography. As

can be checked, SE ! SN as Θ! 0 (fully dense material) and SE ! 0 as Θ! 1.

In order to model the mean effective path through a porous specimen, i.e. the distance to

travel, eluding pores, from the top to the bottom of the cylinder, a similar expression can be

stated. However, two considerations have to be taken into account: (i) we are now dealing with

a distance instead of an area; therefore, the factor depending on the porosity should be (1 �

Θ)½, and (ii) the other way round as with the effective area, the effective length increases with

the porosity, and, thus, the relationship should be now inversely proportional.

It is then proposed as follows:

LE ¼ LN 1�Θð Þ�
1
2 (6)

As can be checked, LE ! LN as Θ! 0, but LE ! ∞ as Θ! 1, being equivalent to say that there

is not a continuous path.

However, for the description of powdered systems, the previous expressions of SE and LE
require to be revised. There are also two situations to be distinguished: powder systems with

oxide-free particles and powder systems with oxide-coated particles.

2.2. Resistivity of powder systems consisting of oxide-free particles

Until now, we have assumed the porosity to be uniformly distributed and to range from 0 to 1.

We shall refer to systems fulfilling these two conditions as foamed porous systems, although the

limit of Θ = 1 could actually never be reached. The case of systems obtained from powders is

far from fulfilling the above-mentioned limits. Theoretically, a sintered compact can be

expected to reach a zero porosity upon sintering. However, the upper limit of porosity will

never be reached. The maximum porosity in those systems, ΘM, is the maximum undistorted

equilibrium porosity. Essentially, this porosity is equivalent to the tap porosity, i.e. the porosity

of a powder mass after being vibrated [17]. This latter parameter describes the pore structure

and is very dependent on particle shape, size and distribution, in some way agglutinating

morphometric information about the powder. We shall refer to systems satisfying this descrip-

tion as powdered porous systems. This entails altering Eq. (5) and Eq. (6) in order to include this

upper bound for porosity. The required change is fairly simple and involves replacing the

porosity (Θ) with the normalized or relative porosity (ΘR = Θ/ΘM). Thus

SE ¼ SN 1�Θ=ΘMð Þ (7)

Now, SE ! SN asΘ! 0, as in the fully dense material, but in the upper porosity bound, SE ! 0

as Θ! ΘM, situation where interparticle contacts in the powder are points. SE represents the

effective section for the electrical current transfer, and being this section null, the transfer is not

possible.

Electrical and Electronic Properties of Materials16



A similar expression can be stated to model the mean effective path. It is then proposed as

follows:

LE ¼ LN 1�Θ=ΘMð Þ�
1
2 (8)

As can be checked, LE ! LN as Θ ! 0, but LE ! ∞ as Θ ! ΘM, being equivalent to say that

there is no continuous path in the non-pressed system.

In previous works, Montes et al. proposed the same theoretical expression for the effective

transfer section [18–20] but a different expression for the effective path [21]. The difference is

not so large and can be absorbed by very small differences in the values of ΘM, which cannot

be empirically discerned due to the experimental uncertainty.

By substituting Eq. (7) and Eq. (8) into Eq. (3), the expression below is obtained:

R
0 ¼ r0

LN

SN
1�Θ=ΘMð Þ�

3
2 (9)

Equalling Eqs. (2) and (9), the next final expression is obtained:

rE ¼ r0 1�Θ=ΘMð Þ�
3
2 (10)

Eq. (10) satisfies the expected boundary conditions, rE ! r0 as Θ! 0 and rE ! ∞ as Θ! ΘM,

since, in this last situation, interparticle contacts are points.

It is interesting to compare Eq. (10) with the previously proposed expressions (see Table 1). As

the exponent 2 in [11] resulted to be too high, when fitting the expression to experimental data,

authors were forced to introduce a correction in the value of ΘM, moving it away from the

experimentally measured value. Regarding the expression proposed in [12], the exponent u

takes different values depending on the value of ΘM. For instance, and considering extreme

values, for ΘM = 0.35, u = 1.71, whereas for ΘM = 0.65, u = 1.43. Both 1.71 and 1.43 can be

approximated to 1.5. This is supported by the experimental uncertainty in the determination of

the ΘM value. Therefore, as compared with the expression derived in [12], the expression now

proposed can be seen as a convenient simplification. Eq. (10) was also derived in [13] following

a similar but different approach.

