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Abstract

In the given chapter, free vibrations of different nonlinear mechanical systems with one-
degree-of-freedom, two-degree-of-freedom, and multiple-degree-of-freedoms are reviewed
with the emphasis on the vibratory regimes which could go over into the aperiodic motions
under certain conditions. Such unfavorable and even dangerous regimes of vibrations
resulting in the irreversible process of energy exchange from its one type to another type
are discussed in detail. The solutions describing such processes are found analytically in
terms of functions, which are in frequent use in the theory of solitons.

Keywords: soliton-like solution, nonlinear mechanical systems, free vibrations, method of
multiple time scales, suspension bridge

1. Introduction

It is known [1] that the periodical transfer of energy from one type to another is made possible

during vibrational processes occurring in nonlinear mechanical systems. This phenomenon is

called energy exchange [2, 3].

Investigations on the energy exchange originate from the chapter [4], wherein the authors

studied small nonlinear vibrations of a two-degree-of-freedom (2dof) system consisting of a

load suspended on a linearly elastic spring and executing pendulum vibrations and vibrations

along the spring’s axis in the same vertical plane. In spite of the apparent simplicity of that

system, it realistically explains some phenomena occurring during vibrations of more complex

nonlinear systems and in particular describes all types of energy exchange from pendulum

vibratory motions into oscillatory motions along the spring’s axis, and vice versa: the periodic
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and aperiodic energy interchange, as well as stationary regimes during which the energy

exchange is absent.

The energy-exchange mechanism in a similar nonlinear 2dof system has been studied in [5, 6].

The system was made up of two loads, one of which was suspended on a linearly elastic spring

and executed vertical vibrations, and the other was suspended on an unstretched rod and

executed pendulum vibrations in the same vertical plane. Reviews devoted to nonlinear

vibrations of 2dof systems can be found in [2, 3].

However, the energy transfer is observed during free vibrations of different nonlinear mechan-

ical systems: possessing one-degree-of-freedom (1dof), two- (2dof), and more degrees-of-free-

dom (multiple-dof), and as well as having infinite number of degrees-of-freedom (deformable

solids). The internal resonance is realized when magnitudes of natural frequencies of two natural

modes belonging to the different types of vibrations of the system (partial subsystems) are

approximately equal to each other or one of them two to three times larger than the other. This

phenomenon is particular evident in modern engineering structures which are very light and

flexible due to the application of present-day materials, resulting in finite displacements of

individual structural elements as well as of the structure as a whole. Among such construc-

tions are suspension-combined systems: suspension and cable-stayed bridges, suspension

roofs in large public and industrial buildings, and so on. Suspension-combined systems and

suspension bridges, in particular, are distinguished by high esthetic merits, and many of them

are referred to the most remarkable up-to-date engineering structures. For example, “Golden

Gate” suspension bridge in San Francisco with the span of 1281 m, cable-stayed bridge in

Cologne with the span of 690 m, suspension roofing of Olympic sport complex in Moscow, and

many others.

The majority of papers devoted to the dynamic behavior of suspension-combined systems

studies free nonlinear vibrations of suspension bridges with a thin-walled stiffening girder

[7–11]. Different dynamic loads (wind, seismic excitation, moving loads, etc.) after the comple-

tion of acting on a suspended structure setup prolonged free nonlinear vibrations of this

structure, in so doing both vertical and flexural-torsional vibrations could be excited. One of

the most unfavorable nonlinear effects, which is observed in suspension systems during free

vibrations, is just the “energy exchange” from one type of vibratory motions into the other

under the conditions of the internal resonance.

The intensity and frequency of energy exchange between strongly coupled modes essentially

depend on an absolute level of the initial amplitudes [7, 8, 11, 12] which is governed by the

value of the initial mechanical energy of the system.

However, the qualitative character of the energy exchange is dependent on the relative level of

initial amplitudes which is independent of the system’s initial energy and is defined as the

ratio of the initial amplitudes of the two interacting modes [9]. It has been found in [9] that in

accordance with a value of that level, three types of an energy-exchange mechanism exist: two-

sided energy exchange (a periodic energy exchange from one subsystem to another), one-sided

energy exchange (one subsystem completely or partially transfers the energy to another), and

energy exchange does not occur (stationary vibrations). Among the three types of the behavior
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of the mechanical system, the second one may occur to be the most unfavorable. As for the

behavior of a suspension bridge, then the most hazardous type is the irreversible transfer of

the energy of vertical vibrations into the energy of its torsional vibrations in the case of a

bisymmetrical stiffening girder or into the energy of flexural-torsional vibrations in the case of

a mono-symmetrical girder. This is due to the fact that suspension bridges possess a rather

higher flexural rigidity than torsional one, that is, they perceive better than those dynamic

loads that result in vertical vibrations.

