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Abstract

The number of novel therapies for the treatment of multiple myeloma (MM) is rapidly 
increasing with proteasome inhibitors, immunomodulatory agents and monoclonal anti-
bodies being the most well-known therapeutic classes whilst histone deacetylase inhibitors, 
selective inhibitors of nuclear export and CAR-T cells amongst others also being actively 
investigated. However, in parallel with the development and application of these novel 
myeloma therapies is the emergence of novel mechanisms of resistance, many of which 
remain elusive, particularly for more recently developed agents. Whilst resistance mecha-
nisms have been best studied for proteasome inhibitors, particularly Bortezomib, class 
effects do not universally apply to all proteasome inhibitors, and within-class differences 
in efficacy, toxicity and resistance mechanisms have been observed. Immunomodulatory 
agents share the common cellular target cereblon and thus resistance patterns relate to 
cereblon expression and its pathway components. However, the cell surface antigens to 
which monoclonal antibodies are directed means these agents frequently exhibit unique 
within-class differences in clinical efficacy and resistance patterns. Despite the progres-
sive biological elucidation of resistance mechanisms to these novel therapies, attempts 
to specifically exploit these processes lag considerably behind and until such approaches 
become available, resistance to these therapies will remain a concern.

Keywords: myeloma, novel therapy, drug resistance, proteasome inhibitor, 
immunomodulatory agent, monoclonal antibody

1. Introduction

There has recently been an explosion of novel agents for the treatment of MM that have dra-

matically improved overall response rates (ORR), progression-free survival (PFS) and overall 
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survival (OS) by targeting the malignant plasma cell and bone marrow microenvironment in 

unique ways. The main classes of novel agents are proteasome inhibitors, immunomodula-

tory agents and monoclonal antibodies, however several other classes of novel agents are 

emerging, including histone deacetylase inhibitors, BH3 mimetics, checkpoint inhibitors and 

selective inhibitors of nuclear export, as are alternative approaches, such as chimeric antigen 

receptor T-cells (CAR-T) with MM cell specificity. Whilst CAR-T technology in MM remains 
in pre-clinical and early clinical trial stages of development, this immunological approach 

is rapidly gaining momentum with several groups developing CAR-T cells for therapeutic 

use [1]. Despite these therapeutic advances, many MM patients develop disease relapse sug-

gesting the development of drug resistance whilst some are primary refractory. In this chap-

ter, for the three major classes of novel agents, we present a discussion on known biological 

mechanisms of resistance together with clinical trial efforts, if any, to overcome these. Of all 
therapeutic classes of novel agents, mechanisms of resistance to proteasome inhibitors have 

been studied in greatest detail and are the focus of this chapter.

2. Proteasome inhibitors

Plasma cells secrete immunoglobulin in response to infection and a range of other stimuli 

which requires folding in the endoplasmic reticulum (ER) lumen prior to secretion from the 

cell, resulting in a degree of ER stress due to misfolded protein [2]. ER stress is heightened in 

MM due to the high, sustained production of monoclonal immunoglobulin and a build-up 

of misfolded protein within the ER lumen. This ER stress activates three ER membrane stress 

sensors, protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1) and 
activating transcription factor 6 (ATF6) in a homeostatic process termed the Unfolded Protein 

Response (UPR) [2]. Activation of the UPR results in a global reduction in protein translation 

and the upregulation of ER chaperones and folding machinery to cope with the misfolded 

protein load, thereby rectifying the high ER stress levels that initiated the process. However, 

high sustained levels of ER stress can overwhelm the corrective capacity of the UPR which 

turns from a pro-survival, homeostatic mechanism to one that commits the MM cell to apop-

tosis. By inhibiting the 26S proteasome and preventing the degradation of misfolded proteins, 

proteasome inhibitors induce ER stress and a terminal UPR [2]. However, there are other 

mechanisms through which these agents exert their activity. Indeed, proteasome inhibitors 
are able to modulate a diverse array of cell signalling pathways whilst rendering the micro-

environment less supportive of MM cell growth [3]. Perhaps due to the significant clinical 
impact the first-in-class proteasome inhibitor Bortezomib has made, resistance mechanisms 
to this agent have been studied in greatest detail compared to other proteasome inhibitors 

(Table 1 and Figure 1A).

2.1. The ubiquitin-proteasome pathway

The ubiquitination and proteasome degradation pathway is a multistep enzymatic cascade 

in eukaryotes through which the cell removes excess and misfolded proteins and regulates 
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Resistance type Resistance mediator(s) Resistance mechanism

Proteasome inhibitors

Mutations PSMB5 mutations encoding the 

β5 proteasome subunit
Impaired ability of proteasome inhibitors to bind 
to the catalytically active N-terminal threonine in 

proteasome subunits

Aberrant expression of 

ubiquitin-proteasome 

pathway components

β5 and other proteasome subunits Increased or decreased numbers of binding sites 
for proteasome inhibitors, altering their ability to 

inhibit proteolysis

Activation of the aggresome-

autophagy pathway

HDAC6 and autophagic 
machinery

Sequestration of toxic proteins in aggresomes and 

their removal by autophagy-mediated degradation

Heat shock protein induction Grp78, Hsp90 and other family 

members including Hsp70 and 

Hsp8

Increased protein chaperoning resulting in greater 
ability to deal with misfolded and other toxic 

proteins

Drug efflux activity P-glycoprotein and other 

ATP-binding cassette (ABC) 
superfamily members

Cellular efflux of proteasome inhibitors thereby 
reducing their ability to interact with proteasome 

subunits and other intracellular processes

Antioxidant response 

pathway induction

Over-expression of nuclear factor, 

erythroid 2 like 2 (NFE2L2)

Assists proteasome assembly by inducing 

expression of proteasome maturation protein 

(POMP)

Plasma cell differentiation Reduced expression of Xbp1 Correlates with reduced immunoglobulin 

synthesis and ER stress/proteasome load therefore 

reduced sensitivity to proteasome inhibitors

Bone marrow 

microenvironment

Adhesion molecules on MM cells 

and bone marrow stromal cells 

(e.g. CD138, CD44, VCAM-1, 
LFA-1, MUC-1, ICAM-1 etc.)

