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Abstract

With transcranial magnetic stimulation (TMS), the motor system in neuropsychiatric dis-
orders has extensively been investigated, and effects of certain pharmacological agents
have been monitored. The most consistent finding in neuropsychiatric disorders is a
significant reduction of short-latency afferent inhibition (SAI). SAI provides a reliable
biomarker of cortical cholinergic dysfunction in neuropsychiatric disorders. Cortical
hyperexcitability and asymptomatic motor cortex functional reorganization in the early
stages of neuropsychiatric disorders have been demonstrated by TMS. Together with
high-density EEG TMS and paired-associative stimulation, TMS showed impaired corti-
cal plasticity and functional connectivity across different neural networks in neuropsy-
chiatric disorders. Neuromodulatory techniques, especially as repetitive TMS (rTMS),
hold promise as a therapeutic tool for cognitive rehabilitation because rTMS can enhance
cognitive functions in neuropsychiatric disorders.

Keywords: repetitive transcranial magnetic stimulation, cognitive impairment, cortical
plasticity, neuromodulation, neurorehabilitation

1. Introduction

Transcranial magnetic stimulation (TMS) allows non-invasive investigation and modula-
tion of brain cortical excitability and brain function [1]. Alternating magnetic fields induce
cortically electric currents in specific brain regions. Cortical excitability may be increased or
decreased by different stimulation parameters, and the induced changes may be transient
or long lasting. Different changes in behavior can be induced with regard to the stimulated
region, the stimulation parameters, and the physiology of the stimulated cortical tissue. These
effects can be enhancement or can interfer with cognitive functions [2, 3].
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6 Transcranial Magnetic Stimulation in Neuropsychiatry

The chapter reviews studies reporting about applications of TMS in neuropsychiatric dis-
orders. Most reports have applied TMS to characterize important neurophysiologic and
pathophysiologic aspects of neurodegenerative diseases. Several studies using TMS have
demonstrated abnormalities in cortical excitability, plasticity and functional connectivity
between the motor cortex and other cortical regions. Other studies aimed to evaluate and
monitor the effects of certain pharmacological agents.

Long-term neuromodulatory effects applying repetitive TMS (rTMS) can be induced with
promising therapeutic potential in neuropsychiatric disorders. These applications can
improve our understanding of brain plasticity mechanisms, the basis for the development of
new therapeutic strategies in neuropsychiatric disorders.

2. TMS parameters in clinical application

2.1. Central motor conduction time

The so-called central motor conduction time (CMCT) can be calculated by subtraction of the
peripheral conduction time from spinal cord to muscles from the conduction time of responses
evoked by cortical stimulation. Demyelination of motor pathways increases CMCT, while low
amplitude MEPs with little delay or absence of responses are rather suggestive of neuronal
or axonal loss [4, 5].

The amplitude of the MEP reflects the integrity of the corticospinal tract and the excitability of
motor cortex and spinal level, as well as the conduction along the peripheral motor pathway
to the muscles [4, 5].

TMS also allows cortical mapping procedures, with single TMS pulses applied on several
scalp positions overlying the motor cortex, exploring the site of maximal excitability (hot-
spot) and the “center of gravity” of motor cortical output [6].

2.2. Motor threshold

The resting motor threshold (RMT) is by definition the minimum stimulus intensity that
produces a motor evoked potential (MEP) greater than 50 uV in 50% out of 10 trials at the
completely relaxed tested muscle. RMT provides information about a central core of neurons
in the muscle representation in the motor cortex, and reflects both neuronal membrane excit-
ability [7-9] and non-N-methyl-D-aspartate (NMDA) receptors’” [8, 9] glutamatergic neuro-
transmission. The minimum stimulus intensity that produces a MEP (about 200 uV in 50%
of 10 trials) during isometric contraction of the tested muscle at about 10% maximum defines
the active motor threshold (AMT). AMT provides a measure of corticospinal excitability with
greater dependence on the spinal segmental level excitability [4, 5].

2.3. Short-latency afferent inhibition

Short-latency afferent inhibition (SAI) refers to the suppression of the amplitude of a MEP pro-
duced by a conditioning afferent electrical stimulus applied to the median nerve at the wrist
approximately 20 ms prior to the TMS pulse to the hand area of the contralateral motor cortex [10]
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SAl reflects the integrity of central cholinergic neural circuits. It is reduced or absent by the musca-
rinic antagonist scopolamine in healthy subjects [11]. SAI may also be dependent on the integrity
of circuits linking sensory input and motor output [12]. Cholinergic transmission underlies also
the neuromodulation of other neurotransmitters.

2.4. Cortical silent period, paired pulse intracortical inhibition and facilitation

Single-pulse TMS delivered during voluntary muscle contraction produces a period of EMG
suppression known as the cortical silent period (cSP). TMS can also investigate the intra-
cortical facilitatory and inhibitory mechanisms that influence motor cortical output. Paired
pulse TMS techniques involve paired-stimuli based on a conditioning-test paradigm [13].
Stimulation parameters such as the intensity of the conditioning stimulus (CS) and test stimu-
lus (TS) together with the time between the two stimuli (interstimulus interval, ISI) determine
interactions between stimuli. When the conditioning stimulus is below and the test stimulus
is above the MT, the conditioning stimulus decreases the MEP to the test stimulus at inter-
stimulus intervals from 1 to 5 ms (short-latency intracortical inhibition, SICI), while the con-
ditioning stimulus induces a facilitation of the response to the test stimulus at interstimulus
intervals from 6 to 20 ms (intracortical facilitation, ICF).

Short latency intracortical inhibition reflects to a large extent GABA ,-mediated intracortical
inhibitory synaptic activity [14]. The early part of the silent period originates from spinal inhi-
bition, while the later part is caused by a long-lasting cortical inhibition mediated by GABA,
primarily in the motor cortex [15]. The intracortical facilitation with interstimulus intervals
from 6 to 20 ms reflects motorcortical excitatory neurotransmission primarily mediated by
NMDA receptors [15].

2.5. Cortical connectivity and plasticity measures

Combined measures of EEG and TMS (EEG) [16-18] can provide real-time information on
cortical connectivity and distributed network dynamics.