Solutions describing the one-sided energy transfer occurring in mechanical systems we shall

call as soliton-like solutions, since the functions entering in such solutions are widely met in the

theory of solitons [13, 14].

In this chapter, it is shown that solutions of such a type exist both in 1dof systems and in

systems possessing two- and more degrees-of-freedom.

2. A one-degree-of-freedom system

The phenomenon of energy transfer, when one type of the energy completely and irreversibly

goes into another type of the energy as time passes, can be observed on such a simple object as

a mathematical pendulum (Figure 1).

In order to demonstrate this, let us consider the expression for the total mechanical energy of

the mathematical pendulum which is combined from the kinetic energy

ð1Þ

and the potential energy (Figure 1)

Figure 1. A mathematical pendulum.
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ð2Þ

and has the form

ð3Þ

where an overdot denotes a time derivative, l is the string length, g is the gravity acceleration,

m is the load mass, is its velocity, and is the angle of the string’s deflection from the

vertical.

Rewrite Eq. (3) in the dimensionless form

ð4Þ

where and

Consider the case of motion of the mathematical pendulum when its energy E is exactly equal

to 4E0. Then, the law of conservation of energy Eq. (4) gives the simple relationship [15].

ð5aÞ

or

ð5bÞ

Dividing the variables in Eq. (5b), integrating separately the right and left parts of the relation-

ship obtained, and considering that at t = 0 yield

ð6aÞ

or

ð6bÞ

Differentiating Eq. (6b) over t, we find

ð7Þ

Reference to Eqs. (6) and (7) shows that if the mathematical pendulum begins its motion from

the extreme low position, then at t!∞ its velocity , in so doing does not vanish
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anywhere, and the angle , that is, the pendulum, tends to take the upper position of

equilibrium which is an unstable one. As this takes place, the kinetic energy completely trans-

forms into the potential energy. This solution is the soliton-like one, since the functions arctan

and ch are frequently met in soliton solutions.

If one represents the phase trajectories of the pendulum motion on the phase plane

at different magnitudes of the energy E, then solution (6) will correspond to the phase trajec-

tory which is called as a separatrix. This line divides closed trajectories from nonclosed ones

(Figure 2). Closed and nonclosed trajectories are consistent with the solutions for the periodic

transfer of the potential and kinetic energies into each other, in doing so in the first case, the

pendulum will vibrate, and in the second one, it will rotate around the point of suspension.

3. A two-degree-of-freedom system

3.1. Governing equations

Now, consider a 2dof system presented in Figure 3. The kinetic T and potential Π energies of

such a system have the form

ð8aÞ

ð8bÞ

where , k is the elastic spring rigidity, m1 and m2 are the masses of the first

and second loads, respectively, y is the vertical displacement of the first load, and is the angle

of the pendulum’s deflection.

Figure 2. Phase portrait describing vibrations of mathematical pendulum.
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Applying Lagrange equations of the second kind [15]

and considering Eq. (8), the system’s equations of motion in the dimensionless form within an

accuracy of the values of the second order of smallness with respect to y and can be written

as follows:

ð9aÞ

ð9bÞ

where

Suppose that the linear natural frequency is twice as large than the linear natural frequency

, that is,

Figure 3. Scheme of a 2dof mechanical system.
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ð10aÞ

or the linear natural frequency and the linear natural frequency are equal to each other,

that is,

ð10bÞ

It is said that the system is being under the conditions of the two-to-one internal resonance or the

one-to-one internal resonance if the condition Eq. (10a) or (10b) is fulfilled, respectively [2].

For analyzing nonlinear vibrations of the systems subjected to the internal resonance (10),

assume that the amplitudes of vibrations are small but finite values and weakly vary with

time. Then, perturbation technique could be used to construct the solution of the set of Eq. (9),

and, particularly, the method of multiple time scales [16].

3.2. Method of solution

An approximate solution of Eq. (9) can be represented by an expansion in terms of different

time scales limiting by the values of the third order of smallness in

ð11aÞ

ð11bÞ

where Tn ¼ ε
nt (n = 0,1,2…), and is a small parameter.