2.3. Resistivity of powder systems consisting of oxide-coated particles

An important detail that must be included to model oxidized powder aggregates is the fact

that the oxide films coating the particles are altered throughout the compression process.

During the early instants of compression, shear occurs along particle contacts because of

sliding [22]. As a consequence of this shear, oxide films locally break, allowing the formation

of metal–metal electric paths with rather lower electric resistance [14, 15]. This descaling effect

that occurs during particle rearrangement is sufficiently important to be taken into account.

In view of Eq. (10), we can propose a similar expression to model the new situation:

Electrical Resistivity of Powdered Porous Compacts
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rE ¼ rres 1�Θ=ΘMð Þ�n (11)

where rres is the residual resistivity (higher than or equal to r0) that would remain atΘ = 0, as a

consequence of the mechanical descaling process not being completed. Only if the oxide layers

descaling during compression is complete, rres = r0 (actually, this limit value does not corre-

spond to that of the bulk material, because the oxide layers, once removed, remain in the

material and, although representing a very small volume fraction, slightly alter the resistivity

value). The exponent n is a fitting parameter, which describes the descaling rate; if there are no

oxide layers, its value would be equal to 3/2, but with their presence it will take higher values.

Thus, for Θ! ΘM

lim
Θ!ΘM

rE ¼ rres � 1� 1ð Þ�n ¼ rres � ∞ð Þ ¼ ∞ (12)

On the other hand, in the limit that Θ! 0

lim
Θ!0

rE ¼ rres � 1� 0ð Þ�n ¼ rres (13)

Comparing Eq. (11) with Eq. (10), it follows that the minimum value of the exponent nmust be

3/2. When the oxide dielectric layers are very thick and/or very resistive, the value of the

resistivity during the first moments of compaction will be much higher than with bare parti-

cles, and the descaling effect will be very pronounced. Then, the exponent n will take values

greater than 3/2.

2.4. Percolation theory relationship

Eqs. (10) and (11) are similar to that derived from the percolation theory [23–26]. In fact, a

simple algebraic manipulation of Eq. (10) leads to

rE ¼ r0 1�Θ=ΘMð Þ�
3
2 ¼ r0

ΘM �Θ

ΘM

� ��3
2

¼ r0

1�Θ� 1þΘM

ΘM

� ��3
2

(14)

and, as the term (1�Θ) coincides with the relative density ϕ, by defining the relative tap

density ϕc = (1 – ΘM), it is obtained that

rE ¼ r0

ϕ� ϕ
c

1� ϕ
c

� ��3
2

(15)

where the denominator is a constant, so it follows that

rE ∝ ϕ� ϕ
c

� ��3
2 (16)

which is what the percolation theory predicts [23–26], if admitted that ϕc, obtained from the

tap porosity ( ΘM), represents the percolation bound and 3/2 is the percolation exponent.

A similar reasoning can be applied to Eq. (11), leading to the same conclusion.

Electrical and Electronic Properties of Materials18



2.5. Model comparison

It is instructive to compare the theoretical predictions resulting from Eq. (10) and Eq. (11). Two

systems will be considered. The first one is a powder mass with bare particles (applicable to

sintered compacts or pressed compacts of deoxidized particles). The second one is a powder

mass with particles coated by native oxides (oxidized particles). According to the considered

equations, the relative electrical resistivity for both powder masses under compression varies

with the porosity degree as shown in Figure 3.

As shown, the variation by increasing pressure of both curves starts at the same porosity value

(the tap porosity), but the shape is not the same, due to the effect of the oxide descaling.