Several other TMS techniques are currently used to modulate noninvasively the excitability
of the cerebral cortex. Cortical responses to rTMS and paired-associative stimulation (PAS)
provide information about different aspects of cortical plasticity [4, 15, 19]. TMS can influence
brain function if delivered repetitively. RTMS is a technique that delivers single TMS pulses
in trains with a constant frequency and intensity for a given time. Depending on the stimula-
tion parameters, particularly the frequency of stimulation, cortical excitability can be modu-
lated and rendered facilitated or suppresses. The modulation induced by rTMS can induce
significant and long-lasting changes in focal and non-focal neural plasticity. Generally, low-
frequency rTMS (stimulus rates of 1 Hz or less) induces inhibitory effects on motor cortical
excitability allowing creation of a reversible ‘virtual lesion” [20], while high-frequency rTMS
(5-20 Hz) usually promotes an increase in cortical excitability [21, 22].

PAS involves repeated pairs of electrical stimulation of a peripheral nerve (usually the
median nerve) followed by TMS applied over the contralateral hand area of the motor cortex
[23]. PAS induces a lasting increase in corticospinal excitability, which can be considered
a marker of motor cortical plasticity, with long-term plasticity-like mechanisms thought to
play a major role [23].

7
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3. Cortical excitability, connectivity and plasticity

3.1. Motor threshold

Most of the studies found significantly reduced RMT in neuropsychiatric disorders as com-
pared with healthy subjects [24-36], while other reports have found a tendency toward a
reduced RMT without statistical significance [37—44]. One study noted no difference in RMT
between patients with Alzheimer disease (AD) and controls [45], while [46] found increased
RMT in AD patients. It can be hypothesized that, in the early stages, mechanisms related to
RMT are preserved [45], or that RMT changes reflect functional damage of cortical motor
neurons. As the disease progresses, the decrease in RMT might be compensatory to the loss
of motor cortex neurons [36, 39]. In a combined TMS-MRI study [47], it was reported recently
that motor cortex excitability did not correlate with the cortical thickness in AD subjects. It can
be hypothesized that a protective mechanism of hyperexcitability on the sensorimotor cortex
may counteract the loss of cortical volume. This protective mechanism was not found in the
patients with mild cognitive impairment (MCI). Lahr et al. [48] could show in MCI patients
with the TMS technique of paired-associative stimulation (PAS) that there is no difference
in synaptic long-term potentiation (LTP)-like plasticity between MCI patients and healthy
controls [48]. Another study with transcranial magnetic stimulation addressed mild cogni-
tive impairment in the elderly [49]. About 10 Hz rTMS everyday enhanced memory in the
elderly MCI patients after 10 sessions. Thus, rTMS might be effective in cognitive therapy
for MCI patients. In a recent study, Nardone et al. [50] found a normal short-latency afferent
inhibition (SAI) in 20 subjects with subjective memory impairment [50]. An abnormal SAI
was reported in amnestic multiple domain mild cognitive impairment patients. Therefore,
SAI holds promise to be a useful biomarker for differentiating individuals with subjective
memory complaints those in whom cholinergic degeneration has occurred.

There are a few studies that have assessed AMT in AD patients; only two found significant
decreases in AMT when compared with healthy subjects [31, 36]. Therefore, the excitability of
spinal projections seems to be relatively preserved during early course AD.

The increased excitability to TMS in AD patients may be the functional correlate of an abnor-
mal glutamatergic system. This hypothesis has been supported by a study demonstrating an
altered response to rTMS in AD patients [32].

In contrast with AD patients, patients with dementia with Lewy bodies (DLB) present a nor-
mal excitability to single-pulse TMS [29, 51]. This finding suggests that the glutamatergic sys-
tem is not involved in DLB patients. However, cortical excitability to visual stimuli of lower
visual areas (V1-3) as measured by TMS appears to be normal in DLB. TMS-determined phos-
phene threshold and fMRI-related visual activation shows a positive relationship in controls
but a negative one in DLB that suggests a loss of inhibition in the visual system in DLB, which
may predispose individuals to visual dysfunction and visual hallucinations [52].

Patients with vascular dementia (VD) have decreased RMT [29, 53]. This increased excitability
could represent a functional consequence of the vascular lesions. RMT was recently found
to be significantly lower in patients with subcortical ischemic VD, but not in patients with
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subcortical ischemic disease without dementia [54]. In a study of Guerra et al. [55], there is
evidence for common compensatory mechanisms in subcortical ischemic vascular dementia
as it is known from Alzheimer’s disease [55] supporting the idea that cortical hyperexcitabil-
ity can promote cortical plasticity. These results indicate that motor cortex hyperexcitability is
a common finding in different dementing illnesses, subcortical or cortical in origin.

3.2. Motor evoked potential amplitude and central motor conduction time

Most studies found no significant differences in MEP amplitude between patients with AD
and healthy subjects [25, 27, 31-33, 38, 45, 46], while significant increases in MEP amplitude
in AD patients were detected in fewer studies [24, 26, 36]. Interestingly, the center of grav-
ity of motor cortical output shows a frontal and medial shift in patients with AD, without
changes in the hot-spot location [39]. This finding may indicate functional reorganization,
likely including the dysregulation of the inhibitory frontal centers [39].

MEP amplitude was found to be larger in patients with subcortical ischemic VD with demen-
tia than in patients with subcortical ischemic disease without dementia [54].

None of the studies that examined CMCT in AD [24, 26, 27, 4042, 46] found statistically sig-
nificant differences between patients and healthy age-matched subjects. These results confirm
that the integrity of the corticospinal tract is not compromised at least in mild to moderate
stages of AD.

In contrast, Di Lazzaro et al. [30] found that cortical excitability to single-pulse TMS was
impaired in 5 out 20 patients with frontotemporal dementia (FID). In three patients, MEPs
were absent, and a very small MEP was obtained only at maximum stimulator output in two
patients. In agreement with these results, patients with FDT are more likely than patients
with AD to have motor abnormalities. This finding suggests that TMS may reveal subclinical
central motor pathways involvement in patients with FTD. Paired pulse TMS applying the
parameters SICI, ICF and SAI can also distinguish AD from FTD with a sensitivity of 91.8%
and specificity of 88.6% [56]. AD patients show an impairment of SAI, while FID shows a
remarkable dysfunction of SICI and ICF parameter.