Substituting Eq. (11) into Eq. (9), considering that

and equating the coefficients of like powers of , one obtains, to order ,

ð12Þ

to order ,

ð13Þ

to order ,
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ð14Þ

The solution of Eq. (12) could be sought in the form

ð15Þ

where A1 and A2 are unknown complex functions, while and are the complex conjugates

of A1 and A2, respectively.

3.2.1. The case of a two-to-one internal resonance

Substituting Eq. (15) into the right-hand sides of Eq. (13) yields

ð16Þ

where cc denotes complex conjugate parts of the preceding terms.

The functions , ,

entering into the right-hand sides of Eq. (16) produce secular terms in the expression for

and , that is, the terms of the type of and . Since secular terms increase

without any limits as time goes on, then there is a need to eliminate them by equating the

coefficients standing at the enumerated functions to zero. As a result, we obtain

ð17aÞ

ð17bÞ

Multiply Eq. (17a) by and Eq. (17b) by and find the complex conjugate equations. Two

mutually conjugated equations first add to each other and then subtract one from another. As a

result of such a procedure, we obtain more convenient set of four equations:
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Representing the functions A1 and A2 in a polar form

ð18Þ

we can rewrite the set of four differential equations as

ð19aÞ

ð19bÞ

ð19cÞ

ð19dÞ

where an overdot denotes differentiation with respect to T1, and .

Eliminating the value from Eqs. (19a) and (19b) and integrating the net relation-

ship with respect to T1 yield

ð20Þ

where E0 is the initial magnitude of the system’s energy, which represents the law of conser-

vation of the total mechanical energy of the system under consideration. Expression (20) is the

first integral of the set of Eq. (19).

Introducing a new function such that

ð21Þ

and substituting Eq. (21) in Eq. (19a), we have

ð22Þ

where .

Doubling both sides of Eq. (19d) and subtracting from the net relationship Eq. (19c) with due

account for Eq. (21) and
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we obtain

ð23Þ

Putting

ð24Þ

and substituting Eq. (24) into Eqs. (22) and (23), we are led to the equation

ð25Þ

Separating the variables in Eq. (25) and integrating the equation obtained yield

ð26aÞ

or

ð26bÞ

where is an arbitrary constant determined from the initial

conditions, and and are the initial magnitudes of the values ξ and δ, respectively. Note

that relationship (26b) is the other first integral of the set of Eq. (19).

Finely, let us eliminate the value from Eqs. (26a) and (22), resulting in

ð27Þ

Separating the variables in Eq. (27) and integrating the net expression, we obtain implicitly the

desired function

ð28Þ

where is the value defining the relative level in the initial amplitudes.

The integral in Eq. (28) can be transformed into an incomplete integral of the first kind, which

is tabulated in [17].
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At G0 = 0, the integral in Eq. (28) can be calculated, in so doing, it possesses two magnitudes.

Really, changing the variable in the integral in Eq. (28) at G0 = 0, we have the first

magnitude

ð29aÞ

and the second magnitude

ð29bÞ

Considering Eq. (29), the solutions of Eq. (28) may be written in the following form:

the first solution

ð30aÞ

or

ð30bÞ

and the second solution

ð31aÞ

or

ð31bÞ

Solutions (30b) and (31b) at and 1 describe the motions corresponding to the one-sided

energy exchange between pendulum’s vibrations and vertical vibration of the load. As this

takes place, and in the first and second solutions, respectively, with the increase in

time . In other words, in the first solution, the energy of vibrations of the pendulum

completely transforms into the energy of vertical vibrations of the load, but in the second

solution, quite the reverse, the energy of vertical vibrations of the load completely goes into

the energy of vibrations of the pendulum.
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In the first solution, the process of energy transfer occurs over an infinitely large time interval,

which resembles the phenomenon of the transfer of the kinetic energy into potential one,

which is described by the soliton-like solution (6b) for the mathematical pendulum.

In the second solution, the process of energy transfer occurs during a finite instant of the time

from 0 till , where

According to our classification, both of them are the soliton-like solutions. At from

(30b), we obtain the known soliton-like solution in the form of a single kink [13].

ð32Þ

Physically speaking, this solution kink is responsible to the one-sided energy exchange when

the energy of the pendulum vibration completely transforms with time into the energy of the

vertical vibrations which energy was equal to zero at the initial moment of time, so the

pendulum vibrations give way to the vertical vibrations.