2.6. Influence of temperature

Although the resistivity of metals increases linearly with temperature, the resistivity of oxide

layers decreases with temperature and in a more drastic way, which is usually described by

means of an exponential law [27]:

rx Tð Þ ¼ Axexp Ex= 2kBTð Þð Þ (17)

where Ax is a pre-exponential factor, Ex is the band-gap energy and kB is the Boltzmann

constant. So, for sufficiently high temperatures (T ! ∞), the resistivity of the dielectric or

semiconductor layers will be significantly reduced. Dielectric breakdown of the layers may

also occur. (Note that the expression Ex/ (2kB) must have temperature dimensions.)

Taking into account this expression, it seems sensible to assume a similar behavior for rres and

the exponent n in Eq. (11), which should vary with temperature as follows:

Figure 3. Relative electrical resistivity (rE /r0 or rE/rres) vs. porosity for a powder mass of oxide-free particles (solid line)

and oxide-coated particles (dashed line). Curves have been computed by considering the arbitrary values ΘM = 0.6 and

n = 7/2.

Electrical Resistivity of Powdered Porous Compacts
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n Tð Þ ¼
3

2
exp Tn=Tð Þ (18)

rres Tð Þ ¼ r0exp Tr=T
� �

(19)

where Tn and Tr are two convenient temperatures related to the corresponding activation

energies.

Thus, as T ! ∞, n ! 3/2, which is the value that the exponent n takes for oxide-free particles

(see Eq. (10)), i.e. without dielectric layer coatings. Similarly, as T ! ∞, rres ! r0, i.e. the

resistivity of the metal, which means that the oxide effect is zero, as if they were not present.

The electrical resistivity values of the oxide films coating the powder particles are difficult to

find. The chemical and physical nature of this oxide film cannot be accurately known in most

cases. Moreover, the oxide film may contain metal atoms in various oxidation states, and the

oxides may be accompanied by some hydroxides. Moreover, thin oxide films covering parti-

cles may behave in a rather different way of bulk oxides. The small thickness of the oxide layer

alters the resistivity value by diminishing it, according to the Fuchs-Sondheimer law [27]. It is

then concluded that it is difficult to know the exact nature and electrical resistivity of the oxide

layers. We also ignore the relationship between Tn or Tr and Ex.

Fortunately, it is possible to calculate the values of Tn and Tr from Eq. (17) and (18), once the

values of n and rres are known at room temperature. By isolating n and rres from the above

equations, we obtain

Tn ¼ T � Ln 2n=3ð Þ (20)

Tr ¼ T � Ln rres=r0
� �

(21)

2.7. Connection with the applied pressure

Eqs. (10) and (11) relate the effective electrical resistivity of the powder aggregate to its

porosity. Alternately, it would be possible to take into account the relationship between the

electrical resistivity and the applied pressure, as has been done by other authors [28]. How-

ever, the fact that Eq. (10) and Eq. (11) are formally equal is a great success of the porosity-

based description. The pressure-based description appears to have a narrower applicability,

because although sintered compacts are in general previously subjected to compression, there

is the possibility of obtaining very porous materials (with metal–metal contacts) without

applying pressure, due only to the heat effect, as is the case in loose sintering. In such scenario,

it is possible to consider a ‘pressure’ equal to the driving force that causes the decrease of

energy per unit of volume (J/m3 is equivalent to Pa), but this interpretation seems somewhat

tortuous and impractical. Therefore, the description based on the porosity appears to have a

wider applicability than that based on the applied pressure.

Electrical and Electronic Properties of Materials20



There is also a technical reason for preferring a porosity-based description. Although during the

determination of the resistivity-porosity curve, it is also possible to record the applied pressure,

and the punches (made of electrolytic copper) limit the value of the highest attainable pressure.

