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Abstract

An optimal estimator for continuous nonlinear systems with nonlinear dynamics, and
nonlinear measurement based on the continuous least square error criterion is derived.
The solution is exact, explicit, in closed form and gives recursive formulas of the optimal
filter. For the derivation of the filter, the following elements are combined: (i) the least
squares (LS) criterion based on statistical-deterministic-likelihood approach to estimation;
(ii) the state-dependent coefficient (SDC) form representation of the nonlinear system; and
(iii) the calculus of variation. The resulting filter is optimal per sample. The filter’s gains
need the solution of a nonsymmetric differential matrix Riccati equation. The stability of
the estimator is investigated. The performances are demonstrated by simulation of the
Van der Pol equation with noisy nonlinear measurement, and system driving noise.

Keywords: nonlinear system, nonlinear estimator, Van der Pol equation, nonsymmetric
differential matrix Riccati equation, optimal estimator, stability of nonlinear filter

1. Introduction

The Kalman filter and the Kalman-Bucy filter [1, 2] solved the problem of optimal estimation of

stochastic and deterministic linear systems. Since then, there is a continuing research on estima-

tion of nonlinear systems.

There are many different approaches for the state reconstruction, estimation, and filtering of

nonlinear systems, for a recent review, see [3, 4] and the references within. The space in this

chapter is too short to cover them. These approaches can be classified roughly into two types:

the stochastic approach and the statistical-deterministic-likelihood approach.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



The stochastic approach is based on the Itȏ calculus and computation of the conditional

probabilities by the Kolmogorov’s forward/Fokker-Plank equation or Zakai’s equation that

are difficult to solve and usually need numerical solution, e.g., see a numerical approach to

the filtering problem for a class of nonlinear time-varying systems [5]. The innovations

approach to the nonlinear estimation in a white noise is presented in [6]. However, explicit

result for a specific nonlinear system is difficult to arrive at. Thus, when a closed-form estima-

tor is sought, the stochastic approach leads, in general, to suboptimal and approximate solu-

tions. The exceptions are [7, 8], where some restricted cases for which closed-form solutions of

the optimal filtering equations of continuous systems are presented. Moreover, it was shown

that generally the stochastic approach leads to infinite dimensional solution of the optimal

estimator [9]. Different classes of nonlinear systems for which there is a closed-form explicit

solution are presented in [10, 11] for the nonlinear problem of estimating the parameters of

linear system with unknown coefficients. These belong to the specific class of nonlinear sys-

tems for which a general solution is presented in [12], Chapter 10.

The Kalman filter [1, 2] was obtained as well by solving the dual of the linear quadratic control

problem criterion [13–15] by calculus of variations within the framework using the statistical-

deterministic-likelihood approach. The dual of the LQ criterion is the least squares (LS) criterion

also called the mean squares error (MSE) criterion, or joint maximum likelihood (JML) criterion

[15–17], or just maximum likelihood (ML). The statistical-deterministic-likelihood approach has

been used to derive filters of linear systems [13, 15]. For linear system, this approach leads to the

structure of the Kalman and Kalman-Bucy filters. This shows that the Kalman and Kalman-Bucy

filters are not only optimal estimators on the average but also optimal estimators for a single

sample. Within the likelihood approach [18], the noises are white and the criterion is the likeli-

hood functional [15]. The deterministic variational approach has been applied in [18] to nonlinear

system. Within the statistical-deterministic-likelihood approach [13, 19], the input disturbance

and output measurement error are considered as disturbances with unknown statistics ([20], p.

361). This approach is based on the calculus of variations [13] and has been widely used for

numerical implicit computations of estimates and smoothers for nonlinear dynamic systems [21].

Thus, the statistical-deterministic-likelihood approach is most tempting for application in

developing filters of nonlinear systems [18]. Mortensen [18] derives the general structure of

the optimal recursive estimator’s state propagation equation derived from the likelihood

approach point of view. This solution has the structure of the state propagation equation of

the extended Kalman filter (EKF) thus justifying its usage beyond the heuristic of usage as the

first-order Taylor series expansion. However, Mortensen [18] does not derive the respective

equation of the gain. Moreover, Mortensen [18] states that the computation of the gain “…

suffers from the same kind moment problem or closure problem as does the minimum vari-

ance nonlinear filtering.” This means that the derived estimation error gain is not feasible. The

solution in this chapter shows that the statistical-deterministic-likelihood approach based on

the calculus of variations leads to a solution that is not plagued with the closure problem.

Themost popular estimation filter of nonlinear systems is the EKF. The EKF uses the Jacobian fx of

the system’s differential equations function _x ¼ f xð Þ and Jacobianmx of the measurement’s equa-

tions y = m(x) for computation of the estimator’s gain. The stability of the EKF is not guaranteed.
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An additional estimation filter of nonlinear systems that has been developed in the recent

years with success is the state-dependent differential/difference Riccati equation (SDRE/

SDDRE)-based filter of nonlinear system [22–25]. This has been enabled by the introduction

of the state-dependent coefficient (SDC) form [23, 24] approach to filtering. The SDC form

represents the nonlinear equation in the quasilinear form _x ¼ F xð Þx and y = M(x)x. The SDC

representation always exists albeit it is not unique. The observability and controllability of the

SDC representation are needed; however, for any SDC form, they are not guaranteed. Finding-

synthesizing a controllable and observable SDC form representation can be difficult and is not

trivial. This problem is dealt with in [26–29] and some approaches to synthesize feasible SDC

forms are proposed. The selection of the “best” SDC is dealt with in [26, 27, 29]. The global

uniform stability properties of the SDRE-based filter have been proved only lately in [30–33].