3.3. Cortical silent period, intracortical inhibition and facilitation

A significant reduction of SICI was found by some authors [35, 40, 42, 45], but most studies
did not find differences in SICI between AD patients and control subjects [27-29, 31, 36, 37,
41]. In a study, the amount of disinhibition was found to correlate with the severity of AD [40].
Most studies by [25, 27, 32, 40], but not all [24, 46] studies failed to find any significant dif-
ferences in the cSP duration between AD patients and healthy controls. Taken together, these
findings do not support impairments in GABAergic inhibitory circuits in AD. On the other
hand, dysfunction of GABAergic circuits has not been demonstrated, and the GABA system
seems to be relatively spared in AD [57].

DiLazzaroetal. found animpairment of SICIin 16% of patients with VD [29]. One study showed
a decrease in cortical benzodiazepine receptors in patients with VD due to leukoaraiosis [58],
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thus the abnormality of SICI in some VD patients might be related to the disruption of inhibi-
tory GABAergic circuits. However, a study provides evidence of functional changes also in
excitatory cortical circuits in patients with subcortical ischemic vascular disease and cognitive
impairment (but no dementia) [59].

Alberici et al. [37] found that patients with FTD were comparable with healthy subjects and
AD patients for SICI and ICF. In contrast, patients with corticobasal degeneration (CBD) pre-
sented significantly reduced SICI at ISI 3 ms, the selective impairment of intracortical inhibi-
tion in CBD may help in distinguishing among the FTD clinical spectrum.

None of the previous studies has found significant changes in ICF in patients with AD as
compared to healthy controls [27, 35-37, 40-42, 45]. These findings seem to point to a nor-
mal NMDA receptor-dependent glutamate excitatory activity in AD, as tested by this corti-
cal excitability measure. However, other studies suggest that abnormalities of glutamatergic
neurotransmission might play an important role in AD. The glutamatergic hypothesis of AD
has been proposed as an auxiliary mechanism to the cholinergic hypothesis [39] and this may
be due to an imbalance between the non-NMDA and NMDA neurotransmission [39, 60-63].

3.4. Short-latency afferent inhibition

The most consistent finding of abnormal cortical excitability in AD patients regards SAIL In
fact, all studies reported significant reductions of SAI in patients with AD as compared to
healthy individuals [27, 29-31, 34, 41, 42, 44, 60, 64, 65]. SAI was also found to be negatively
correlated with performance in abstract thinking [29, 31] and long-term memory [29]. SAI
testing may be a useful marker of central cholinergic dysfunction even in early stages of AD
[66], while it was found to be not significantly reduced in subjects with MCI [44]. However,
in this study the diagnosis of MCI was based on criteria proposed by Petersen in 1999 instead
of the revised ones [67] and the relationships to the different MCI subtypes was not defined.
In a more recent study, a reduced SAI was found in amnestic MCI-multiple domain patients,
while SAI was not significantly different in amnestic MCI-single domain patients and in non-
amnestic MCI patients [68].

SALl is significantly reduced also in adults with Down Syndrome (DS) and Alzheimer-type
dementia [51] the values correlated with the patient’s age and the score on Dementia Scale for
DS. This technique may thus represent an additional tool for the diagnosis of Alzheimer-type
dementia in subjects with DS.

Nardone et al. [51] described this putative marker of cholinergic activity in patients with DLB
and showed a clear tendency toward a reduced SAI. These authors performed SAI testing
without randomization of different conditions and the diagnosis of DLB was based on criteria
proposed in 1996 instead of the revised ones [69]. Di Lazzaro et al. [29] examined 10 patients
with a clinical diagnosis of DLB according to the NINCDS-ADRDA criteria [69] and found a
significantly reduced SAI in these patients. Interestingly, SAI correlates with hallucinations
in DLB patients and with euphoric manic state and disinhibition in AD patients [70]. SAI
investigation may also be useful in the distinction between DLB and Parkinson’s disease (PD),
because SAI is normal or even enhanced in PD [12, 71].
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SAI was evaluated in 20 patients with FTD and compared data with those from 20 patients
with AD and 20 control subjects [30]. SAI was normal in FTD, whereas it has been reduced in
AD. SAI may thus represent an additional tool to discriminate FTD from AD. These findings
are consistent with post-mortem studies showing central cholinergic deficits in AD [72-74]
but not in FTD [75].

A reduced SAI has been found in patients with VD, but not to the same extent as AD. Nardone
et al. [66] reported that SAI responses in patients with subcortical ischemic VD varied widely,
ranging from normal to markedly reduced values. In another TMS study, significant SAI
abnormalities were disclosed in 3 out of 12 patients with VD [29]; SAI was strongly correlated
with neuropsychological measures of long-term memory and other cognitive functions. In
patients with cerebral autosomal dominant arteriopathy with subcortical infarcts and leuko-
encephalopathy (CADASIL), the amount of SAI was found to be significantly smaller than
in normal subjects [76]. This finding supports the hypothesis of a central cholinergic system
impairment in CADASIL. Interestingly, Mesulam [77] demonstrated that pure white matter
infarcts, similar to those seen in subcortical VD, can cause cortical cholinergic denervation.

It should be considered that AD and VD are not mutually exclusive conditions; VD patients
with SAI abnormalities could have concomitant neuropathological changes of AD and thus
represent the percentage of patients with a mixed form of dementia.

In contrast to AD where the major features of the cholinergic neuropathology show few inter-
individual variations, VD may show considerable interindividual variation in the location of
subcortical infarcts and, therefore, in the distribution and magnitude of the resultant cortical
cholinergic deficits. In contrast to AD, where there are a few interindividual variations in the
pattern and extent of the cholinergic neuropathology, VD may show considerable interindi-
vidual variation in the location of subcortical infarcts and, therefore, in the distribution and
magnitude of the resultant cortical cholinergic deficit.