In order to understand the physical meaning of the first integral (26b), let us introduce into

consideration the phase plane and analyze on this plane the phase fluid flow that

interprets the motion of the mechanical system in hand. The velocity vector V of the phase

fluid particles motion has the components and . From Eqs. (22) and (23), it

follows that

ð33Þ

Writing the equation of a streamline of the phase fluid and substituting Eq. (33) in it,

we obtain that the function defined by the relationship (26b) is the stream function of the

phase fluid. In other words, Eq. (26b) at different magnitudes of and governs a family of

the streamlines of the phase fluid. Since the phase fluid is incompressible (div V = 0) and its

flow is steady and solenoidal (rot V 6¼0), then streamlines of the phase fluid will coincide with

trajectories of the phase fluid particles motion.

Streamlines constructed according to the relationship

ð34Þ

at different magnitudes of and are presented in Figure 4, where digits near the curves

denote the magnitudes of the value . Reference to Figure 4

shows that all phase trajectories are closed lines located around the perimeter of the rectangle
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bounded by the lines . The flow in each rectangle is

isolated. On all four rectangle sides, and inside it the value preserves its sign. On the

closed streamlines, a two-sided energy exchange takes place between the partial subsystems.

Along the lines , a one-sided energy interchange occurs corresponding to pure

amplitude-modulated aperiodic motions, in so doing on the lines with ascending flow of the

phase fluid particles (an arrow is directed upwards), the aperiodic regime is described by

Eq. (30b), and on the lines with descending flow (an arrow is directed downwards), the

aperiodic regime is governed by Eq. (31b). On the line , there exists the boundary phase-

modulated regime. The transition of fluid elements from the points with the coordinates

to the points proceeds instantly. The points with coordi-

nates , correspond to the stable stationary regimes.

3.2.2. The case of a one-to-one internal resonance

To construct the solution in the case of a one-to-one internal resonance (10b), it will suffice to

restrict consideration to the terms of the order of and to consider the amplitudes and

as functions of and .

The resonance (10b) is weaker than (10a), since in order to eliminate circular terms arising in

the second approximation, it would suffice to consider the functions and dependent on

only [18]. Under such an assumption, the set of equations providing the absence of circular

terms in the expressions for and has the form

Figure 4. Phase portrait in the case of the two-to-one internal resonance .
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ð35aÞ

ð35bÞ

ð35cÞ

ð35dÞ

where overdots denote differentiation with respect to , and .

The two first integrals of the system (35) have the following form:

ð36Þ

ð37Þ

in so doing

where , the function ξ (T2) is connected

with and by the relationships

and the rest of the values have the same meaning as in the abovementioned case (10a).

Streamlines constructed according to Eq. (37) at different magnitudes of and are

presented in Figure 5 when and . Magnitudes of the value that

correspond to the streamlines are indicated by digits near the curves; the flow direction of the

phase fluid elements is shown by arrows on the streamlines. Reference to Figure 5 shows that

there exist two types of the streamlines, namely (1) nonclosed which correspond to the peri-

odic change of amplitudes and the aperiodic change of phases and (2) closed ones which

correspond to the periodic change of both amplitudes and phases. The alignment of the

circulation zones resembles that of Von Karman vortex streets with a symmetric arrangement.

The adjacent circulation zones osculate at the saddle points with the coordinates

and , wherein the unstable stationary regime occurs.

On the boundary lines of these zones (separatrixes), the value , and the analytical

solution corresponding to the soliton-like regime has the form
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ð38Þ

where the sign “+” fits to the initial magnitudes ,

and but the sign “–” conforms to the

initial magnitudes , and

The upper branch of the separatrix describes the partial irreversible energy transfer from the

vertical vibrations to the pendulum vibrations, but the lower branch, on the contrary, is in

compliance with partial irreversible transfer of the energy of the pendulum vibrations to the

energy of the vertical vibrations.

The points with coordinates (points like a center)

corresponding to the stable stationary regime are located inside closed streamlines.

4. System with an infinite number of degrees-of-freedom

Similar solutions corresponding to the one-sided energy interchange could be obtained for

more complex nonlinear systems that describe dynamic behavior of real structures, as an

Figure 5. Phase portrait in the case of the one-to-one internal resonance.
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example, for systems with an infinite number of degree-of-freedom. Among such systems are

suspension bridges, the scheme of one of them is shown in Figure 6.