Since Mortensen’s derivation [18], no progress has been made [4, 34, 35] in explicitly solving

the optimal nonlinear filtering problem till [16, 17, 36–38] for continuous nonlinear systems

and [39] for discrete nonlinear systems.

This chapter combines: (i) the LS criterion based on the statistical-deterministic-likelihood

approach to estimation; (ii) the SDC form representation of the nonlinear system; and

(iii) the calculus of variations; for derivation of a recursive filter in the form of a differential

equation as the filter-estimator for nonlinear systems with nonlinear dynamics and nonlinear

measurement.

This chapter is based on the preliminary publication [16]. The results for nonlinear time-varying

system are presented in [17], for system with input in [37] and for the H
∞
criterion in [38].

The presented approach leads to an optimal, exact, explicit, closed-form, and recursive solu-

tion, where state propagation equation is as derived in [18] (and is that as of the EKF). This

filter is called here the recursive nonlinear least squares (RNLS) filter. The optimal gain is

computed via the solution of a nonsymmetric differential matrix Riccati equation (NDMRE)

that uses the respective Jacobians and the SDC form representation.

The importance and novelty of the result in this chapter are:

i. An optimal, exact, explicit, closed-form, and recursive solution to the estimation of

nonlinear time-varying systems based on the quadratic least-squares criterion is presented.

ii. The fact that the optimal filter of nonlinear systems can be derived by calculus of varia-

tions is highlighted.

iii. The optimal filter can be taught to students that are familiar with calculus of variations

before mastering stochastic calculus.

The RNLS-based filter, the EKF, and the SDDRE-based filter were compared on a common

basis in [36, 40].

In the chapter, derivation of the result is presented. The performances of the RNLS-based filter

are demonstrated with the Van der Pol differential equation driven by a band-limited noise,

and the nonlinear measurement is noise corrupted.
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2. Problem statement

A general nonlinear system is dealt with. Let the reality be represented by:

_ζ tð Þ ¼ φ ζ tð Þ;ω tð Þð Þ, ζ toð Þ ¼ ζo

y tð Þ ¼ η ζ tð Þ; υ tð Þð Þ
(1)

where ζ(t) is the real state (unknown and of unknown dimension), y(t) is the measured output,

υ(t) is the measurement noise, ω(t) is the system driving noise, and the functions φ and η

represent the reality. The functions φ and η that describe the real system cannot be either

precisely represented or are unknown precisely up to the last detail (e.g., the output measure-

ment function may include some measurement noise or themselves exhibit random uncertain

behavior). For the design of the observer, we use the representation model given by:

_x tð Þ ¼ f x tð Þ;w tð Þð Þ, x toð Þ ¼ xo

y tð Þ ¼ m x tð Þ; v tð Þð Þ
(2)

where x(t) ∈ Rn is the state of the model, y(t) ∈ Rp is the model output, w(t) ∈ Rr is the system

driving disturbance noise, v(t) ∈ R
p is the measurement noise, f(.):Rn � R

r ! R
n and m(.):

R
n � R

p ! R
p are the representation (model, i.e., exactly known) of the reality and thus

approximation of the reality, w(t) and v(t) are the functions of time that represent the difference

between the reality and its model. It is assumed that the time functions w(t) and v(t) and the

initial conditions, xo, are of “unknown character” ([15], Section 5.3), i.e., with unknown statis-

tics [18] ([20], p. 361).

The problem: Derive a recursive estimator (in form of a differential equation) for the state of

the model, x(t), from the output measurements.

The continuous least square criterion is used [13–15] in the evaluation of the optimal estimator

of linear systems. The covariance constraint and the minimum model error concepts [21]

rationalize this approach as well.

The continuous least squares criterion is the dual of the LQ criterion for the control problem.

The objective is ([15], Eq. 5.24)

J0 tð Þ ¼
1

2

x toð Þ � x toð Þð ÞTP�1
to

x toð Þ � x toð Þð Þ

þ

ð

t

to

y τð Þ �m x τð Þ; v τð Þð Þ½ �TR�1 y τð Þ �m x τð Þ; v τð Þð Þ½ �

þw τð ÞTQ�1w τð Þ

2

4

3

5dτ

8

>

>

>

>

<

>

>

>

>

:

9

>

>

>

>

=

>

>

>

>

;

(3)

where Q is an a priori estimate of the driving force errors, w(t),Q ∈ R
r � r, Q > 0, R is an a priori

estimate of the measurement noise errors, v(t), R ∈ R
p � p, R > 0, Pto is an a priori covariance

estimate of the initial conditions errors, Pto ∈ R
n � n, Pto > 0, x toð Þ is an a priori estimate of the

initial conditions.
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We wish to minimize the continuous least squares error objective (3) with respect to w(τ),

to ≤ τ ≤ t subject to the model (2) in order to find an estimate of x(τ). That is, we are looking

for the representation-realization of the difference between the reality and the model, w(t), that

best fits, the observations. In other words and roughly speaking, “we want to pass the solution

to Eq. (3) as closely as possible, through the observations.” The presented approach also

constitutes the statistical methods approach to filtering ([15], Section 5.3).