3.5. Cortical plasticity and functional connectivity

Some studies have examined non-invasively motor cortical plasticity and functional con-
nectivity in AD. Inghilleri et al. [32] investigated the effects of modulation of cortical motor
areas induced by suprathreshold high-frequency (5 Hz) r*TMS. Whereas in control subjects
5 Hz-rTMS elicited normal MEPs that progressively increased in size, in AD patients the
amplitude of MEPs progressively decreased during the training. These results suggest an
altered cortical plasticity in excitatory motor cortical circuits in AD. Conversely, 5 Hz rTMS
induced an increase in cSP in both groups, thus indicating a normal plasticity of the corti-
cal inhibitory circuits. Battaglia et al. [38] studied LTP-like plasticity of the motor cortex
in AD patients and healthy subjects by employing PAS with interval between peripheral
nerve stimulation and TMS set at 25 ms (PAS25); they also performed biochemical analyses
in brain slices of amyloid precursor protein (APP)/presenilin-1 (PS1) mice, an AD animal
model. PAS-induced plasticity has been significantly reduced in AD patients; moreover,
4-4.5-month-old APP/PS1 mice exhibited deficits of NMDA receptor-dependent neocor-
tical and hippocampal long-term potentiation (LTP), and a marked alteration of NMDA
receptor activity.

1"
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Julkunen and co-workers [33] have investigated functional connectivity between the motor
cortex and other cortical regions. Fifty single TMS pulses 3 s apart were delivered to the motor
cortex to evaluate spreading of navigated TMS-evoked EEG responses throughout the brain.
Significant motor cortical differences from averaged left and right hemispheres in AD patients
were observed. Using real-time integration of TMS and EEG, the authors also demonstrated
prominent changes in cortical connectivity. The TMS-evoked response at 30-50 ms decreased
significantly over multiple brain regions in patients with AD compared to both healthy elders
and subjects with MCI. In particular, a significant reduction has been seen in the ipsilateral
parietal cortex and contralateral fronto-central areas. In addition, a significant decrease in
the N100 amplitude in the MCI subjects when compared with the control subjects has been
found. In a subsequent study, Julkunen et al. [78] found that the TMS-EEG response P30
amplitude correlated with cognitive dysfunction and showed high specificity and sensitivity
in identifying healthy individuals from MCI or AD patients.

4. Therapeutic interventions

4.1. Neuromodulatory techniques

RTMS is capable of modulating cortical excitability and inducing lasting effects [79, 80]; both
have been shown to have potential therapeutic efficacy in cognitive neuroscience [81]. RTMS
has been proven to influence cortical excitability and the metabolic activity of neurons. TDCS is
another simple and powerful tool to modulate brain activity, which delivers constant low-inten-
sity current (below the perceptual threshold, 1-2 mA) over the scalp via two large electrodes.
The resulting constant electrical field penetrates the skull and influences neuronal function.

r'TMS can be applied as continuous trains of low-frequency (1 Hz) or bursts of higher fre-
quency (= 5 Hz) rTMS [81]. In general, low-frequency rTMS reduces, and high-frequency
r'TMS enhance excitability in the targeted cortical region.

The physiologic impact of both neuromodulatory techniques involves synaptic plasticity,
specifically LTP and LTD.

4.2. Repetitive transcranial magnetic stimulation

Three studies have dealt with rTMS effects on naming and language performance in AD
patients. In two crossover, sham-controlled, single-session studies [82, 83], *TMS was applied
to the dorsolateral prefrontal cortex (DLPFC) during the execution of naming tasks. In the
first study, a significantly improved accuracy in action naming, but not in object naming,
was observed after high-frequency rTMS of both the left or right DLPFC [82]. In the second
study [83], the results of the previous study were obtained only in patients with mild AD
(Mini-Mental-State-Examination (MMSE) > 17/30), while in patients with moderate to severe
AD (MMSE <17/30) both action and object naming were facilitated after rTMS over both left
and right DLPFC. In a later study, Cotelli et al. [84] investigated whether the application of
high-frequency rTMS to the left DLPFC may lead to a facilitation of language production and/
or comprehension in patients with moderate AD. Ten patients were assigned to one of two



Transcranial Magnetic Stimulation and Cognitive Impairment
http://dx.doi.org/10.5772/intechopen.75841

groups in which they received either 4-week real r*TMS or 2 weeks of sham rTMS followed by
2 weeks of real rTMS stimulation. No significant effects were found on naming performance,
while a significant effect was detected on auditory sentence comprehension after 2 weeks
of real rTMS sessions. Two additional weeks of daily rTMS sessions resulted in no further
improvements, while a significant beneficial effect on auditory sentence comprehension was
still observed 8 weeks after the end of the rTMS intervention. An important finding was the
absence of any effects on memory and executive functions.

Rektorova et al. [85] examined whether one session of high-frequency rTMS applied over
the left DLPFC or over the left motor cortex (MC) would induce any evaluable cognitive
changes in seven patients with cerebrovascular disease and MCI. Patients improved in the
Stroop interference results after stimulation of the DLPFC but not MC, and in the digit sym-
bols subtest of the Wechsler adult intelligence scale-revised regardless of the stimulation site.

Recently, Cotelli et al. [84] found that rTMS of the left parietal cortex increased accuracy in
an association memory task in a patient with amnestic MCI, and the improvement was main-
tained for 24 weeks.

In another study, Ahmed et al. [86] aimed to compare the long-term effects of high- versus
low-frequency rTMS, applied over the DLPFC of both hemispheres, on cortical excitability
and cognitive function of AD patients. All patients received one session daily for five con-
secutive days. The high-frequency rTMS group improved significantly more than the low-
frequency and sham groups in all assessed rating scales (MMSE, Instrumental Daily Living
Activity Scale and the Geriatric Depression Scale). The improvement was still significant
24 weeks after stimulation began.

Since cognitive training (COG) is known to improve cognitive functions in AD, Bentwich et al.
[87] aimed to obtain a synergistic effect of 'rTMS interlaced with COG (rTMS-COG). Eight patients
with mild or moderate probable AD were subjected to daily rTMS-COG sessions (5/week)
for 6 weeks, followed by a maintenance phase (2/week) for additional 3 months. Broca’s and
Wernicke’s areas, right and left DLPFC, right and left parietal somatosensory association cortex
were stimulated, and COG tasks were developed to fit these brain regions. Alzheimer Disease
Assessment Scale (ADAS)-Cognitive and Clinical Global Impression of Change improved sig-
nificantly after both 6 weeks and 4.5 months of treatment. MMSE, the ADAS-Activities of Daily
Living, and the Hamilton Depression Scale improved, but without statistically significant differ-
ences. In a recent single case study [88], a patient with initial AD was treated by rTMS over the left
DLPEC for 10 stimulation sessions over 2 weeks. Cognitive improvements occurred especially
in tests of episodic memory and speed processing, and were still evident 1 month after the last
stimulation. In a recent study, Rabey and Dobronevsky could prove that rTMS combined with
cognitive training is a safe and effective modality for the treatment of Alzheimer’s disease [89].