However, it is perfectly possible to make a compressibility curve of the powders reaching very

high-pressure values, by using hardened steel punches (The compressibility curve collects

information of how the porosity (or relative density) of the powder mass varies when it is

subjected to an increasing compression.). Thus, the porosity-based description can be

supplemented by an analytical description of the compressibility curve of the powder. Once

the corresponding compressibility curve is obtained (Θ vs. PN), it can be fitted by the least

squares method to the analytical expression, for example, the one proposed by Secondi [29],

which can be expressed in porosity terms as

Θ ¼ Θ∞ þ ΘM �Θ∞ð Þexp � PN=að Þb
� �

(22)

where Θ is the porosity of the powder mass under a compacting pressure PN. The parameter

ΘM is again the tap porosity of the powder. The other parameters (Θ
∞
, a and b) are fitting

parameters.

Therefore, on the one hand, Eqs. (10) and (11) relate rE to Θ, and on the other hand, Eq. (21)

relates Θ to PN. Considering both equations, it is possible to relate rE to PN, which may be

helpful for some situations.

3. Experimental validation

3.1. Materials

To validate Eqs. (10) and (11), four powders (three elemental and one alloy) with different

nature, granulometry and tap porosity were chosen. The choice was guided by the intention of

checking whether the parameter ΘM used in the models allows for bringing out these differ-

ences.

Table 2 lists the commercial designation of each powder, the designation used here, the mean

particle size obtained by laser diffraction and the tap porosity (ΘM) measured according to

MPIF Standards [17]. Figure 4 shows SEM images with the different powders shape.

The absolute error during the measurement of the ΘM value, as a function of the employed

instrument precision, results to be�0.01: a very small value as compared to the measurements.

However, the random vibration process during measuring can lead to an increase of the

experimental uncertainty. Experimental checks confirm a higher value around �0.05, which is

still a relatively small value.

Electrical Resistivity of Powdered Porous Compacts
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3.2. Effective electrical resistivity of sintered compacts

There are two possible ways to validate Eq. (10). The first way consists in deoxidizing the

powders and subjecting them to varying pressures to determine their resistivity, all under an

inert atmosphere that guarantees the non-reoxidation of the particles. The second way consists

in pressing the as-received powders (oxidized) to different pressures obtaining different com-

pacts and, once compacted, carrying out a sintering process. This ensures that there are true

metal–metal contacts between the particles. Due to the technical difficulties in the first option,

the second one has been followed in this work.

Electrical resistance measurements were carried out by using a four-point probe and a Kelvin

bridge (micro-ohmmeter), by performing two measurements with inverted polarities to mini-

mize the parasitic effects. The electrical resistance was measured on cylindrical sintered com-

pacts with different porosities. Resistivity was determined from the measured resistance value,

Powder Designation Mean size (μm) ΘM (measured)

AS61 aluminum (Eckart-Werke) Al 77.0 0.45

89/11 AK bronze (Eckart-Werke) Bz 57.2 0.43

WPL 200 iron (QMP) Fe 84.4 0.63

T255 nickel (Inco) Ni 18.8 0.86

Table 2. Mean particle size and measured tap porosity (ΘM) of tested powders.

Figure 4. Scanning transmission microscopy (SEM) images of the four powders used for experimental validations. From

left to right and top to bottom: Al, Bz, Fe and Ni.
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Rm, by applying the known expression rE = 2π sRm, where s = 2 mm, is the distance between

the probe electrodes.

These cylindrical samples (about 10 mm height, 12 mm diameter) were prepared by uniaxial

cold compaction and subsequent sintering. Several compacting pressures were selected

according to the compressibility curve to achieve the desired porosities, which ranged from

the maximum allowing a handily specimen to the one obtained for a pressure of 1400 MPa.

Afterwards, sintering was carried out for 30 minutes at the temperature indicated in Table 3

under 1.2�105 Pa argon atmosphere. The final porosity after sintering (Θ) was again measured

by weighting and measuring the specimens, and the resulting values, shown in Table 3, were

used in the later calculations.