The problem above is solvable by a batch solution [21] that will minimize the objective (3).

Here, we look for a recursive solution in the form of differential equations.

Throughout the chapter, it is assumed that all functions satisfy the necessary boundedness,

smoothness, and differentiability conditions for existence of solution.

3. The state-dependent coefficient—SDC form

In this chapter, we deal with a specific structure of the model of the nonlinear system (2). It is

assumed that:

I. Eq. (2) is partitioned as (with a slight abuse of notation):

f x;wð Þ≕ f x tð Þð Þ þ Gw tð Þ; x toð Þ ¼ xo,

m x; vð Þ≕m x tð Þð Þ þ v tð Þ
(4)

II. At the origin, we have

f 0ð Þ ¼ 0

m 0ð Þ ¼ 0
(5)

Then, by defining the state-dependent coefficient form (SDC) [23] as:

f x tð Þð Þ≕ F x tð Þð Þx tð Þ

m x tð Þð Þ≕M x tð Þð Þx tð Þ
(6)

The dynamic equations of the system (4) are written as

_x tð Þ ¼ F x tð Þð Þx tð Þ þ Gw tð Þ, x toð Þ ¼ xo,

y tð Þ ¼ M x tð Þð Þx tð Þ þ v tð Þ
(7)

where F ∈ R
n � n, G ∈ R

n � r,M ∈ R
p � n. The SDC form (6) always exists albeit is not unique. It

is assumed that all matrices F(ξ), M(ξ), are piecewise continuous and uniformly bounded with

respect to all variables.1 An important property of the SDC representation, that is needed, is its

observability and controllability as a time-varying system along all trajectories that the RNLS

filter can attain. The observability and/or controllability of a specific SDC form are not

1

Not all nonlinear system can be represented in the SDC form with uniformly bounded F(x), M(x).

Optimal State Estimation of Nonlinear Dynamic Systems
http://dx.doi.org/10.5772/intechopen.74284

163



guaranteed. Finding-synthesizing a controllable and an observable SDC form representation

can be difficult and is not trivial. This problem is dealt with in [26–29] where some approaches

to synthesize feasible SDC forms are proposed.

4. Derivation of the main result

In this section, the main result is derived for the specific structure of the nonlinear system (7),

i.e., nonlinear dynamics, f(x(t)), nonlinear measurement, m(x(t)), that are represented in the

SDC form given in Eq. (6), and the quadratic criterion

J tð Þ ¼
1

2

x toð Þ � x toð Þð ÞTP�1
to

x toð Þ � x toð Þð Þ

þ

ðt

to

y τð Þ �m x τð Þð Þ½ �TR�1 y τð Þ �m x τð Þð Þ½ � þ w τð ÞTQ�1w τð Þ
h i

dτ

8
>>><

>>>:

9
>>>=

>>>;
(8)

that is minimized with respect to, w(t), subject to Eq. (7). Calculus of variations is applied in

derivation of the main result for nonlinear systems (7). The Hamiltonian is

H x;λ; tð Þ ¼
1

2
y tð Þ �m x tð Þð Þ½ �TR�1 y tð Þ �m x tð Þð Þ½ �

þ
1

2
w tð ÞTQ�1w tð Þ � λ tð ÞT f x tð Þð Þ þ Gw tð Þ½ �

(9)

where λ(t) is the costate.

The necessary conditions for optimality ([15], Example 7.11) are

Hw ¼ 0

_λ tð Þ ¼ HT
x ;

λ toð Þ ¼
1

2

∂

∂bx toð Þ
bx toð Þ � x toð Þð Þ

T
P�1
to

bx toð Þ � x toð Þð Þ

λ tð Þ ¼ 0 since x tð Þ is free

Q�1
> 0, P�1

to
> 0, R�1

> 0

(10)

This gives

Hw ¼ w tð ÞTQ�1 � λ tð ÞTG ¼ 0

_λ tð Þ ¼ y tð Þ �m bx tð Þð Þ½ �
T
R�1 �mbx bx tð Þð Þ

h i
� λ tð ÞT fbx bx tð Þð Þ

h iT

λ toð Þ ¼ bx toð Þ � x toð Þð Þ
T
P�1
to

(11)

This leads to the nonlinear two-point boundary value problem (TPBVP) for to ≤ τ ≤ t,
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bw τð Þ ¼ QGT
λ τð Þ

d

dτ
bx τð Þ ¼ f bx τð Þð Þ þ GQGT

λ τð Þ; bx toð Þ ¼ x toð Þ þ Ptoλ toð Þ (12)

d

dτ
λ τð Þ ¼ � f x̂ bx τð Þð Þ

� �T
λ τð Þ � mx̂ bx τð Þð Þ½ �

T
R�1 y τð Þ �m bx τð Þð Þ½ �; λ tð Þ ¼ 0

4.1. Explicit solution of the TPBVP

The system’s dynamic equation (Eq. (4)) in the SDC form is Eq. (7). Thus, the optimal solution

is given by the TPBVP.

bw τð Þ ¼ QGT
λ τð Þ

d

dτ
bx τð Þ ¼ F bx τð Þð Þbx τð Þ þ GQGT

λ τð Þ; bx toð Þ ¼ x toð Þ þ Ptoλ toð Þ (13)

d

dτ
λ τð Þ ¼ � f x̂ bx τð Þð Þ

� �T
λ τð Þ � mx̂ bx τð Þð Þ½ �

T
R�1 y τð Þ �M bx τð Þð Þbx τð Þ½ �;λ tð Þ ¼ 0 (14)

The usage of the SDC form converts the nonlinear TPBVP (Eq. (12)) to a time-varying TPBVP

(Eq. (13)) thus enables a causal solution. This is as up to the current time, as the solution

propagates forward in time, bx tð Þ is a known function of time and the integration goes forward

in time. The solution follows [16]. For illustration, the “homogeneous” case is presented here.