5. Discussion

This chapter intended to review the most relevant studies using non-invasive brain stimula-
tion in dementias. A number of studies showed that several TMS techniques might represent
a useful additional tool for the functional evaluation of patients with dementia. Among the

13
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studies focusing on motor cortical excitability measures, a particularly consistent and impor-
tant finding is the significant reduction of SAI in AD patients. Abnormal SAI has also been
reported in DLB [29] a form of dementia that responds to cholinergic medications [90]. In con-
trast, SAI was found to be normal in FTD [30], a non-cholinergic form of dementia. Therefore,
SAI testing can be used as a non-invasive test for the assessment of cholinergic pathways in
patients with dementia and may represent a useful additional tool in the differential diagno-
sis between the cholinergic and the non-cholinergic forms of dementia. Furthermore, TMS can
thus be used to monitor AD progression and response to treatment [64]. It remains relatively
unclear, how early in the course of the disease neurochemical and neuropathological altera-
tions occur. However, neurobiological changes should be examined earlier in the disease pro-
cess, when presumably they are more relevant for the pathogenesis of AD. Therefore, the
findings that SAI abnormalities can be observed in patients with early diagnosis of AD [41]
and even in patients with amnestic MCI-multiple domain may have potential diagnostic and
therapeutic implications. Identification of SAI abnormalities that occur early in the course of
the disease will allow earlier treatment with cholinergic drugs, and may be useful in identify-
ing MCI individuals at increased risk of conversion to AD.

The second most frequent cause of dementia following AD is VD. It was suggested that cholin-
ergic mechanisms play a role also in the pathogenesis of VD; however, the role of the cholin-
ergic system in the development of cognitive impairment is still under discussion in VD, also
because previous studies failed to found significant SAI abnormalities in most VD patients.

Interestingly, the cumulative effect of micro bleeds (MBs) on cognition appears to be indepen-
dent of coexisting ischemic cerebrovascular disease, in particular of the severity of ischemic
subcortical VD as assessed by magnetic resonance imaging (MRI) white matter changes [68].
T2-weighted gradient echo-MRI may thus be a helpful adjunct to standard MRI in clarify-
ing the mechanism of cognitive impairment in patients with cerebrovascular risk factors.
Anyway, TMS studies in patients with VD and other dementias have some limitations. First,
only post-mortem histology allows confirmation of the precise nature of dementia. Moreover,
a simple visual evaluation of MRI was employed and not more advanced neuroimaging tech-
niques, such as voxel-based morphometry, that could contribute to the identification of dif-
ferent forms of dementia.

The combination of TMS and EEG also enables the exploration of neural plasticity and con-
nectivity across different neural networks. Encouraging findings, showing impaired cortical
plasticity and functional connectivity between motor and non-motor brain regions in AD,
have been obtained. This method may provide a novel tool for examining the degree and
progression of dementia.

Overall, several issues should be more carefully addressed in future studies. The impact
of TMS depends on the distance between targeted cortex and scalp, as the magnetic field
decreases with distance [91]. Since regional cortical thinning has been observed in AD [92],
brain atrophy can substantially alter the effect of TMS [81]. Volumetric studies of white matter
volume and cortical thinning should thus be included in future studies in order to ameliorate
the interpretation of TMS results in patients with cerebral atrophy and dementing illnesses.

On the other hand, the motor cortex does not seem the best cortical area to assess in AD patients,
especially in the earlier stages of the disease. In fact, neuropathologic and neuroimaging
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studies suggest that non-motor cortical regions, for example, temporo-parietal and frontal
association cortices, are profoundly and early affected in AD.

It should be noted that most of the TMS findings show considerable variability between stud-
ies. In addition to TMS methodological issues, age at disease onset and duration of disease,
genetic factors may also represent a possible cause for such variability. It has been demon-
strated that the Val66Met nucleotide polymorphism of the brain derivate neurotrophic factor
(BDNF) gene differentially modulates brain plasticity and the response to transcranial stimula-
tion [93]. In addition, the presence of Apolipoprotein E (APOE) and its €4 allele is known to dis-
tinctively modulate the clinical phenotype of AD, as revealed by functional neuroimaging [94].
Therefore, the presence of BDNF-Val66Met polymorphism and of the APOE-¢4 may influence
cortical excitability and plasticity as assessed by TMS. Moreover, it has been reported [95] that
levels of total tau (t-Tau) detected in CSF of AD patients mediates abnormal excitatory activity,
as measured with 1 Hz rTMS; CSF t-Tau may thus impact mechanisms of cortical plasticity.

The novel techniques of non-invasive neurostimulation have begun to be used to improve
cognitive performances in AD. rTMS appears to be safe in patients with AD, even if long-term
risks have not always been thoroughly evaluated. For all future studies a careful experimen-
tal design is needed and patient selection aspects, stimulation parameters, as well as clinical,
cognitive and behavioral assessment tools should be considered. In fact, cognitive decline is
not homogeneous across patients with AD and pathological features might affect neural net-
works differently. Of great importance would also be a careful choice of uniform and validate
outcome measures, also to enable comparison across studies. Therefore, appropriately pow-
ered studies with more comprehensive outcome measures and sound blinding procedures
are needed to confirm the effectiveness of rTMS in patients with dementia. On the other hand,
the assumption that cortical plasticity enhancement is needed for the improvement of the
cognitive status of patients with AD may be incorrect [96]. Even if TMS studies point to corti-
cal hyperexcitability in AD, the employed techniques aimed at increasing cortical excitability.
For this reason, the cortical physiology should be appropriately tested before and after thera-
peutic brain stimulation. In addition, high-frequency rTMS may not lead to an enhanced cor-
tical excitability in AD. Indeed, rTMS effects are dependent on the baseline cortical activation
state at the time of stimulation [97].