Microenvironmental protection from proteasome 

inhibitors and other anti-MM therapies by 

increased MM cell migration, homing and 

adhesion to the bone marrow and activation of 

survival and proliferative intracellular signalling 

pathways

Survival signalling pathways IL-6, VEGF, HGF, c-MET, NF-κB, 
PI3K/AKT, IGF-1/IGF-1R, tight 
junction protein 1 (TJP1) and 

EGFR/JAK/STAT signalling

Proliferation and cell survival signalling reducing 

the efficacy of proteasome inhibitors. Increased 
angiogenesis and MM cell migration. Induction 
of EGFR/JAK/STAT signalling associated with 

increased expression of proteasome subunits

Immunomodulatory agents

Cereblon pathway 

abnormalities

Reduced cereblon expression Less available target for IMiD binding

Cereblon and other pathway 

component mutations

Reduced ability for IMiDs to bind to cereblon and 
other pathway components

Ras/Raf pathway activation KRAS G12D and BRAF V600E 
mutations

Ras/Raf pathway activating mutations result in 

MM cell proliferation and resistance to IMiDs

Adhesion to bone marrow 

stroma

CD44 (Wnt/β-catenin signalling) Greater adhesion to bone marrow stromal cells 

protecting MM cells from IMiDs

Monoclonal antibodies

Target antigen expression Reduced expression of CD38, 
SLAM7 and other cell surface 

proteins

Less available target for mAb binding through 

various mechanisms including trogocytosis
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cellular processes including cell proliferation and survival [4]. The process involves the con-

jugation of ubiquitin via a lysine residue at position 48. Proteins tagged with lysine 48-linked 
chains of ubiquitin are marked for degradation in the proteasome enzyme complex [5, 6]. 

Eukaryotic cells contain the 26S proteasome which consists of a 20S core particle that is bound 

to two 19S regulatory particles [7, 8]. The 19S regulatory particle is responsible for substrate 

recognition, deubiquitination, unfolding and translocation into the 20S core particle which 

contains the active sites that hydrolyze substrate peptide bonds [9]. The 20S core particle is 

composed of four rings that are composed of seven α (α1–α7) subunits or seven β subunits 
(β1–β7), that are stacked in a specific order (α

7
β

7
β

7
α

7
). These rings generate three intercon-

nected chambers: two outer chambers that are formed by the adjacent α and β rings and a cat-
alytic chamber that is formed by the two adjacent β rings. Only the β1, β2 and β5 subunits are 
catalytically active proteases [10, 11]. Near the β subunit’s active site lies a substrate specificity 
pocket which binds to 10 amino acid stretches in the substrate that flank the peptide bond 
that is cleaved and thereby determines the cleaving preferences of each β subunit [12, 13].  

In particular, the β1 subunit has caspase-like activity (cleaving after acidic residues), β2 exhib-

its trypsin-like activity (cleaving after basic residues), and β5 has chymotrypsin-like activity 
(cleaving after hydrophobic residues) [14, 15].

Proteins that are targeted for proteasomal degradation must cross the 19S regulatory subunit 

in order to reach the proteolytic 20S core where they are degraded into peptides that vary 

from 3 to 25 amino acids in length [16, 17]. Each substrate is cleaved in multiple locations 

without release of partially hydrolyzed substrates from the core particle and the mechanism 

of degradation is conserved for all catalytically active β subunits [16, 18]. In eukaryotes, the 
20S core particle components can change in response to biological stimuli. For example, stim-

ulation of cells with interferon gamma induces the expression of all three catalytically active β 
subunits. These subunits, along with a unique 11S regulatory particle, form a complex called 

the immunoproteasome which is involved in generating peptides for presentation to major 

histocompatibility complex class I molecules, but also has classic proteolytic activity [19–21]. 

Increased expression of the immunoproteasome complex has been reported in MM, where 
it may represent the predominant form of the proteasome [22–25]. It is also noteworthy that 
relapsed MM may be associated with lower levels of the immunoproteasome and increased 

levels of the constitutive proteasome [25].

Resistance type Resistance mediator(s) Resistance mechanism

Resistance to complement-

dependent cytotoxicity 

(CDC)

Increased expression of CD46, 
CD55 and CD59

Reduced ability for mAbs to activate CDC

Soluble antigen Extracellular CD38 and SLAM7 Extracellular binding of mAbs to target antigen 

resulting in reduced mAb binding to cell surface 

antigen

Development of neutralising 
antibodies

Anti-mAb antibodies Host derived anti-mAb antibodies neutralise 

therapeutic mAbs before reaching their cellular 

targets

Table 1. Mechanisms of resistance to the main classes of novel agents for multiple myeloma [143].
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Figure 1. Known resistance mechanisms for the main classes of novel MM therapies [143]. (A) Proteasome inhibitors. 

(B) Immunomodulatory agents (IMiDs). (C) Monoclonal antibodies. See text for details. c-MET, hepatocyte growth 
factor receptor; FGF, fibroblast growth factor; HGF, hepatocyte growth factor; IGF-1, insulin-like growth factor; IL-6, 
Interleukin-6; ICAM-1, intercellular adhesion molecule-1; LFA-1, lymphocyte function-associated antigen-1; MCP-1, 
monocyte chemotactic protein 1; MUC-1, Mucin-1 antigen; P-gp, P-glycoprotein; SDF-1, stromal cell-derived factor; 
TNFα, tumour necrosis factor alpha; VCAM-1, vascular cell adhesion molecule-1; VEGF, vascular endothelial growth 
factor; VLA-4/5, very late antigen 4/5; Xpb1, X-box binding protein 1; ZO-1, Zonula occludens-1; CRBN, cereblon; Cul4, 
Cullin-4; DDB1, DNA damage-binding protein 1; Erk, extracellular signal-regulated kinases; IKZF, IKAROS family zinc 
finger; IL-2, Interleukin-2; IRF4, interferon regulatory factor 4; Mek, mitogen-activated protein kinase kinase; MYC, MYC 
proto-oncogene; Raf, rapidly accelerated fibrosarcoma; ROC1, regulator of cullins 1; Ub, ubiquitin; SLAM7, signalling 
lymphocytic activation molecule family member 7.
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2.2. Proteasome inhibitors used to treat myeloma

Proteasome inhibitors are potent anti-MM agents which inhibit one or more proteolytic 

subunits of the 20S proteasome. Their efficacy is attributed to a number of factors including 
inhibition of NF-κB signalling, although this has recently come under question, induction 
of ER stress with the activation of a terminal UPR, and modification of the bone marrow 
microenvironment, amongst others [26, 27]. Several generations of proteasome inhibitors 

have been developed with Bortezomib, Carfilzomib and Ixazomib approved for clinical use 
in a number of countries. The proteasome inhibitors differ in their relative selectivity for β 
catalytic subunits, and half-life and reversibility of β subunit inhibition, that translates into 
differential anti-MM efficacy and toxicity profiles [26]. Thus, the individual proteasome 

inhibitors demonstrate significant within-class pharmacokinetic and pharmacodynamic 
variation and resistance to one proteasome inhibitor does not necessarily suggest resistance 

to another.