In this case, the TPBVP is

d

dτ
bx τð Þ ¼ F bx τð Þð Þbx τð Þ þ GQGT

λ τð Þ; bx toð Þ ¼ x toð Þ þ Ptoλ toð Þ

d

dτ
λ τð Þ ¼ � f x̂ bx τð Þð Þ

� �T
λ τð Þ þ mx̂ bx τð Þð Þ½ �

T
R�1M bx τð Þð Þbx τð Þ; λ tð Þ ¼ 0

(15)

By setting bx τð Þ ¼ P τð Þλ τð Þ in Eq. (15), the nonsymmetric differential matrix Riccati equation is

given by:

_P ¼ F bx τð Þð ÞPþ P f x̂ bx τð Þð Þ
� �T

þ GQGT � P mx̂ bx τð Þð Þ½ �
T
R�1M bx τð Þð ÞP, P toð Þ ¼ Pto (16)

The solution of the nonhomogeneous time-varying TPBVP (Eqs. (13) and (14)) is hinted by the

necessary condition bx toð Þ ¼ x toð Þ þ Ptoλ toð Þ. The derivation then follows closely [16].

4.2. The main result

The solution in the form of differential equations, the continuous recursive nonlinear least

squares (RNLS) filter, is given by:

_bx tð Þ ¼ f bx tð Þð Þ þ K bx tð Þ; tð Þ y tð Þ �m bx tð Þð Þ½ �, bx toð Þ ¼ bxo
or
_bx tð Þ ¼ F bx tð Þð Þbx tð Þ þ K bx tð Þ; tð Þ y tð Þ �M bx tð Þð Þbx tð Þ½ �, bx toð Þ ¼ bxo

(17)

Optimal State Estimation of Nonlinear Dynamic Systems
http://dx.doi.org/10.5772/intechopen.74284

165



where the filter’s gain is

K bx tð Þ; tð Þ ¼ P bx tð Þ; tð Þ mx̂ bx tð Þð Þ½ �
T
R�1 (18)

and P bx tð Þ; tð Þ is given by the nonsymmetric differential matrix Riccati equation

_P bx tð Þ; tð Þ ¼ F bx tð Þð ÞP bx tð Þ; tð Þ þ P bx tð Þ; tð Þ f x̂ bx tð Þð Þ
� �T

þ GQGT � P bx tð Þ; tð Þ mx̂ bx tð Þð Þ½ �
T
R�1M bx tð Þð ÞP bx tð Þ; tð Þ; P toð Þ ¼ Pto

(19)

where bx tð Þ is the estimated state and f xð Þ≕F xð Þx, f x xð Þ ¼ ∂f xð Þ
∂x , m xð Þ≕M xð Þx, mx xð Þ ¼ ∂m xð Þ

∂x .

Notice:

i. The first term of the right-hand side of Eq. (19) includes the SDC form and the second

term includes the Jacobian and same is in the last term. The SDC and the Jacobian are

equal for linear systems only.

ii. bx tð Þ is known up to the current time t. Thus, Eq. (17) can be propagated forward in time.

iii. The solution requires the solution of the nonsymmetric differential matrix Riccati equa-

tion (Eq. (19)) and the solution, P, is nonsymmetric.

iv. The solution of the nonsymmetric Riccati matrix equation depends on the estimated state

bx tð Þ, and is formally denoted P bx tð Þ; tð Þ.

v. Notice that the state propagation Eq. (19) has exactly the same structure as derived by

Mortensen [18] and used by the EKF. The solution of Eqs. (18) and (19) gives explicitly the

filter’s gain.

vi. In [18], it is claimed that computation of the filter’s optimal gain, P, (Eqs. (18) and (19))

suffers from “…the moment or closure problem…”. In this chapter, it is shown that the

filter’s optimal gain is solved completely and explicitly by the NDMRE (Eq. (19)).

4.3. A compact form of the optimal solution

In order to enable better understanding of Eq. (17–19), the following presents Eq. (17–19) by

suppressing the explicit and implicit dependence on time.2 The optimal filter is

_bx ¼ Fbx þ K y�Mbx½ �, bx toð Þ ¼ bxo (20)

K ¼ PmT
x̂R

�1 (21)

_P ¼ FPþ Pf Tx̂ þ GQGT � PmT
x̂R

�1MP; P toð Þ ¼ Pto (22)

or

2

Explicit on time, t, and implicitly through the estimated state, bx tð Þ.
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_P ¼ FPþ P f x̂
� �T

þ GQGT � KMP; P toð Þ ¼ Pto (23)

One can clearly see that for linear system, Eq. (20–22) gets the structure of the Kalman filter as

then F ¼ f x̂ and M ¼ mx̂ .