Finally, multiple-target stimulation protocols are necessary in order to overcome the wide-
spread cognitive impairment in AD, especially in the more advanced stages of the disease [96].

Author details

Stefan Martin Golaszewski®* and Raffaele Nardone!?
*Address all correspondence to: s.golaszewski@salk.at

1 Department of Neurology and Neuroscience Institute, Paracelsus Medical University
Salzburg, Austria

2 Department of Neurology, “F. Tappeiner” Hospital, Merano, Italy

3 Karl Landsteiner Institute of Neurorehabilitation and Space Neurology, Salzburg, Austria

15



16 Transcranial Magnetic Stimulation in Neuropsychiatry

References

[1]

[2]

[4]

[5]

[6]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Lisanby SH et al. Transcranial magnetic stimulation: Applications in basic neurosci
ence and neuropsychopharmacology. The International Journal of Neuropsychophar
macology. 2000;3(3):259-273

Boroojerdi B et al. Enhancing analogic reasoning with rTMS over the left prefrontal cor-
tex. Neurology. 2001;56(4):526-528

Grafman J et al. Induction of a recall deficit by rapid-rate transcranial magnetic stimula-
tion. Neuroreport. 1994;5(9):1157-1160

Hallett M. Transcranial magnetic stimulation and the human brain. Nature. 2000;
406(6792):147-150

Kobayashi M, Pascual-Leone A. Transcranial magnetic stimulation in neurology. Lancet
Neurology. 2003;2(3):145-156

Rossini PM et al. Non-invasive electrical and magnetic stimulation of the brain, spi-
nal cord and roots: Basic principles and procedures for routine clinical application.
Report of an IFCN committee. Electroencephalography and Clinical Neurophysiology.
1994;91(2):79-92

Bliem B et al. Homeostatic metaplasticity in the human somatosensory cortex. Journal of
Cognitive Neuroscience. 2008;20(8):1517-1528

Ziemann U et al. The effect of lorazepam on the motor cortical excitability in man.
Experimental Brain Research. 1996;109(1):127-135

Ziemann U et al. Effects of antiepileptic drugs on motor cortex excitability in humans: A
transcranial magnetic stimulation study. Annals of Neurology. 1996;40(3):367-378

Tokimura H et al. Short latency inhibition of human hand motor cortex by somatosen-
sory input from the hand. Journal of Physiology. 2000;523(Pt 2):503-513

Di Lazzaro V et al. Muscarinic receptor blockade has differential effects on the excit-
ability of intracortical circuits in the human motor cortex. Experimental Brain Research.
2000;135(4):455-461

Sailer A et al. Short and long latency afferent inhibition in Parkinson’s disease. Brain.
2003;126(Pt 8):1883-1894

Kujirai T et al. Corticocortical inhibition in human motor cortex. The Journal of
Physiology. 1993;471:501-519

Paulus W et al. State of the art: Pharmacologic effects on cortical excitability measures
tested by transcranial magnetic stimulation. Brain Stimulation. 2008;1(3):151-163

Ziemann U et al. Consensus: Motor cortex plasticity protocols. Brain Stimulation.
2008;1(3):164-182



[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Transcranial Magnetic Stimulation and Cognitive Impairment
http://dx.doi.org/10.5772/intechopen.75841

Ives JR et al. Electroencephalographic recording during transcranial magnetic stimula-
tion in humans and animals. Clinical Neurophysiology. 2006;117(8):1870-1875

Thut G et al. A new device and protocol for combining TMS and online recordings of
EEG and evoked potentials. Journal of Neuroscience Methods. 2005;141(2):207-217

Thut G, Pascual-Leone A. A review of combined TMS-EEG studies to characterize last-
ing effects of repetitive TMS and assess their usefulness in cognitive and clinical neuro-
science. Brain Topography. 2010;22(4):219-232

Chen R, Udupa K. Measurement and modulation of plasticity of the motor system in
humans using transcranial magnetic stimulation. Motor Control. 2009;13(4):442-453

Chen R et al. Depression of motor cortex excitability by low-frequency transcranial mag-
netic stimulation. Neurology. 1997;48(5):1398-1403

Berardelli A et al. Facilitation of muscle evoked responses after repetitive cortical stimu-
lation in man. Experimental Brain Research. 1998;122(1):79-84

Pascual-Leone A et al. Akinesia in Parkinson’s disease. II. Effects of subthreshold repeti-
tive transcranial motor cortex stimulation. Neurology. 1994;44(5):892-898

Stefan K et al. Mechanisms of enhancement of human motor cortex excitability induced
by interventional paired associative stimulation. The Journal of Physiology. 2002;543(Pt
2):699-708

Alagona G et al. Transcranial magnetic stimulation in Alzheimer disease: Motor cortex
excitability and cognitive severity. Neuroscience Letters. 2001;314(1-2):57-60

Alagona G et al. Motor cortex excitability in Alzheimer’s disease and in subcortical isch-
emic vascular dementia. Neuroscience Letters. 2004;362(2):95-98

de Carvalho M et al. Magnetic stimulation in Alzheimer’s disease. Journal of Neurology.
1997,244(5):304-307

Di Lazzaro V et al. Direct demonstration of the effects of repetitive transcranial magnetic
stimulation on the excitability of the human motor cortex. Experimental Brain Research.
2002;144(4):549-553

Di Lazzaro V et al. Motor cortex hyperexcitability to transcranial magnetic stimula-
tion in Alzheimer’s disease. Journal of Neurology, Neurosurgery, and Psychiatry.
2004;75(4):555-559

Di Lazzaro V et al. In vivo functional evaluation of central cholinergic circuits in vascular
dementia. Clinical Neurophysiology. 2008;119(11):2494-2500

DiLazzaro V etal. In vivo cholinergic circuit evaluation in frontotemporal and Alzheimer
dementias. Neurology. 2006;66(7):1111-1113

Di Lazzaro V et al. Functional evaluation of cerebral cortex in dementia with Lewy bod-
ies. Neurolmage. 2007;37(2):422-429

17



18 Transcranial Magnetic Stimulation in Neuropsychiatry

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Inghilleri M et al. Altered response to rTMS in patients with Alzheimer’s disease. Clinical
Neurophysiology. 2006;117(1):103-109