The first-in-class proteasome inhibitor Bortezomib (N-acyl-pseudo dipeptidyl boronic 
acid) is a dipeptide that binds reversibly to the chymotrypsin-like β5 subunit of the catalytic 
chamber of the 20S proteasome and to a lesser extent the β1 and β2 subunits [26]. Attempts 
to improve the efficacy and toxicity profiles of Bortezomib resulted in the development 
of the epoxyketone Carfilzomib, an irreversible 20S proteasome inhibitor that preferen-

tially binds to and inhibits the chymotrypsin-like β5 subunit with demonstrated activity 
in Bortezomib-resistant MM patients (ASPIRE trial) [28, 29]. Like Bortezomib, Ixazomib 

is a reversible peptide boronate 20S proteasome inhibitor of the chymotrypsin-like β5 sub-

unit also with activity in Bortezomib-resistant MM as demonstrated in the TOURMALINE 
phase III trial [30]. Unlike Bortezomib, however, Ixazomib is orally bioavailable and found 
to induce less toxicity in patients, possibly due to its much shorter β5 subunit dissociation 
half-life [31].

2.2.1. Later-generation proteasome inhibitors

There are ongoing attempts to expand and improve the repertoire of proteasome inhibi-
tors. Marizomib irreversibly inhibits the three proteolytic sites of the 20S proteasome and 

pre-clinical studies have shown efficacy in Bortezomib-resistant MM cells [32]. A phase I 
study evaluating Marizomib, Pomalidomide and Dexamethasone in heavily pre-treated 
patients with relapsed/refractory MM demonstrated an impressive ORR of 53% and clini-
cal benefit rate of 64% [33–35]. This new proteasome inhibitor will likely be examined in 

more advanced clinical trials in the near future, not only for its ability to re-sensitise patients 

to proteasome inhibition but for its activity in MM involving the central nervous system. 

Oprozomib is structurally similar to Carfilzomib with the advantage of being orally admin-

istered and has demonstrated pre-clinical efficacy in Bortezomib-resistant MM cells [36]. 

Whilst there are no clinical trial results at this time in relapsed/refractory MM, several early 

phase studies are currently active, including a phase Ib/II study of Oprozomib in combi-
nation with Dexamethasone (NCT01832727) and with Pomalidomide and Dexamethasone 
(NCT01999335 and NCT02939183).
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2.3. Mechanisms of resistance to proteasome inhibitors

2.3.1. Mutations and aberrant expression of ubiquitin-proteasome pathway components

2.3.1.1. Pre-clinical/clinical findings

Several point mutations in proteasome subunits that render them insensitive to Bortezomib 

inhibition have been identified. A single point mutation in the Bortezomib binding pocket of 
the β5 subunit (PSMB5 gene) resulting in substitution of Ala49 with Thr (A49T) was described 
in Bortezomib-resistant human myelomonocytic THP1 cells, generated by culturing cells in 

escalating concentrations of Bortezomib [37]. This mutation was also detected in Bortezomib-

resistant Jurkat cells, as were other mutations including A49V and the combination of A49T 
with A50V [38, 39]. However, despite the A49T β5 subunit mutation being detected in 
Bortezomib-resistant KMS-11 and OPM-2 human MM cell lines, no such β5 mutations were 
detected in Bortezomib-resistant RPMI-8226 MM cells, suggesting other mechanisms of resis-

tance were at play [40, 41]. There have been a number of other β5 mutations identified in pre-
clinical studies which affect Bortezomib binding and until recently, no mutations in PSMB5 

have been detected in either newly-diagnosed MM patients or those with relapsed and/or 

refractory disease [42, 43]. However, the first report of PSMB5 mutations in a patient resistant 

to Bortezomib has renewed interest in this area although the clinical significance of these 
mutations is yet to be determined [44].

Significantly increased protein expression of the β5 subunit and only modest increases in β1 
and β2 subunits were observed in Bortezomib-resistant THP1 cells which were reversible 
upon withdrawal of Bortezomib from cell cultures [37]. Over-expression of β subunits has also 
been detected in some MM cell lines, as well as those of some other haematologic malignan-

cies, however, studies in MM suggest that the induction of these proteins is at most modest 

with minimal contribution to resistance [45]. Furthermore, free β5 subunits are catalytically 
inactive by themselves and cannot generally bind proteasome inhibitors unless assembled 

into functional proteasomes [46]. The expression levels of tight junction protein 1 (TJP1/ZO-1) 
were shown to be strongly associated with Bortezomib sensitivity with the downstream 

mechanism being suppression of EGFR signalling, which decreased the levels of proteasome 

subunit synthesis in at STAT3-dependent manner [47]. High TJP1 expression in patient MM 

cells was associated with a significantly higher chance of responding to Bortezomib and a 
longer duration of response [47].

2.3.2. Activation of the aggresome-autophagy pathway

2.3.2.1. Pre-clinical/clinical findings

Cytosolic small protein aggregates form when misfolded proteins accumulate, which are then 

transported towards the microtubule organising centre into a structure called the aggresome. 

Acetylation of α-tubulin, which is reversed by histone deacetylase 6 (HDAC6), modulates 
the structure and function of the microtubule, thus playing a pivotal role in the movement of 

misfolded protein aggregates to the aggresome [48]. Cells that lack HDAC6 were found to be 

Resistance Mechanisms to Novel Therapies in Myeloma
http://dx.doi.org/10.5772/intechopen.77004

73



defective in the removal of protein aggregates and are not able to form large aggresomes [49]. 

Autophagy is predominantly a pro-survival homeostatic process whereby double-membrane 

vesicles known as autophagosomes sequester cytosolic proteins, including aggresomes, fol-

lowed by fusion with lysosomes for degradation. Thus, misfolded proteins can be degraded 

via the ubiquitin-proteasome and/or aggresome-autophagy pathways and simultaneous 

blockade of both by combining Bortezomib and the HDAC inhibitor Panobinostat, respec-

tively, showed synergistic anti-MM activity in pre-clinical models [50]. By inhibiting the pro-

teasome, Bortezomib results in an increase in aggresome formation and also induction of 

autophagy, the latter a likely compensatory mechanism to eliminate misfolded proteins and 
other substrates of the ubiquitin-proteasome system which could be involved in resistance 

to proteasome inhibitors [51]. Thus, clinical studies combining a proteasome inhibitor with 

HDAC and/or autophagy inhibition have a sound biological basis for overcoming resistance 
to proteasome inhibitors.