5. Stability analysis of the RNLS estimator

The deterministic stability of the RNLS estimator-filter along the filter’s trajectories Eq. (20–22) is

considered. Recall that optimality does not guarantee stability. The stability of the RNLS filter is

connected to the stability of the NDMRE equation. Let us consider the system/observer:

_bx ¼ Fbx þ K y�Mbx½ � ¼ F� KM½ �bx þ Ky, bx toð Þ ¼ bxo (24)

K ¼ PMTR�1 (25)

_P ¼ FPþ PFT þ GQGT � PMTR�1MP; P toð Þ ¼ Pto (26)

where the explicit and implicit time dependency is suppressed as in the previous section. Eqs.

(24–26) are actually the deterministic SDDRE-based observer of Eq. (7) whose stability is

treated in [31–33]. The matrix Riccati equation (Eq. (26)) is symmetric.

First, existing result on the stability of optimal estimators of system Eqs. (24–26) as a linear

time-varying system is cited. The following result is valid for linear time-invariant and time-

variant systems.

Theorem 1. [31, 32, 41] Consider the symmetric Riccati equation (Eq. (26)) where Q ≥ 0, R > 0

and Po ≥ 0 are symmetric, F;Mð Þ is detectable, and F;GQ1=2
� �

is stabilizable. Then, there exists

K ¼ PMTR�1 such that F� KMis asymptotically stable.

A Lyapunov function for the autonomous system Eqs. (24–26) (i.e. y = 0) is

V tð Þ ¼
1

2
bx tð ÞTP�1 tð Þbx tð Þ (27)

For which

_V tð Þ ¼ �bx tð ÞTP�T GQGT þ PMTR�1MP
� �

P�1bx tð Þ (28)

where GQGT þ PMTR�1MP
� �

is positive definite.

Next, the NDMRE equation is considered. It is dealt with in [42–46]. The only reference that is

directly addressing the stability issue of an NDMRE is [42] (Chapter 9). The Riccati equation

related to the time-invariant control problem is dealt with in [42] (Theorem 9.1.23 and Remark

Optimal State Estimation of Nonlinear Dynamic Systems
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9.1.24). Although not explicitly stated, these results apply as well to time-varying systems.

Motivated by this theorem and remark, translated by duality to the estimation problem, the

following conjecture is formulated.

Conjecture 1. Consider the nonsymmetric differential Riccati matrix equation.

_P ¼ FPþ Pf Tx̂ þ GQGT � PmT
x̂R

�1MP, P toð Þ ¼ Po, (29)

where Q ≥ 0, R > 0 are symmetric, F;Mð Þ and f x̂ ;mx̂

� �

are detectable, and F;GQ1=2
� �

and

f x̂ ;GQ
1=2

� �

are stabilizable. Then, there exist K1 ¼ PMTR�1 and K2 ¼ PmT
x̂R

�1 such that

F� K1M and f x̂ � K2mx̂ are stable.

This conjecture is supported by [42] (Theorem 9.1.23 and Remark 9.1.24). The requirement

of detectability (observability) and stabilizability (controllability) is not explicitly required

in [42] (supposedly they appear implicitly). This conjecture means that the filter given by

Eqs. (20–22) is stable. An issue under research is (loosely): in addition to the conditions in

Conjecture 1, the boundedness conditions of all matrices and variables (the output and

system driving noise and measurement noise) are sufficient conditions for this stability, as

for the SDDRE-based filter [31–33]?

Notice that for the symmetric case, this well-known result for linear system results in Theorem 1.

The stability of the RNLS filter is investigated via Lyapunov analysis. As the solution of the

nonsymmetric Riccati equation in Eq. (19) is eventually not symmetric, the following symmet-

ric Lyapunov function is dealt with here:

V ¼
1

2
xT P�1 þ P�T

� �

x (30)

The derivative of the Lyapunov function is [47]

_V ¼ �
1

2
xT

P�TP MTR�1MþmT
xR

�1mx

� �

� P�TP M�mxð ÞTR�1 M�mxð Þ

þP�1GQGTP�1 þ P�TGQGTP�T

þ f x � F
� �T

P�1 þ P�T f x � F
� �

2

6

6

6

6

4

3

7

7

7

7

5

x (31)

For linear system, F ¼ f x̂ ,M ¼ mx̂ , we have Eq. (28).

The first terms in Eq. (31) are potentially nonnegative definite

P�TP MTR�1MþmT
xR

�1mx

� �

≥ 0 (32)

The second term in Eq. (31) is negative (nonpositive) definite

�P�TP M�mxð ÞTR�1 M�mxð Þ ≥ 0 (33)
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The next two terms in Eq. (31) are indefinite and can be negative

P�1GQGTP�1 þ P�TGQGTP�T (34)

The last two terms in Eq. (31)

f x � F
� �T

Pα
�1 þ Pα

�T f x � F
� �

(35)

are indefinite.

The discussion above hints that for small nonsymmetry, for sure, the NDMRE stabilizes the

RNLS filter. The stability of the RNLS filter is summarized in the following conjecture. Further

results are beyond the scope of this chapter.

Conjecture 2: If

i. The nonlinearities are such that f x � F
�

�

�

� and mx �Mk k are bounded/uniformly bounded

and sufficiently small,

ii. The observability and controllability conditions are satisfied along the filter trajectories,

then the RNLS filter is asymptotically stable.