For comparison purposes, fully dense reference samples of each powder were produced by a

double pressing at 1400 MPa (with intermediate annealing to a half of the sintering tempera-

ture) and final sintering during 3 hours. Table 4 gathers the experimentally determined

resistivity values of the fully dense samples, used like r0 values. Also, included are the values

of the bulk materials, at the measuring temperature (~25�C), found in the literature [30]. These

later values are some lower, probably due to the presence in the fully dense samples of some

residual porosity and the contamination introduced by the surface oxides of the powder

particles.

The porosity-effective resistivity data cloud was then fitted to the expression of Eq. (10) by the

least squares method. The only fitting parameter was ΘM. The validity of the proposed model

will be assessed depending on how the fitted ΘM value compares to the experimental value

gathered in Table 2.

Powder Sintering temperature (�C) Porosity range

Al 650 0.01–0.32

Bz 850 0.05–0.10

Fe 1150 0.02–0.43

Ni 800 0.05–0.19

Table 3. Sintering temperature used to produce the tested specimens, previously pressed at different pressures, and

porosity range attained.

Powder Fully dense resistivity (r0 [Ω�m]) Bulk material resistivity (Ω�m)

Al 2.922 � 10�8 2.730 � 10�8

Bz 1.862 � 10�7 1.805 � 10�7

Fe 1.177 � 10�7 1.043 � 10�7

Ni 8.197 � 10�8 6.993 � 10�8

Table 4. Electrical resistivity of fully dense parts and bulk materials, at room temperature.
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Figure 5 shows the data clouds referred to the pairs (Θ, rE) and (ΘR, rR) for each one of the

tested powders. Also shown are the fitted theoretical curves, according to Eq. (10), which is

only one when using relative variables. Table 5 gathers the resulting values of ΘM after fitting

and the coefficients of determination, R2, obtained for each one of the powders.

As can be seen, the resulting fitting indicators are quite acceptable. Fitted ΘM values are inside

the accepted uncertainty range of �0.05 of the experimental values, except for the Ni powder.

In this case, the fitted value (0.71) is far from the experimental one (0.86). This deviation could

be due to the filamentary morphology of this powder and its great tendency to form agglom-

erates. This can distort the measurement of the tap porosity to a value higher than the actual

value. A very small compression is sufficient for the porosity to decrease drastically to a value

of about 0.7, which is the resultant value of the fitting process. Nevertheless, it seems that for

this type of powder morphologies, the tap porosity does not result an adequate parameter.

It is interesting to compare the expression proposed in this chapter with the expressions

suggested by other authors (Table 1). For this purpose, the experimental curve of the arbitrarily

Figure 5. Experimental results (symbols) and fitted curves (lines) according to Eq. (10). (a) Effective electrical resistivity

vs. porosity and (b) relative electrical resistivity (rE/r0) vs. relative porosity (Θ/ΘM), for the different studied compacts.

The vertical lines in (a) represent the fitted ΘM values of the tested powders.

Powder ΘM (measured) ΘM (fitted) R
2

Al 0.45 0.424 0.957

Bz 0.43 0.422 0.855

Fe 0.63 0.678 0.982

Ni 0.86 0.706 0.962

Table 5. Values of the adjustable parameter of Eq. (10), the tap porosity ΘM and the resulting coefficients of

determination after fitting to the experimental data.
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chosen Fe compacts has been fitted with all the expressions (Figure 6). The value of r0 has always

been set equal to the value shown in Table 4, for the fully dense sample.

As can be seen, the expression proposed in this chapter offers one of the best coefficients of

determination. For the first seven expressions, the fitting parameter does not have a clear

physical meaning, so, nothing can be discussed in favor or against the obtained value. For the

McLachlan expression [10], the obtained parameter c results are too low to be identified with the

tap porosity. Similarly, for the expression reported by Montes et al. [11], c results are too high,

even higher than the measured tap porosity. If the fitting process is forced in these two cases to

make the parameter c to move in into admissible values (between 0.58 and 0.68), the coefficient of

determination decreases to 0.8960 and 0.7647, respectively. Regarding the expression in [12], the

obtained result is quite good, with a realistic value of the fitting parameter, and also with the

expression proposed in this chapter, with the added advantage of a being a simpler expression.