2.3.2.2. Clinical studies to circumvent resistance

A large phase III study demonstrated a superior PFS when Panobinostat was combined with 
Bortezomib and Dexamethasone over Bortezomib and Dexamethasone alone in relapsed/
refractory MM patients, leading FDA approval of Panobinostat in 2015 [52]. Despite this, 
no differences in OS or ORR were evident although the proportion of patients achieving a 
complete response (CR) was higher with Panobinostat. Given the activity of Carfilzomib in 
Bortezomib-resistant MM, early clinical studies are ongoing examining the combination of 

Panobinostat and Carfilzomib in relapsed/refractory MM and are expected to yield favour-

able results (NCT01496118). With regard to autophagy, a phase II trial evaluating the combi-
nation of Bortezomib and the autophagy inhibitor Chloroquine in patients with relapsed and/

or refractory MM, supported by the finding of synergistic MM cell death in the pre-clinical 
setting, showed a clinical benefit rate of 40%, further cementing the role of the aggresome-
autophagy pathway in proteasome inhibitor-resistant MM [53].

2.3.3. Heat shock protein induction

2.3.3.1. Pre-clinical/clinical findings

The heat shock response is part of the cell repair machinery that maintains homeostasis under 

stressful conditions such as infection, inflammation, starvation, hypoxia, and exposure to tox-

ins, which is carried out by heat shock proteins (HSPs) [54]. HSPs assist in protein folding and 

preventing undesirable protein aggregation [54]. Blockade of proteasome-mediated protein 

degradation leads to the induction of HSPs and related chaperones, which have been shown to 

confer resistance to proteasome inhibitors [55]. Two well characterised HSPs in this setting are 
Grp78 (HSPA5; also known as Binding immunoglobulin protein, BiP) and Hsp90 (HSP90AA1).

Grp78 resides in the ER lumen where it is bound to the luminal domains of the three ER stress 

protein sensors, ATF6, PERK and IRE1 [2]. Upon accumulation of misfolded proteins in the 

ER, Grp78 (1) detaches from ATF6, PERK and IRE1 enabling activation of the homeostatic 
UPR and (2) chaperones the misfolded proteins for degradation by the 20S proteasome [2]. 
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In MM, Grp78 was reported to play a role in resistance to proteasome inhibitors, and MM 
cells surviving proteasome inhibitor treatment showed increased Grp78 expression, which 

further increased with progressive disease [56]. However, this was not corroborated by others 

who could not demonstrate any significant differences in Grp78 expression in bone marrow 
plasma cells obtained from patients with MGUS, newly-diagnosed MM or relapsed/refrac-

tory MM [57]. Inhibition of Grp78 can induce MM cell death and pharmacological inhibition 
of Grp78 with Metformin, genetic ablation or mutational inactivation followed by Bortezomib 

treatment led to the accumulation of aggresomes, impaired autophagy and enhancement of 

the anti-MM effects of Bortezomib [58].

Hsp90 expression also increases with the accumulation of misfolded proteins in the ER 

lumen and has been investigated as a potential target to enhance the efficacy of Bortezomib 
[59]. Hsp90 was found to stabilise Grp78 at the post-transcriptional level, and treatment of 

Bortezomib-resistant mantle cell lymphoma cells with the Hsp90 inhibitor IPI-504 together 
with Grp78 knockdown led to synergistic cell death when combined with Bortezomib [60]. 

Other HSPs have also been shown to confer resistance to Bortezomib, including Hsp70 and 

small heat shock protein B8 (Hsp8) in MM and Hsp27 in lymphoma [61, 62].

2.3.3.2. Clinical studies to circumvent resistance

No advanced clinical trials employing Grp78 modulation in MM patients have been under-

taken, although a study using an anti-Grp78 monoclonal antibody induced a PR in a heavily 

pre-treated patient when combined with Bortezomib and Lenalidomide [63]. Whilst early 

clinical trials have identified safe dose ranges for Hsp90 inhibitors, which have been tested 
either alone or in combination with Bortezomib and Dexamethasone in relapsed/refractory 
MM, results have been disappointing and to date no agents have progressed beyond the 

phase I/II stage [64].

2.3.4. Drug efflux

2.3.4.1. Pre-clinical/clinical findings

The efflux of drugs by members of the ATP-Binding Cassette (ABC) superfamily is a well-
established mechanism by which tumours are able to acquire therapeutic resistance [65]. 

Whilst the multi-drug efflux transporter MDR1/P-glycoprotein (P-pg/ABCB1) has been 
shown to correlate with MM relapse and drug resistance [66, 67], its role in Bortezomib 

resistance has been controversial and it is generally thought that Bortezomib is a poor sub-

strate [68]. P-gp was rarely detected in newly diagnosed MM patients [67], however, over-

expression was associated with disease relapse and drug resistance, specifically to Vincristine, 
Doxorubicin, Etoposide and glucocorticoids [66, 67, 69]. Carfilzomib, on the other hand, is a 
bona fide P-gp substrate and patients treated with Carfilzomib show increased P-gp expression 
[70]. Upregulation of P-gp in MM cells confers resistance to Carfilzomib [71]. To date, there 

are no studies that relate P-gp to drug resistance to Ixazomib. Whilst Carfilzomib resistance in 
MM can be reversed in vitro by P-gp inhibition, for example using Verapamil or Vismodegib 
[72], this has not yet translated into clinical trials.
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2.3.5. Antioxidant response pathway induction

2.3.5.1. Pre-clinical/clinical findings

Elevated levels of antioxidant-related pathway genes have been associated with drug resis-

tance in other tumours, including resistance to Bortezomib in patients with mantle cell lym-

phoma [73]. Bortezomib resistance-related gene expression signatures revealed enrichment 

for Nuclear Factor, Erythroid 2 Like 2 (NFE2L2) which is activated as part of an antioxidant 

response pathway [74]. The downstream NFE2L2 gene target POMP encodes the proteasome 

maturation protein proteassemblin, a chaperone responsible for the assembly of active pro-

teasome particles from inactive precursor subunits [75]. Recently, POMP was found to be a 

mediator of the Bortezomib-resistant phenotype in MM cells [75], however, these findings 
have not been applied clinically.