Remark: Simulation results show/hint that as long as the incremental observability matrices

Ob F xð Þ;M xð Þð Þ ¼

M xð Þ

M xð ÞF xð Þ

⋮

M xð ÞF xð Þn�1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

, Ob f x xð Þ;mx xð Þ
� �

¼

mx xð Þ

mx xð Þf x xð Þ

⋮

mx xð Þf x xð Þn�1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

and the incremental controllability matrices

Co F xð Þ;GQ1=2
� �

¼ GQ1=2 F xð ÞGQ1=2
⋯ F xð Þn�1GQ1=2

h i

,

Co f x xð Þ;GQ1=2
� �

¼ GQ1=2 f x xð ÞGQ1=2
⋯ f x xð Þn�1GQ1=2

h i

along the estimator’s trajectory of the RNLS filter are nonsingular, i.e.,

rank Ob F xð Þ;M xð Þð Þ½ � ¼ n, rank Ob f x xð Þ;mx xð Þ
� �� �

¼ n, rank Co F xð Þ;GQ1=2
� �h i

¼ n, and

rank Co f x xð Þ;GQ1=2
� �h i

¼ n

,

then: (i) the estimation errors of the filter for the deterministic case, i.e., w(t) = 0 and v(t) = 0,

converge to zero; and (ii) for the case with bounded disturbance and bounded measurement

noise, the estimation errors are bounded, i.e., do not diverge.
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6. Example

This section demonstrates the performance of the RNLS-based estimator on a generalized

nonlinear time-varying Van der Pol differential equation driven by band-limited noise and

noise-corrupted nonlinear measurement. The state is x ¼ ξ _ξ
� �T

interpreted as position and

velocity. The Van der Pol equation is

μ€ξ þ 2c ξ2 � 1
� �

_ξ þ kξ ¼ w

That can be put in matrix form as:

d

dt

ξ

_ξ

	 


¼

0 1

�
k

μ
�
2c

μ
ξ2 � 1
� �

2

4

3

5

ξ

_ξ

	 


þ
0

1

	 


w

The noisy measurement is

y ¼
ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξ2
p þ v

Then, we have

f xð Þ ¼

0 1

�
k

μ
�
2c

μ
ξ2 � 1
� �

2

4

3

5

ξ

_ξ

	 


¼

_ξ

�
kξ

μ
�
2c

μ
ξ2 � 1
� �

_ξ

2

4

3

5

The SDC form system matrix is selected as:

F xð Þ ¼

0 1

�
k

μ
�
2c

μ
ξ2 � 1
� �

2

4

3

5

and the Jacobian is

f x xð Þ ¼

0 1

�
k

μ
þ
4c

μ
ξ _ξ

� 

�
2c

μ
ξ2 � 1
� �

2

4

3

5

m xð Þ ¼
ξ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξ2
p

M xð Þ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξ2
p 0

	 


mx xð Þ ¼
1

1þ ξ2
� �3=2

0

" #
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The observability matrices are

Ob F xð Þ;M xð Þð Þ ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ξ2

p 0

0
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ξ2
p

2

6664

3

7775,

Ob f x xð Þ;mx xð Þ
� �

¼

1

1þ ξ2
� �3=2 0

0
1

1þ ξ2
� �3=2

2

66664

3

77775

and controllability matrices are

Co F xð Þ;GQ1=2
� �

¼
0 1

1 �
2c

μ
ξ2 � 1
� �

2

4

3

5Q1=2

Co f x xð Þ;GQ1=2
� �

¼
0 1

1 �
2c

μ
ξ2 � 1
� �

2

4

3

5Q1=2

The observability and controllability matrices have full rank for all bounded trajectories.

The system and the RNLS estimator were implemented in SIIMULINK® with the following

parameters:

Ts = 0.1 msec Sampling interval

μ = 1 Mass

c = 0.01 Damping coefficient

k = 0.1 Spring stiffness

R = 1e-5 [1/Hz] Spectral density of the measurement noise—v

Q = 1e0 [(1/sec2)2/Hz] Spectral density of the system driving noise—w

Po = [0.001 0; 0 0.001] Initial condition of the P matrix

x(to) = [2 0]T Initial conditions of the state

The measurement noise and system driving noises are white in 100 [rad/sec] bandwidth.

The following figures present the performances of the RNLS filter. Figure 1 presents the

measured output—y and the estimated output versus time. Figure 2 presents the real (true)

position—ξ and the estimated position—bξ versus time. Figure 3 presents the real (true)

velocity— _ξ and the estimated velocity—
_bξ versus time. The transient performance is demon-

strated. Figure 4 presents the filter’s gains: gain of the position state, K1, and the gain of the
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Figure 1. The measured output—y and the estimated output versus time.

Figure 2. The real position—x and the estimated position state—bx versus time.
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Figure 3. The real velocity— _x and the estimated velocity—b_x , versus time.

Figure 4. Filter’s gains, K1 gain of the position state, K2 gain of the velocity state, versus time.
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Figure 5. The terms of the solution of the Riccati equation—P matrix, versus time.