Figure 6. Curves resulting after fitting the experimental data of the Fe compacts with the different theoretical expressions

gathered in Table 1. The value of r0 was fixed to 1.177 � 10�7
Ω�m, corresponding to the fully dense sample. The inserted

table shows the coefficient of determination and the fitting parameter, c, in each expression.
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3.3. Effective electrical resistivity of powder aggregates

It is now the intention to validate Eq. (11) for oxidized powder aggregates. The measuring

system consisted of a cylindrical die made of alumina (12 mm inner diameter and resistivity

~1012 Ω�m), with an external steel hoop to reinforce the brittle ceramic. Two electrodes (of

electrolytic copper) closed the die, with the powder mass in the middle. The porosity of the

powders was reduced by increasing the pressure and therefore moving the upper electrode

(the lower one remained fixed). After pouring the powder into the die, it was vibrated

according to the standards [17] in order to reach the tap porosity. The measuring process

started soon after the upper punch touched the powders. At each step, the height of the

powder column and its electrical resistance were recorded (the former through the displace-

ment of the universal testing machine frame, and the latter through a micro- or kilo-ohmmeter

connected to the electrodes). The load was increased to record a new point. For each measured

resistance value (R), the effective resistivity value (rE) can be calculated using the well-known

formula rE = R�S/H, where S is the cross-sectional area and H is the height of the powder

column. The porosity can also be easily computed from the powder column height.

The experimental results and fitted theoretical curves according to Eq. (11) are shown in

Figure 7. Note that although for the representation in Figure 7b relative variables have been

used, there is not a common theoretical equation for all the powders because the influence of

the descaling process is different from each one. Fitted values of the adjustable parameters

(ΘM, rres and n), as well as the coefficients of determination, R2, are gathered in Table 6. As can

be seen, the results are quite consistent, with coefficients always greater than 0.99.

Now, in all cases, fitted ΘM values are within the experimental uncertainty (about �0.05). The

obtained value for Ni is interesting, now in a total agreement with the measured value despite

the morphological characteristics of the powder have not changed. The presence of two other

fitting parameters allows ΘM reaching the objective value, which probably causes a slight

Figure 7. Experimental results (symbols) and fitted curves (lines) with Eq. (11) of (a) the effective electrical resistivity vs.

porosity and (b) relative electrical resistivity (rE/rres, with rres taken from Table 6) vs. relative porosity (Θ/ΘM), for the four

studied powders. The vertical lines in (a) represent the fitted tap porosity values.
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alteration in the other parameters. Unfortunately, the filamentary morphology of the powder

does not allow to be totally confident with the obtained results.

A detailed study of the fitted value of r
res

and n is also worth performing. Regarding the value

of r
res
, and also considering the r

x
value shown in Table 6, it can be said that there is a

correlation between the two values: if the values of r
res

and r
x
are ranked from highest to

lowest, the list obtained is the same. This is logical, considering that r
res

is due to the remains of

the oxide layers that have not been removed.

Obviously, the values of r
res

cannot be lower than those of the bulk metal, r0, given in Table 4.

As can be seen, all the values of r
res

exceed in one or more orders of magnitude of the

corresponding values of r0, with the exception of the bronze (Bz) whose r
res

is only slightly

higher than its respective value of r0. This very small difference means that the oxide can flake

out completely or that the oxide layer is much thinner in this powder.

On the other hand, the results obtained for n are not so easy to interpret. Obviously, these have

to do with the oxide descaling easiness. But the nature of this phenomenon is complex,

depending on multiple factors: the shape, size and hardness of the particles, the thickness of

the oxide layers, the mechanical strength and brittleness of these layers, etc. The difficultness to

collect all this information aggravates the problem [35].

It is possible, however, as already mentioned, to calculate the values of the activation energies

associated with the parameters n and r
res
, present in Eq. (11). Table 7 shows the resulting

values after replacing in Eq. (19) and Eq. (20) in the values of n and r
res

shown in Table 6 for

tests carried out at room temperature (298 K).