Julkunen P et al. Navigated TMS combined with EEG in mild cognitive impairment and
Alzheimer’s disease: A pilot study. Journal of Neuroscience Methods. 2008;172(2):270-276

Martorana A et al. Dopamine modulates cholinergic cortical excitability in Alzheimer’s
disease patients. Neuropsychopharmacology. 2009;34(10):2323-2328

Martorana A et al. L-dopa modulates motor cortex excitability in Alzheimer’s disease
patients. Journal of Neural Transmission (Vienna). 2008;115(9):1313-1319

Pepin JL et al. Motor cortex inhibition is not impaired in patients with Alzheimer’s dis-
ease: Evidence from paired transcranial magnetic stimulation. Journal of the Neurological
Sciences. 1999;170(2):119-123

Alberici A et al. The contribution of TMS to frontotemporal dementia variants. Acta
Neurologica Scandinavica. 2008;118(4):275-280

Battaglia F et al. Cortical plasticity in Alzheimer’s disease in humans and rodents.
Biological Psychiatry. 2007;62(12):1405-1412

Ferreri F et al. Motor cortex excitability in Alzheimer’s disease: A transcranial magnetic
stimulation study. Annals of Neurology. 2003;53(1):102-108

Liepert J et al. Motor cortex disinhibition in Alzheimer’s disease. Clinical Neurophys
iology. 2001;112(8):1436-1441

Nardone R et al. Abnormal short latency afferent inhibition in early Alzheimer’s dis-
ease: A transcranial magnetic demonstration. Journal of Neural Transmission (Vienna).
2008;115(11):1557-1562

Nardone R, Bratti A, Tezzon F. Motor cortex inhibitory circuits in dementia with
Lewy bodies and in Alzheimer’s disease. Journal of Neural Transmission (Vienna).
2006;113(11):1679-1684

Olazaran ] et al. Cortical excitability in very mild Alzheimer’s disease: A long-term fol-
low-up study. Journal of Neurology. 2010;257(12):2078-2085

Sakuma K, Murakami T, Nakashima K. Short latency afferent inhibition is not impaired
in mild cognitive impairment. Clinical Neurophysiology. 2007;118(7):1460-1463

Pierantozzi M et al. Different TMS patterns of intracortical inhibition in early onset
Alzheimer dementia and frontotemporal dementia. Clinical Neurophysiology.2004;115(10):
2410-2418

Perretti A et al. Evaluation of the motor cortex by magnetic stimulation in patients with
Alzheimer disease. Journal of the Neurological Sciences. 1996;135(1):31-37

Niskanen E et al. New insights into Alzheimer’s disease progression: A combined TMS
and structural MRI study. PLoS One. 2011;6(10):e26113



[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

Transcranial Magnetic Stimulation and Cognitive Impairment
http://dx.doi.org/10.5772/intechopen.75841

Lahr J et al. No difference in paired associative stimulation induced cortical neuroplas-
ticity between patients with mild cognitive impairment and elderly controls. Clinical
Neurophysiology. 2016;127(2):1254-1260

Drumond Marra HL et al. Transcranial magnetic stimulation to address mild cognitive
impairment in the elderly: A randomized controlled study. Behavioural Neurology.
2015;2015:287843

Nardone R et al. Subjective memory impairment and cholinergic transmission: A TMS
study. Journal of Neural Transmission (Vienna). 2015;122(6):873-876

Nardone R et al. Reduced short latency afferent inhibition in patients with down syn-
drome and Alzheimer-type dementia. Clinical Neurophysiology. 2006;117(10):2204-2210

Taylor JP, Firbank M, O’Brien JT. Visual cortical excitability in dementia with Lewy bod-
ies. The British Journal of Psychiatry. 2016;208(5):497-498

Pennisi G et al. Motor cortex excitability in Alzheimer disease: One year follow-up study.
Neuroscience Letters. 2002;329(3):293-296

Pennisi G et al. Motor cortex hyperexcitability in subcortical ischemic vascular dementia.
Archives of Gerontology and Geriatrics. 2011;53(2):e111-e113

Guerra A et al. Neurophysiological features of motor cortex excitability and plas-
ticity in subcortical ischemic vascular dementia: A TMS mapping study. Clinical
Neurophysiology. 2015;126(5):906-913

Benussi A et al. Transcranial magnetic stimulation distinguishes Alzheimer disease from
frontotemporal dementia. Neurology. 2017;89(7):665-672

Rossor MN et al. A post-mortem study of the cholinergic and GABA systems in senile
dementia. Brain. 1982;105(Pt 2):313-330

Ihara M et al. Decrease in cortical benzodiazepine receptors in symptomatic patients
with leukoaraiosis: A positron emission tomography study. Stroke. 2004;35(4):942-947

Bella R et al. Enhanced motor cortex facilitation in patients with vascular cognitive
impairment-no dementia. Neuroscience Letters. 2011;503(3):171-175

Di Lazzaro V et al. Motor cortex hyperexcitability to transcranial magnetic stimulation
in Alzheimer’s disease: Evidence of impaired glutamatergic neurotransmission? Annals
of Neurology. 2003;53(6):824 (author reply 824-25)

Di Lazzaro V et al. Ketamine increases human motor cortex excitability to transcranial
magnetic stimulation. The Journal of Physiology. 2003;547(Pt 2):485-496

Farlow MR. NMDA receptor antagonists. A new therapeutic approach for Alzheimer’s
disease. Geriatrics. 2004;59(6):22-27

Hynd MR, Scott HL, Dodd PR. Glutamate-mediated excitotoxicity and neurodegenera-
tion in Alzheimer’s disease. Neurochemistry International. 2004;45(5):583-595

19



20 Transcranial Magnetic Stimulation in Neuropsychiatry

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

Di Lazzaro V et al. Neurophysiological predictors of long term response to AChE
inhibitors in AD patients. Journal of Neurology, Neurosurgery, and Psychiatry.
2005;76(8):1064-1069

Di Lazzaro V et al. Changes in motor cortex excitability in facioscapulohumeral muscu-
lar dystrophy. Neuromuscular Disorders. 2004;14(1):39-45

Nardone R et al. Cholinergic dysfunction in subcortical ischaemic vascular dementia:
A transcranial magnetic stimulation study. Journal of Neural Transmission (Vienna).
2008;115(5):737-743