Figure 6. Phase plane plot of velocity versus position estimation errors.
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velocity state, K2, versus time. Figure 5 shows the solution of the Riccati equation matrix, P,

versus time. One can clearly see that the Pmatrix is nonsymmetric P12 6¼ P21.

Figure 6 presents the phase plane plot of the velocity estimation error versus the position

estimation errors. One can see that following the initial transient, the estimation errors concen-

trate around the origin.

7. Conclusions

The mean least square error criterion has been used to derive the optimal estimator for

continuous nonlinear systems with nonlinear dynamics and nonlinear measurement. The

solution is exact, explicit, in closed form, and in recursive form. Simulation example demon-

strates the performance.

Acknowledgements

This research was partially supported by the Prof. Pazy Research Foundation.

Author details

Ilan Rusnak

Address all correspondence to: ilanru@rafael.co.il

RAFAEL, Advanced Defense Systems, Haifa, Israel

References

[1] Kalman RE. A new approach to linear filtering and prediction problems. Transactions of

the ASME. Series D, Journal of Basic Engineering. March 1960;82(1):35-45

[2] Kalman RE, Bucy RE. New results to linear filtering and prediction theory. Transsctions of

ASME, Journal of Basic Engineering. March 1961:95-108

[3] Chan Z. Bayesian Filtering: From Kalman Filters to Particle Filters and Beyond. Adaptive

Systems Laboratory, McMaster University, Hamilton, ON, Canada [Online]. Available

from: http://soma.crl.mcmaster.ca/~zhechen/download/ieee_bayesian.ps

[4] Fleming WH. Deterministic and stochastic approaches to nonlinear filtering. In: Djaferis

TE et al., editors. System Theory: Modeling, Analysis and Control. Norwell, Massachu-

setts: Kluwer Academic Publishers; 2000. pp. 121-130

Optimal State Estimation of Nonlinear Dynamic Systems
http://dx.doi.org/10.5772/intechopen.74284

175



[5] Chen X, Luo X, Yau SST. Direct method for time varying nonlinear filtering problems.

IEEE Transactions on Aerospace and Electronic Systems. April 2017;53(2):630-639. DOI:

10.1109/TAES.2017.2651650

[6] Frost PA, Kailath T. An innovations approach to least-squares estimation—Part III:

Nonlinear estimation in white Gaussian noise. IEEE Transactions on Automatic Control.

June 1971;AC-16(3):217-226

[7] Beneš VE. Exact finite-dimensional filters for certain diffusions with nonlinear drift. Sto-

chastics. 1981;5:65-92

[8] Daum F. Exact finite dimensional nonlinear filters. IEEE Transactions on Automatic Con-

trol. July 1986;31(7):616-622

[9] Bagchi A, Olsder GJ. Linear-quadratic stochastic pursuit-evasion games. Applied Mathe-

matics & Optimization. 1981;7:95-123

[10] Song TL, Speyer JL. The modified gain extended Kalman filter and parameter identifica-

tion in linear systems. Automatica. 1986;22(1):59-75

[11] Rusnak I, Guez A, Bar-Kana I. State observability and parameters identifiability of sto-

chastic linear systems. 1993 IEEE Regional Conference on Aerospace Control Systems,

CACS 93; May 25–27, 1993; Thousand Oaks, Los Angeles

[12] Lipstser RS, Shiryayev AN. Statistics of Random Processes I—General Theory. New York:

Springer Verlag; 1977

[13] Bryson AE, Frasier M. Smoothing for linear and nonlinear dynamical systems. Proceed-

ings of Optimum Systems Synthesis Conference on Wright-Patterson Air Force Base;

February 1963; Ohio. U.S. Air Force Technical Report: ASD-TDR-063-119

[14] Bryson AE, Ho Y. Applied Optimal Control. New York: Hemisphere Publishing; 1975

[15] Jazwinski AH. Stochastic Processes and Filtering Theory. New York: Academic Press; 1970

[16] Rusnak I. Maximum likelihood optimal estimator of continuous nonlinear dynamic sys-

tems. 2014 IEEE 28th Convention of Electrical & Electronics Engineers in Israel (IEEEI

2014); Dec 3–5; Israel

[17] Rusnak I. Maximum likelihood optimal estimator of non-autonomous nonlinear dynamic

systems. ECC 2015, European Control Conference; July 15–17, 2015; Linz, Austria

[18] Mortensen RE. Maximum-likelihood recursive nonlinear filtering. Journal of Optimiza-

tion Theory and Applications. 1968;2(6):386-394

[19] Willems JC. Deterministic least squares filtering. Journal of Econometrics. 2004;118:3441-3373

[20] Simon D. Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches. 1st ed.

Hoboken, New Jersey: John Wiley & Sons; June 23, 2006

Nonlinear Systems - Modeling, Estimation, and Stability176



[21] Mook DJ, Junkins JL. Minimum model error estimation for poorly modeled dynamic

systems. Journal of Guidance, Control, and Dynamics. 1988;11(3):256-261

[22] Mracek CP, Cloutier JR, D’Souza CA. A new technique for nonlinear estimation. Pro-

ceedings of the 1996 IEEE International Conference on Control Applications; September

15–18, 1996; Dearborn, MI

[23] Haessig DA, Friedland B. State dependent differential Riccati equation for nonlinear

estimation and control. 2002 IFAC, 15th Triennial World Congress; July 21–26, 2002;

Barcelona, Spain

[24] Xin M, Balakrishnan SN. A new filtering technique for a class of nonlinear systems.