2.3.6. Plasma cell differentiation

2.3.6.1. Pre-clinical/clinical findings

The transcription factor Xbp-1, a downstream component of the IRE1 arm of the UPR, is 
required for the differentiation of B-cells into plasma cells and more recently has been shown 
to be associated with Bortezomib sensitivity [76, 77]. Patient-derived bone marrow MM cells 

can be subdivided into populations based on their expression of Xbp-1, with plasma cells 

expressing low or absent Xbp-1 enriched in the bone marrow of patients who have relapsed 

after Bortezomib therapy or who have progressive disease [76]. These low or absent Xbp-1 

expressing plasma cells were less differentiated with lower levels of immunoglobulin synthe-

sis, reduced ER stress and less proteasome load. Conversely, at MM diagnosis, the majority of 

bone marrow plasma cells expressed higher Xbp-1 levels, conferring sensitivity to Bortezomib, 

although subpopulations of plasma cells with lower levels could be detected [76]. It is hypoth-

esised that these subpopulations of plasma cells with low Xbp-1 expression are responsible 

for eventual relapse after induction therapy [76]. Interestingly, these findings would suggest 
that patients who are resistant to proteasome inhibitors should have non-secretory MM, how-

ever, only a small minority of these patients have this disease phenotype. To date, the degree 

of plasma cell differentiation has not been considered in clinical trials.

2.3.7. Bone marrow microenvironment and survival signalling pathways

2.3.7.1. Pre-clinical/clinical findings

The bone marrow microenvironment (BMME) includes (1) the non-cellular compartment 

formed by extracellular matrix (ECM) proteins (laminin, fibronectin and collagen) and 
soluble factors (cytokines, chemokines and growth factors) and (2) a cellular compart-

ment comprising haemopoietic cells and non-haemopoietic cells (fibroblasts, osteoblasts, 
osteoclasts, endothelial cells, endothelial progenitor cells, pericytes, mesenchymal stem 

cells and mesenchymal stromal cells) which support MM cell survival and growth [78]. 

The interaction between ECM proteins and bone marrow stromal cells (BMSCs) with MM 
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cells plays a crucial role in MM pathogenesis and drug resistance by secreting growth 

factors, cytokines and extracellular vesicles (exosomes) and by the expression of adhesion 

proteins [78].

Various soluble factors have been shown to confer resistance to Bortezomib and other thera-

peutic agents in MM. IL-6 enhances vascular endothelial growth factor (VEGF) secretion pro-

moting angiogenesis which plays a role in MM cell migration [79]. Whilst Bortezomib can 

inhibit IL-6 and VEGF production, secretion of IL-6 by stromal cells and MM cells leads to 
Bortezomib resistance [80]. Hepatocyte growth factor (HGF) is upregulated during MM pro-

gression, enhancing the expression of its receptor, c-MET [81]. This signalling pathway is con-

stitutively activated in MM cells and endothelial cells from patients with relapsed/refractory 

MM and mediates drug resistance [82]. Accordingly, an inhibitory effect on endothelial cells 
obtained from patients refractory to Bortezomib or Lenalidomide was demonstrated using 

the c-MET inhibitor SU11274 alone or in combination with Bortezomib or Lenalidomide, 
resulting in downregulation of angiogenic activity [83].

Constitutive activation of pro-survival signalling pathways (e.g. NF-κB and AKT) has been 
reported to reduce the sensitivity of MM cells to Bortezomib [84]. Insulin-like growth fac-

tor (IGF-1) is produced by plasma cells and is present in the BM microenvironment, where 
it promotes proliferation and drug resistance in MM cells through activation of MAPK and 

PI3K/AKT signalling cascades [85]. Over-expression of IGF-1/IGF-1R pathway components 
has been shown to be a potential mechanism for resistance to proteasome inhibitors with 

blockade of downstream IGF-1 effectors able to resensitise MM cell lines to Bortezomib [86]. 

Studies evaluating compounds that affect the IGF-1/IGF-1R interaction are ongoing with OSI-
906, a small molecule inhibitor of IGF-1R, able to resensitise MM cells to Bortezomib [86]. A 

downstream target of IGF-1, AKT, increases in expression in response to proteasome inhibi-
tors in pre-clinical MM studies and an early phase clinical trial suggests that AKT inhibition 

might overcome resistance to Bortezomib [87]. As previously discussed, reduced expression 

of tight junction protein 1 (TJP1/ZO-1) and downstream activation of EGFR signalling are 
strongly correlated with Bortezomib resistance [47].

Interactions between MM cells and the BM stroma and/or ECM components provide a 
mechanism whereby MM cells are protected from the cytotoxic effects of anti-MM thera-

pies. Such interactions include those mediated by adhesion molecules of the integrin fam-

ily, Syndecan-1 (CD138), CD44, vascular cell adhesion molecule-1 (VCAM-1), lymphocyte 
function-associated antigen-1 (LFA-1), Mucin-1 antigen (MUC-1) and intercellular adhesion 

molecule-1 (ICAM-1) [88]. The adhesion of MM cells to stromal cells triggers IL-6 secretion, 
NF-κB activation in stromal cells and activation of signalling pathways that result in MM 
cell survival and proliferation [88]. Such effects are seen with integrin β7 which increases 
MM cell adhesion, migration and homing into bone marrow and reduces Melphalan and 

Bortezomib-induced apoptosis [89]. Similar MM-promoting effects have been reported for 
the stromal cell-derived factor (SDF-1)/CXCR4 axis, however, clinical translation has not 
ensued [90].

Other important mechanisms of BMME-induced drug resistance are emerging. BMSCs can 

modulate certain miRNAs in MM cells [91]. The expression of miR-27a is associated with 
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Bortezomib resistance in MM patients [91] whilst suppression of miR-15a and -16 by BMSCs 

was shown to be responsible for the protection of MM cells from Bortezomib-induced apop-

tosis [91]. miR-29 acts as a tumour suppressor miRNA and is downregulated in patient MM 

cells and in MM cell lines with acquired resistance to Bortezomib, Carfilzomib and Ixazomib 
[91]. Finally, exosomes mediate local cell-cell signalling by transferring mRNAs, miRNAs 

and proteins. It has been shown that exosomes derived from BMSCs inhibited Bortezomib-

induced cell death to protect MM cells from apoptosis [92].