Petersen RC et al. Current concepts in mild cognitive impairment. Archives of Neurology.
2001;58(12):1985-1992

Nardone R et al. Cognitive function and cholinergic transmission in patients with subcor-
tical vascular dementia and microbleeds: A TMS study. Journal of Neural Transmission
(Vienna). 2011;118(9):1349-1358

McKeith IG et al. Diagnosis and management of dementia with Lewy bodies: Third
report of the DLB consortium. Neurology. 2005;65(12):1863-1872

Marra C et al. Central cholinergic dysfunction measured “in vivo” correlates with dif-
ferent behavioral disorders in Alzheimer’s disease and dementia with Lewy body. Brain
Stimulation. 2012;5(4):533-538

Di Lazzaro V et al. Normal or enhanced short-latency afferent inhibition in Parkinson’s
disease? Brain. 2004;127(Pt 4):E8 (author reply E9)

Coyle JT, Price DL, DeLong MR. Alzheimer’s disease: A disorder of cortical cholinergic
innervation. Science. 1983;219(4589):1184-1190

Davies P, Maloney A]J. Selective loss of central cholinergic neurons in Alzheimer’s dis-
ease. Lancet. 1976;2(8000):1403

Whitehouse PJ et al. Alzheimer’s disease and senile dementia: Loss of neurons in the
basal forebrain. Science. 1982;215(4537):1237-1239

Procter AW, Qurne M, Francis PT. Neurochemical features of frontotemporal dementia.
Dementia and Geriatric Cognitive Disorders. 1999;10(Suppl 1):80-84

Manganelli F et al. Motor cortex cholinergic dysfunction in CADASIL: A transcranial
magnetic demonstration. Clinical Neurophysiology. 2008;119(2):351-355

Mesulam M, Siddique T, Cohen B. Cholinergic denervation in a pure multi-infarct state:
Observations on CADASIL. Neurology. 2003;60(7):1183-1185

Julkunen P et al. Combining transcranial magnetic stimulation and electroencephalog-
raphy may contribute to assess the severity of Alzheimer’s disease. International Journal
of Alzheimer’s Disease. 2011;2011:654794

Freitas C, Fregni F, Pascual-Leone A. Meta-analysis of the effects of repetitive transcra-
nial magnetic stimulation (rTMS) on negative and positive symptoms in schizophrenia.
Schizophrenia Research. 2009;108(1-3):11-24



[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

Transcranial Magnetic Stimulation and Cognitive Impairment
http://dx.doi.org/10.5772/intechopen.75841

Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak
transcranial direct current stimulation. The Journal of Physiology. 2000;527(Pt 3):633-639

Wagner T, Valero-Cabre A, Pascual-Leone A. Noninvasive human brain stimulation.
Annual Review of Biomedical Engineering. 2007;9:527-565

Cotelli M et al. Effect of transcranial magnetic stimulation on action naming in patients
with Alzheimer disease. Archives of Neurology. 2006;63(11):1602-1604

Cotelli M et al. Transcranial magnetic stimulation improves naming in Alzheimer dis-
ease patients at different stages of cognitive decline. European Journal of Neurology.
2008;15(12):1286-1292

Cotelli M et al. Improved language performance in Alzheimer disease following brain
stimulation. Journal of Neurology, Neurosurgery, and Psychiatry. 2011;82(7):794-797

Rektorova I et al. Cognitive functioning after repetitive transcranial magnetic stimula-
tion in patients with cerebrovascular disease without dementia: A pilot study of seven
patients. Journal of the Neurological Sciences. 2005;229-230:157-161

Ahmed MA et al. Effects of low versus high frequencies of repetitive transcranial mag-
netic stimulation on cognitive function and cortical excitability in Alzheimer’s dementia.
Journal of Neurology. 2012;259(1):83-92

Bentwich ] et al. Beneficial effect of repetitive transcranial magnetic stimulation com-
bined with cognitive training for the treatment of Alzheimer’s disease: A proof of con-
cept study. Journal of Neural Transmission (Vienna). 2011;118(3):463-471

Haffen E et al. A case report of daily left prefrontal repetitive transcranial magnetic
stimulation (rTMS) as an adjunctive treatment for Alzheimer disease. Brain Stimulation.
2012;5(3):264-266

Rabey JM, Dobronevsky E. Repetitive transcranial magnetic stimulation (rTMS) com-
bined with cognitive training is a safe and effective modality for the treatment of
Alzheimer’s disease: Clinical experience. Journal of Neural Transmission (Vienna).
2016;123(12):1449-1455

Emre M et al. Rivastigmine for dementia associated with Parkinson’s disease. The New
England Journal of Medicine. 2004;351(24):2509-2518

Wagner T et al. Transcranial magnetic stimulation and brain atrophy: A computer-based
human brain model study. Experimental Brain Research. 2008;186(4):539-550

Dickerson BC et al. The cortical signature of Alzheimer’s disease: Regionally specific cor-
tical thinning relates to symptom severity in very mild to mild AD dementia and is detect-
able in asymptomatic amyloid-positive individuals. Cerebral Cortex. 2009;19(3):497-510

Cheeran B et al. A common polymorphism in the brain-derived neurotrophic factor gene
(BDNF) modulates human cortical plasticity and the response to rTMS. The Journal of
Physiology. 2008;586(23):5717-5725

21



22 Transcranial Magnetic Stimulation in Neuropsychiatry

[94]

Wolk DA, Dickerson BC, Neuroimaging I A’s D. Apolipoprotein E (APOE) geno-
type has dissociable effects on memory and attentional-executive network function in

Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United
States of America. 2010;107(22):10256-10261

Koch G et al. CSF tau levels influence cortical plasticity in Alzheimer’s disease patients.
Journal of Alzheimer’s Disease. 2011;26(1):181-186

Freitas C, Mondragon-Llorca H, Pascual-Leone A. Noninvasive brain stimulation in
Alzheimer’s disease: Systematic review and perspectives for the future. Experimental
Gerontology. 2011;46(8):611-627

Silvanto ], Pascual-Leone A. State-dependency of transcranial magnetic stimulation.
Brain Topography. 2008;21(1):1-10