Powder ΘM (fitted) rres n R
2

ΘM (measured) rx (Ω�m)

Al 0.436 1.618 � 10�5 2.311 0.990 0.45 1.0 � 1012 [31]

Bz 0.446 1.880 � 10�7 3.639 0.987 0.43 1.0 � 102 [32]

Fe 0.673 2.263 � 10�6 3.200 0.998 0.63 2.1 � 103 [33]

Ni 0.860 1.000 � 10�6 1.522 0.998 0.86 8.0 � 102 [34]

For comparison purposes, in the last two columns, the measured value of ΘM and the oxide resistivity at room tempera-

ture, found in thin film-specialized literature, are shown

Table 6. Fitting parameter values and coefficient of determination for the studied powders.

Powder Tn (K) Tr (K)

Al 128.846 1.88 � 103

Bz 264.095 2.87

Fe 225.792 8.81 � 102

Ni 4.334 7.45 � 102

Table 7. Activation energies associated with parameters n and rres.
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The relatively small differences in the n and rres values shown in Table 6 are now magnified. A

clear difference is found among resulting values. Concerning Tn, the Ni powder shows a value

of two orders of magnitude lower. This means that for temperatures not too high, the effect of

the nickel oxide will not be much important. In the limit situation, with oxide-free particles, Tn

takes the limit value 0 at any temperature. When the oxide is present, the value of Tn gives an

idea of the effect of the oxide at the considered temperature. On the other hand, according to

the Tr values, for temperatures not too high, the resistivity of the bronze oxide will be similar

to that of the metal. The effect of the resistivity at different temperatures can be followed with

the Tp value.

3.4. Model application

Up to now, the goodness of the developed relationships between electrical resistivity and

porosity has been checked, both in oxide-free and oxide-covered particles. As a result, the

fitting parameters of the model have been proven to agree with the expected ones or, in some

cases, have just been determined to fit the experimental data. A step further in the applicability

of the final model (considering the previously obtained fitting parameters) consists in compar-

ing the predictions for new situations with the corresponding new experimental results, this

time without free value parameters.

However, before undertaking this, there is still a pending issue, defining the relationship

between rE and PN stablished in Eq. (21). The first step consists in subjecting the selected

powders to compression tests, using a universal testing machine according to the standards

[36]. Figure 8 shows the obtained curves (inΘ vs. PN representation) and the theoretical curves

resulting from fitting by the least squares method the experimental curves to the Secondi

expression. Table 8 gathers the values of the parameters involved in Eq. (21) and the obtained

determination coefficients.

There are not many comments to make about the results, because apart from ΘM, the other

parameters do not have a physical meaning. Regarding ΘM, the fitted values are inside the

uncertainty interval except for the Ni powder. In this case, the fitted value is again quite

different to the experimentally measured, but being the same as the one obtained when also

working with oxide-covered powders during checking of Eq. (11). The powder morphology

accounts again for the observed difference.

Once the values of the parameters present in Eq. (10) and (21) are known, the predictability of

the model can be checked. For this purpose, new electrical resistance measurements were

made on the four powders under some different experimental conditions. An 8-mm-internal

diameter die was used (instead of the one used to determine compressibility and compressibil-

ity/resistivity curves, with 12 mm). Measurements were made with three different masses, 6, 8

and 12 g and with four different pressures (25, 50, 75 and 100 MPa). The measured values of

electrical resistance and the predicted values obtained using Eq. (10), Eq. (21) and the known

expression R = rE H/S are shown in Figure 9, for the iron powder. As can be seen, the values

differed by less than 2%, with an average relative error of 0.83%, which can be considered a

reasonable agreement. For the remaining powders, similar results were obtained.
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3.5. Electrical activation

In some electrical consolidation techniques of powders, it is practical to incorporate an electri-

cal activation stage, whose purpose is precisely to eliminate the insulating effect of the oxide

layers by electrical means. It is possible to avoid the effect of these oxide layers by employing

high or medium voltages (>200 V). High electrical currents are not necessary. During the first

moments of the process, the interparticle contact areas are very small and therefore very

resistive, and the local temperature of these areas can quickly and notably increase. This local

Powder Θ
∞

ΘM a b R
2

Al 0.007 0.494 110.6680 0.8381 0.9998

Bz 0.000 0.430 759.5506 0.7865 0.9923

Fe 0.016 0.645 304.9329 0.7967 0.9997

Ni 0.130 0.716 329.6176 0.8132 0.9997

Table 8. Fitted values of the parameters involved in the Secondi expression (Eq. (21)).