2.3.7.2. Clinical studies to circumvent resistance

In a phase II study, the anti-IL-6 antibody Siltuximab was administered with Dexamethasone 
to patients with relapsed and/or refractory MM [93]. Although no responses to Siltuximab 

alone were observed, the addition of Dexamethasone resulted in ORR, PFS and OS of 23%, 
3.7 months and 20.4 months, respectively. Despite these findings, this strategy has not pro-

gressed further. The c-MET inhibitor Tivantinib was examined as a single agent in a phase II 
study in relapsed/refractory MM patients [94]. Overall, 36% of patients showed stable disease 
as their best response with the authors concluding that Tivantinib did not show promise for 

unselected relapsed/refractory MM patients, however, the fact that a significant proportion did 
show disease stability suggests combining c-MET inhibition with other anti-MM therapy could 

be explored. There are a small number of phase I studies employing a monoclonal anti-IGF-
1R antibody alone or in combination with Bortezomib in relapsed/refractory MM, however, 

the authors of one study conclude that due to low response rates, even in combination with 

Bortezomib, further development is not justified [95]. Note should be made that patient recruit-

ment into this study was not performed based on evaluation of IGF-1R expression on patient 
MM cells. No small molecule inhibitors of IGF-1R have so far been tested clinically. A phase I 
clinical trial in relapsed/refractory MM patients suggests that AKT inhibition with Afuresertib 

might overcome resistance to Bortezomib [87]. In this study, the ORR was 8.8%, however, 
despite these potentially promising results in heavily pre-treated patients, more advanced clin-

ical trials have not been undertaken.

3. Immunomodulatory agents

The immunomodulatory drugs (IMiDs), Thalidomide, Lenalidomide and Pomalidomide 
have also made a major impact in the management of MM. Despite a checkered history in 
the 1950s and 1960s due to teratogenicity, Thalidomide has high anti-MM activity and has 
been incorporated into many treatment regimens. The second generation IMiD Lenalidomide 
and third generation IMiD Pomalidomide represent sequential improvements in efficacy and 
toxicity profiles with demonstrable activity in patients who have developed resistance to an 
earlier generation IMiD [96]. With regard to Lenalidomide, the MM-009 [97] and MM-010 

[98] phase III trials demonstrated the superiority of Lenalidomide and Dexamethasone over 
Dexamethasone in relapsed/refractory MM patients whilst the pivotal MM-003 study [99] 

demonstrated the efficacy of Pomalidomide and Dexamethasone in MM patients who were 
refractory to both Bortezomib and Lenalidomide.
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The anti-MM effects of IMiDs are related to their binding to the E3 ubiquitin ligase cere-

blon (CRBN) and subsequent ubiquitination and degradation of two B-cell transcription 

factors, Ikaros (IKZF1) and Aiolos (IKZF3) [96]. A landmark study identified CRBN as a pri-
mary target in Thalidomide teratogenicity, further demonstrating that Thalidomide binds to 

CRBN, disrupting the function of the E3 ubiquitin ligase complex, ultimately leading to the 

downregulation of fibroblast growth factor genes and the teratogenic effects associated with 

Thalidomide [100]. Subsequently, it was shown that the anti-MM efficacy of IMiDs is directly 
related to CRBN expression.

3.1. Mechanisms of resistance to immunomodulatory agents

3.1.1. Pre-clinical/clinical findings

Resistance mechanisms to IMiDs have been elucidated to a far lesser extent than have those 
for proteasome inhibitors (Table 1 and Figure 1B) and mostly hinge on the presence of 

functional CRBN in MM cells [100]. MM patients exposed to and thought to be resistant to 

Lenalidomide had lower CRBN levels compared to paired samples before and after therapy 

[101]. Subsequently, it was shown that high expression of CRBN is associated with a favour-

able response to Thalidomide and Lenalidomide in newly-diagnosed MM patients [102, 103] 

and no IMiD response occurred in patients with very low CRBN levels [104]. Moreover, in 

MM patients refractory to Pomalidomide, CRBN levels predicted for differences in PFS (3 ver-

sus 8.9 months) and OS (9.1 versus 27.2 months) when comparing patients in the lowest CRBN 

expression quartile versus those with higher expression [104]. Notably, as CRBN expression 

decreases in MM patients who develop resistance to Lenalidomide therapy, this does not 

affect sensitivity to Bortezomib, Melphalan and Dexamethasone [101, 105]. Low levels of the 

CRBN binding protein IKZF1 and high levels of another CRBN binding protein Karyopherin 
Subunit Alpha 2 (KPNA2) also correlated with lack of response to Pomalidomide and/or OS 

[106]. Specifically, patients with low IKZF1 expression had a median OS of 7.3 months com-

pared with 27.2 months in those with higher IKZF1 expression which was also correlated with 
a similar pattern of PFS (4.9 vs. 7.3 months) [106].

In relapsed/refractory MM patients, the majority (88%) of whom were refractory to an 
IMiD, an increased prevalence of mutations in the Ras pathway genes KRAS, NRAS and/
or BRAF (72%), as well as TP53 (26%), CRBN (12%) and CRBN pathway genes (10%) were 
observed [107]. Notably, all CRBN-mutated patients and 91% of the CRBN pathway-mutated 
patients were unresponsive to IMiD based treatment. Moreover, three patients with CRBN 
mutations at the time of IMiD resistance did not possess these genetic aberrations at the 
time of IMiD sensitivity. Importantly, the introduction of these mutations in MM cells con-

ferred Lenalidomide resistance in vitro [107]. Finally, a pre-clinical study has demonstrated 

that Lenalidomide resistant MM models over-express the hyaluronan (HA)-binding protein 

CD44, a downstream Wnt/β-catenin transcriptional target [108]. Consistent with this hypoth-

esis, Lenalidomide resistant MM cell lines show greater adhesion to bone marrow stromal 

cells. Inhibition of CD44 by application of the humanised monoclonal anti-CD44 antibody 
RO5429083 induced a modest anti-proliferative effect whilst shRNA-mediated CD44 knock-

down resulted in a marked re-sensitisation to Lenalidomide [108].
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3.1.2. Clinical studies to circumvent resistance

Whilst the CRBN pathway has been shown to be pivotal in IMiD responsiveness, no clinical 

studies have eventuated that make use of this important biology as a strategy to overcome 

resistance to IMiDs and many questions remain such as how much functional CRBN is actu-

ally required to maintain IMiD sensitivity. Despite the controversies surrounding CRBN, 
activating mutations in Ras pathway components, such as KRAS G12D and BRAF V600E, 
could potentially be targeted with existing compounds in MM patients harbouring these 

mutations [109]. Such studies have not yet been conducted, although two patients with BRAF 

V600E positive relapsed/refractory MM achieved significant reductions in tumour burden 
when treated with the BRAF inhibitor Vemurafenib whilst a patient with highly resistant and 
rapidly progressive MM also harbouring the BRAF V600E mutation achieved a rapid and 
sustained response with dual BRAF and MEK inhibition [110].