Proceedings of the 41st Conference on Decision and Control; December 2002; Las-Vegas,

Nevada, USA

[25] Çimen T, Merttopçuoğlu AO. Asymptotically optimal nonlinear filtering: Theory and

examples with application to target state estimation. Proceedings of the 17th World Con-

gress, The International Federation of Automatic Control; July 6–11, 2008; Seoul, Korea

[26] Lin LG. Nonlinear control systems: A state-dependent (differential) Riccati equation

approach [PhD thesis]. KU Leuven and NCTU; September 2014

[27] Liang YW, Lin LG. Analysis of SDC matrices for successfully implementing the SDRE

scheme. Automatica. October 2013;49(10):3120-3124. DOI: 10.1016/j.automatica.2013.07.026

[28] Lin LG, Vandewalle J, Liang YW. Analytical representation of the state-dependent coeffi-

cients in the SDRE/SDDRE scheme for multivariable system. Automatica. 2015;59:106-111

[29] Topputo F, Miani M, Bernelli-Zazzera F. Optimal selection of the coefficient matrix in

state-dependent control methods. Journal of Guidance, Control, and Dynamics. May

2015;38(5):851-873. DOI: 10.2514/1.G000136

[30] Beikzadeh H, Taghirad HD. Exponential nonlinear observer based on the differential

state-dependent Riccati equation. International Journal of Automation and Computing.

August 2012;9(4):358-368. DOI: 10.1007/s11633-012-0656-y

[31] Rusnak I, Barkana I. Stability of the SDDRE based observer for deterministic nonlinear

systems. ECC 2016, European Control Conference; June 29–July 1, 2016; Aalborg, Denmark

[32] Rusnak I. Stability of the SDDRE based estimator for stochastic nonlinear systems. Inter-

national Conference on the Science of Electrical Engineering (ICSEE2016); Nov 16–18;

Eilat, Israel

[33] Rusnak I, Peled-Eitan L. Estimation error stability of the SDDRE based filter. ASCC 2017,

Asian Control Conference; December 17–20, 2017; Gold Coast, Australia

[34] Besançon G. Nonlinear Observers and Applications, (Lecture Notes in Control and Infor-

mation Sciences). Berlin Heidelberg: Springer; 2010

Optimal State Estimation of Nonlinear Dynamic Systems
http://dx.doi.org/10.5772/intechopen.74284

177



[35] Nijmeijer H, Fossen TI. New Directions in Nonlinear Observer Design (Lecture Notes in

Control and Information Sciences). London: Springer-Verlag; 1999

[36] Rusnak I. Comparison of JML, EKF and SDDRE filters of nonlinear dynamic systems. 2016

International Conference on the Sciences of Electrical Engineering in Israel (ICSEE 2016);

Nov 16–18; Israel

[37] Rusnak I, Peled-Eitan L. Least squares error criterion based estimator of nonlinear systems.

ASCC 2017, Asian Control Conference; December 17–20, 2017; Gold Coast, Australia

[38] Rusnak I. H∞ based estimation of nonlinear systems. IEEE Control Systems Letters.

October 2017;1(2):338-363. DOI: 10.1109/LCSYS.2017.2718478

[39] Rusnak I. Optimal joint maximum likelihood-based estimator for discrete nonlinear

dynamic systems. European Journal of Advances in Engineering and Technology. 2015;

2(2):60-68. Available on line http://www.ejaet.com. ISSN: 2394-658X. Preliminary local

conference publication: Rusnak I. Maximum Likelihood Estimator for Discrete Nonlinear

Dynamic Systems, The 55th Israel Annual Conference on Aerospace Science, February 25–

26, 2015, Israel

[40] Peled-Eitan L, Rusnak I. Comparison of RLMSE, EKF and SDDRE filters of nonlinear 17

dynamic systems. European Control Conference, ECC 2018; June 12–15, 2018; Limassol,

Cyprus

[41] Kwakernaak H, Sivan R. Linear Optimal Control. New York: JohnWiley & Sons, Inc.; 1972

[42] Abou-Kandil H, Freiling G, Ionescu V, Jank G. Matrix Riccati Equations in Control and

Systems Theory. Basel, Switzerland: Birkhäuser Verlag; 2003

[43] Freiling G, Jank G. Non-symmetric matrix Riccati equations. Journal for Analysis and Its

Applications. January 1995:14(2);259-284. DOI: 10.4171/ZAA/675

[44] Freiling G. A survey of nonsymmetric Riccati equations. Linear Algebra and its Applica-

tions. 2002. 351–352 and 243–270

[45] Kremer D, Ştefan R. Non-symmetric Riccati theory and linear quadratic Nash games. In:

Proceedings of MTNS 2002 conference. USA: University of Notre Dame; 2002

[46] Jank G, Kremer D. Open loop Nash games and positive systems solvability conditions for

non-symmetric Riccati equations. In: Proceedings of MTNS 2004, Katolieke Universiteit,

Leuven, Belgium, July 2004 (in CD ROM)

[47] Rusnak I. Mean squares error based estimation of nonlinear system with prescribed

convergence rate. The 57th Israel Annual Conference on Aerospace Science; March 15–16,

2017; Israel

Nonlinear Systems - Modeling, Estimation, and Stability178