Figure 8. Experimental compressibility curves and corresponding fitted curves obtained by fitting by the least squares

method the Secondi expression to the experimental data.
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temperature increment will result in a drastic decrease in the resistivity of the oxide layers,

dielectric or semiconductor in nature. If the local temperature or applied electric fields become

sufficiently high, the dielectric breakdown of these layers could also occur, often leading to an

irreversible degradation.

In order to test both themodel and the efficiency of the electrical activation process, the resistance

measurements obtained after activating Fe powder columns (under the same aforementioned

conditions), and the predicted values through the model of oxide-free particles given by Eq. (10),

are compared. The electrical discharge came from an autotransformer capable of providing a

voltage of 0–220 V and a maximum current of 10 A, protected by a magnetothermic circuit

breaker. The voltage was slowly increased until the circuit breaker opened the circuit. Then,

resistance measurements were carried out. Figure 10 shows the measured electrical resistance

values, as well as the predicted ones. In this case, the maximum relative error is 9.5%, with seven

of the experiments having an error greater than 5%, and with an average relative error of 4.9%.

It is worth noting that the resistance values shown in Figure 9 are three orders of magnitude

higher than those shown in Figure 10. The higher values must be due to the presence of oxide

layers, only partially peeled by pressure, and to their absence (partial or total) in the second

case. After the application of the electrical activation, resistivity decreases as a consequence of

the temperature increase or the degradation of the dielectric layers. The observed differences

between experimental and theoretical values suggest, however, that the invalidation effect of

the oxide layers is not complete. Certainly, the activation process also has a strongly erratic

component forming randomly privileged electrical pathways, thus making the process non-

uniform and deviating from the proposed model. Despite these differences, and according to

the measured and predicted values shown in Figures 9 and 10, it can be concluded that the

model can be considered satisfactorily validated.

Figure 9. Measured and predicted resistance values for Fe powder columns under different pressures and masses.
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4. Conclusions

Two new equations to calculate the effective electrical resistivity of metal powder systems

under pressure (constituted by oxide-free or oxide-coated metallic particles) have been devel-

oped. According to these equations, the effective electrical resistivity can be expressed as a

function of the material resistivity, the porosity degree of the sample and the tap porosity of the

starting powders. The latter parameter is considered a fitting parameter in the model, to be

determined with initial experiences. To model powder aggregates of oxide-coated particles,

two fitting parameters describing the powder descaling phenomenon are also necessary: the

residual resistivity and the exponent value. This descaling phenomenon must be considered in

the model to explain that resistivity does not tend to the bulk metal value if extrapolated to

zero porosity and to justify the greater rate of reduction in resistivity by decreasing porosity (as

compared to the case of oxide-free particles). However, both equations are formally similar

from a mathematical point of view.

The validity of these equations has been experimentally tested, using sintered compacts (sim-

ilar to oxide-free powder system) and powder aggregates (similar to oxide-coated powder

system) of aluminum, bronze, iron and nickel with different porosity degrees. The agreement

between experimental and fitted theoretical values is quite good.

The proposed equations are suitable to describe the early stages of electrical consolidation

techniques. The efficiency of the electrical activation process (which causes the dielectric

breakdown of the oxide layers) has been tested and interpreted on the basis of the equations

presented here. The results obtained confirm the goodness of the proposed models.

Figure 10. Measured and predicted resistance values for Fe powder columns under different pressures and masses and

with a previous activation stage.
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