4. Monoclonal antibodies

Binding of monoclonal antibody (mAb) to its target antigen on MM cells has been shown to 

induce cell death through several mechanisms including antibody-dependent cell-mediated 

cytotoxicity (ADCC), complement-dependent cytotoxicity (CDC), antibody-dependent cel-
lular phagocytosis (ADCP), induction of apoptosis through FcγR-mediated crosslinking of 
tumour-bound antibodies and modulation of target antigen enzymatic activity after antibody 

binding [111]. Three mAbs, Daratumumab, Elotuzumab and Pembrolizumab have advanced 
to phase III clinical trials with Daratumumab the most successful of these.

CD38 is variably expressed on haemopoietic and some non-haemopoietic cells with surface 
expression depending on the differentiation and activation status of the cell. High cell sur-

face expression occurs on benign and malignant plasma cells [111] with the fully-humanised 

anti-CD38 mAb Daratumumab demonstrating impressive outcomes when combined with 
Bortezomib (CASTOR) or Lenalidomide (POLLUX) in the relapsed/refractory MM setting 
[112, 113]. Other CD38 mAbs, such as Isatuximab (chimeric) and MOR202 (fully human), 
with differing biological activities from Daratumumab are currently being evaluated in clini-
cal trials (Isatuximab: NCT03275285, NCT03319667, NCT02990338; MOR202: NCT01421186). 
Elotuzumab binds to signalling lymphocytic activation molecule family member 7 (SLAM7) 

reducing MM cell binding to bone marrow stroma and activating ADCC [114]. Interestingly, 
whilst no responses to Elotuzumab as a single agent were observed, the addition of Elotuzumab 

to Lenalidomide and Dexamethasone in relapsed/refractory MM patients (ELOQUENT-2 
trial) resulted in improvements in ORR and PFS, and Elotuzumab is currently the subject of 

ongoing clinical trials (NCT01891643, NCT02495922, NCT01335399) [115]. Pembrolizumab 

targets the programmed death 1 (PD-1)/programmed cell death ligand 1 (PD-L1) pathway, a 
critical initiator of immune activation, playing a role in mediating tolerance [116]. However, 

two phase III trials KEYNOTE-183 and KEYNOTE-185 have recently been suspended by the 
US Food and Drug Administration due to more deaths being observed in the Pembrolizumab 
arms and further information on the use of Pembrolizumab in MM is pending.
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4.1. Mechanisms of resistance to monoclonal antibodies

4.1.1. Pre-clinical/clinical findings

The relatively recent addition of mAbs to MM pharmacotherapy means there is a paucity 

of studies examining resistance mechanisms although these are now being explored with 

their increasing clinical use (Table 1 and Figure 1C). Examination of CD38 expression on MM 
cells in 102 patients treated with Daratumumab monotherapy has been insightful [117]. With 

regard to the effect of Daratumumab on residual bone marrow plasma cells, two important 
points were clear from this analysis. Firstly, CD38 cell surface expression on plasma cells is 
highest before Daratumumab treatment and is significantly decreased during treatment. At 
the time of progressive disease, plasma cells isolated from the bone marrow of these patients 

exhibited low expression of CD38 suggesting Daratumumab therapy would be less effective, 
a finding corroborated previously [76]. Secondly, pre-treatment CD38 expression on the sur-

face of MM cells was higher in patients who achieved at least a PR compared to those who 

did not. Recently, it was shown that Daratumumab-CD38 complexes and accompanying cell 
membrane are actively transferred from MM cells to monocytes and granulocytes in a pro-

cess called trogocytosis that was also associated with reduced MM cell surface expression of 

CD49d, CD56 and CD138 [118]. However, Daratumumab-induced reductions in CD38 expres-

sion on MM cells occur in patients with deep and durable responses suggesting reductions in 

CD38 alone are not responsible for Daratumumab resistance [118]. Cell surface expression of 

the complement-inhibitory proteins, CD46, CD55 and CD59, was not associated with clinical 
response but significantly increased only at the time of disease progression. Furthermore, all-
trans retinoic acid increased CD38 expression whilst decreasing expression of CD55 and CD59 
on MM cells from patients who developed Daratumumab resistance to approximately pre-
treatment levels, resulting in enhancement of Daratumumab-mediated CDC [117].

In addition to the cell surface expression of target antigens on MM cells, several other poten-

tial mechanisms of resistance to mAbs may be at play. Soluble forms of CD38 [119] and 

SLAM7 [120] may affect the efficacy of Daratumumab and Elotuzumab, respectively. Another 
potential mechanism of resistance is the development of neutralising antibodies to the thera-

peutic antibody. This phenomenon was noted in 39% of patients treated with single agent 
Elotuzumab resulting in more pronounced effects on serum Elotuzumab concentrations [121]. 

Furthermore, in the ELOQUENT-2 trial, 15% of patients developed anti-Elotuzumab antibod-

ies on at least one occasion [115], however, antibodies directed against Daratumumab have to 
this day not been detected. Other factors that may contribute to the clinical efficacy of mAb 
therapy include the frequency and activity of effector immune cells [122], Fcγ receptor poly-

morphisms [123] and even KIR and HLA genotypes [124].

4.1.2. Clinical studies to circumvent resistance

Whilst the mechanisms of resistance to mAbs are being elucidated, clinical studies specifi-

cally designed to overcome these biological processes are largely lacking with the exception 

of an ongoing phase I/II trial of Daratumumab in combination with all-trans retinoic acid for 

patients with relapsed/refractory MM (NCT02751255).
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5. Other factors potentially influencing resistance to myeloma 
therapies

5.1. Cytogenetics, mutation patterns and clonal evolution

Cytogenetic abnormalities in MM are broadly divided into copy number changes or transloca-

tions, most commonly involving the immunoglobulin heavy chain gene [125]. Various cytoge-

netic abnormalities were shown to be associated with the likelihood of durable responses to 

therapy but they do not directly explain mechanisms of drug resistance or disease progression 

[126]. High risk genetic features frequently result in the dysregulation of transcription fac-

tors or tumour suppressors and include t(4;14), t(14;16), t(16;20), del(17p) and copy number 
changes of chromosome 1, which are used for stratifying MM patients in clinical trials and 

are now becoming important in guiding therapy in routine practice [126]. For example, the 

EMN02/HO95 study demonstrated the benefit of double autologous stem cell transplantation 
in patient with high-risk genetics, essentially negating the adverse prognosis of high genetic 

risk MM [127]. Similarly, the addition of Bortezomib to induction regimens in patients receiv-

ing HDM/ASCT may partially overcome cytogenetically defined poor risk [128]. On the other 

hand, patients with trisomies may respond particularly well to lenalidomide based protocols 

[129]. Mutational events such as those involving p53 are associated with particularly poor PFS, 
however, the significant heterogeneity of point mutational events elucidated in whole exome 
sequencing studies means generalisations of such molecular changes are not possible [130].

The development of whole exome sequencing and copy number profiling was combined with 
cytogenetics in a landmark paper by a consortium of European and American groups [131]. 

This elegant paper demonstrated that the majority of MM patients had multiple sub-clones 

present at the time of diagnosis and that within sub-clones there could be differing mutational 
events potentially driving behaviour [131]. When serial MM samples were analysed, diverse 

patterns of clonal evolution were detected. In some cases, simple clonal selection could be 
observed following a linear pattern of clonal evolution [131]. Differential clonal responses 
could explain the clinical observation that a MM patient may respond to a treatment ini-

tially, lose this response, respond to another treatment and at the time of subsequent relapse 

respond again to the initial therapy [132]. Branching evolution was also observed in some 

progressing patients [131]. During disease evolution differing processes may contribute to the 
mutational repertoire and the relative contributions may vary over time in the same patient 

resulting in mutational heterogeneity, frequently with very few recurrent genes [131].

5.2. The myeloma stem cell

Identification of the multiple myeloma stem cell (MMSC) has been a challenge predominantly 
because an agreed phenotype with MM propagating potential has not been definitively estab-

lished, in part due to differences in experimental techniques and assays. The dominant view-

point is that clonotypic CD138− cells represent MMSCs, however, some researchers have also 

shown that clonotypic CD138+ plasma cells have properties of cancer stem cells such as self-

renewal, tumour-initiating potential and drug resistance [133, 134]. Controversy also exists 
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as to whether the MMSC derives from a clonotypic B cell (CD19+CD138−) or clonotypic non-B 

cell (CD19−CD138+/−). Clonotypic B cells were found to be resistant to a range of anti-MM 

therapies including Bortezomib and Lenalidomide and possessed a high drug efflux capac-

ity [135]. However, clonotypic non-B cells have also been shown in many studies to result in 

robust MM reconstitution in the absence of a CD19+ population [136]. To shed some light on 

this dichotomy with respect to clonotypic non-B cells, there appears to be an interconversion 

between undifferentiated pre-plasma cells (CD19−CD138−) and differentiated plasma cells 
(CD19−CD138+) thus representing reversible, bi-directional phenotypic and functional states 

that share MMSC activity [137]. Furthermore, the pre-plasma cells were found to be more 

quiescent, primarily located at extramedullary sites, and up to 300-fold more drug resistant 

to agents including Bortezomib [137]. These informative findings imply phenotypic and func-

tional plasticity between undifferentiated and differentiated clonotypic plasma cells which 
could explain why differentiated MM plasma cells possess clonogenic capacity and also rec-

onciles inconsistencies surrounding the MMSC phenotype.

Several factors have been attributed to the MMSC that confer drug resistance. (1) Side popula-

tion (SP) MM cells, which possess stem-like properties, show stronger activity of several ABC 

transporters when compared to main population (MP) cells [138]. (2) High levels of aldehyde 

dehydrogenase (ALDH) have been demonstrated in CD138− plasma cells compared to their 

CD138+ counterparts rendering the CD138− population more resistant to certain chemothera-

peutic agents which result in the generation of toxic aldehyde intermediates that are metabo-

lised by ALDH1 [135]. In one study, forced expression of member A1 of the ALDH1 family 
of proteins resulted in resistance to Bortezomib [139]. (3) Increased expression of Bcl-2 family 
members in MMSCs expressing the retinoid acid receptor alpha 2 (RARα2) endowed these 
cells with increased drug resistance [140], and more recently, increased expression of Bruton’s 
tyrosine kinase (BTK) in MMSCs also induced drug resistance [141]. (4) CD19−CD138+ plasma 

cells and CD19−CD138− pre-plasma cells harbour MMSC activity but exhibit differential resis-

tance to treatment since pre-plasma cells are more quiescent than plasma cells, shown by 

a lower proportion of these cells in S phase of the cell cycle [137]. Finally, (5) the Wingless 

(Wnt), Hedgehog and Notch signalling pathways are all highly active in MMSCs and may be 

responsible for maintaining stem cell properties, propagating MM and promoting therapeutic 

resistance together with a supportive and protective BMME [142].

6. Conclusion

Continued improvements in the efficacy and toxicity profiles of an ever-expanding number of 
novel MM therapies are challenging the current paradigm of high-dose therapy and autolo-

gous stem cell transplantation for newly-diagnosed MM. However, despite these advances, 

resistance to novel agents has been observed and will continue to be observed, requiring inno-

vative ways to circumvent this problem. Changing therapy from one novel agent containing 

treatment regimen to a different one upon MM progression or relapse is reasonable, however, 
there is often little scientific basis for choosing the sequence of such regimens and the era of 
precision medicine for MM patients remains distant. Moreover, the inability to tailor treatment 
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regimens for an individual patient based on the biology of their MM due to government man-

dated prescribing restrictions likely contributes to inadequate responses and drug resistance.

In addition to those discussed, there are other potential mechanisms through which resistance 
to novel therapies in MM may occur, such as the role miRNAs play in promoting MM, and this 

list is likely to increase. However, despite the varied resistance mechanisms reported to date, 

the survival of patients with MM continues to improve. Whilst genetic profiling has established 
a so-called high-risk group of MM patients, these genetic changes do not specifically explain 
why resistance to a particular novel agent develops. Thus, in this Chapter, an exposition of 

specific biological aberrations that have been linked to drug resistance has been presented.
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