The suspension bridge scheme presents a bisymmetrical thin-walled stiffening girder, which is

connected with two suspended cables by virtue of vertical suspensions. The cables are thrown

over the pilons and are tensioned by anchor mechanisms. The suspensions are considered as

inextensible and uniformly distributed along the stiffening girder. The cables are parabolic,

and the contour of the girder’s cross section is undeformable. The cross section l – l in Figure 6

illustrates the displacements of the girder’s contour during vibratory motions of the suspen-

sion system. Reference to this scheme shows that the girder’s contour translates as a rigid body

vertically (in the y-axis direction) on the value of and rotates with respect to the girder’s

axis (the z-axis) through the angle of . The origin of the frame of references is in the center

of gravity of the cross section.

It is known for suspension bridges [8] that some natural modes belonging to different types of

vibrations could be coupled with each other, that is, the excitation of one natural mode gives

rise to another one. Two modes interact more often than not, although the possibility for the

interaction of a greater number of modes is not ruled out.

If only two modes predominate in the vibrational process, namely the vertical п-th mode with

linear natural frequency and the torsional m-th mode with the natural frequency , such

that the modes interaction is observed under the conditions (10a) or (10b), then the functions

and can be approximately defined as

ð39Þ

where x1n and x2m are the generalized displacements, and and are natural shapes

of the two interacting modes of vibrations.

The resolving system of equations in a dimensionless form is written as [7, 8]

ð40Þ

Figure 6. Scheme of a suspension bridge.
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where the coefficients , , and are defined in [7]. Subsequently, for the

ease of presentation, the indices n and m will be omitted.

An approximate solution of Eq. (40) for small but finite amplitudes could be written as an

expansion in terms of different time scales in the following form [16]:

ð41Þ

The number of the independent time scales needed depends on the order to which the expan-

sion is carried out. Here, is the first scale characterizing motions with the natural

frequencies and , and are slow scales characterizing the modulations of the amplitudes

and phases.

Substituting Eq. (41) into Eq. (40) and equating the coefficients of like powers of ε, we obtain

on each step a set of two linear equations. On the first step, it is convenient to seek the solution

in the form:

ð42Þ

where and are unknown complex functions, and and are the complex conjugates of

and , respectively.

Substituting Eq. (42) into the set of equations obtained on the first step and using the second

step to eliminate secular terms, as well as representing the functions and in the polar

form we are led to the following system of equations for

the case of the two-to-one internal resonance (10a):

ð43Þ

where is an unknown function, , ,

is the system’s initial energy, , , and an overdot denotes differ-

entiation with respect to .

Representing and considering Eq. (43) yield

ð44Þ

The solution to Eq. (44) has the form
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ð45Þ

where is an arbitrary constant determined from the initial conditions. Note that relationship

(45) is similar to the first integral (26b) for a two-degree-of-freedom system.

In the case of the one-to-one internal resonance (10b), we seek the solution in the form of

Eq. (42) also. Using the procedure for the elimination of secular terms, we obtain the following

set of equations:

ð46Þ

where is an unknown function, , is the system’s

initial energy, , , an overdot denotes differentiation with

respect to , and the coefficients and dependent upon the system

parameters [8].

Representing and using Eq. (46) yield

ð47Þ

The solution to Eq. (47) has the form

ð48Þ

where is an arbitrary constant determined from the initial conditions.

Eliminating the variable γ in Eq. (48) and in the second equation of (46) and integrating over

yield

ð49Þ

where is a value determined by the relative level of the initial amplitudes, and the quantities

, , and are the coefficients [11]. The integral in Eq. (49) can be transformed to an

incomplete elliptic integral of the first kind [17].

4.1. Soliton-like solutions

As examples, the nonlinear free vibrations of the Golden Gate Bridge in San Francisco are

considered. All geometrical data, as well as natural frequency spectra and mode shapes for this

one of the most beautiful suspension bridges, are available in [19].
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It can be shown that under the relationship among the natural frequencies rad/s

(a two-to-one internal resonance between the sixth symmetrical mode of vertical vibrations and

the first symmetrical mode of torsional vibrations), one can obtain the analytical solution in the

form of a single kink (32), where B should be replaced by the coefficient b defined by the system’s

parameters according to Eq. (43). The physical sense of this solution kink is that it is responsible for

the one-sided energy exchange when the energy of the torsional vibrations completely transforms

into the energy of the vertical vibrations with time, so that the torsional vibrations initiate the

vertical vibrations [20].

Under the relationships among the natural frequencies, rad/s and

rad/s (a one-to-one internal resonance), the analytical solutions may be found by solving Eq. (49),

respectively, as [20]

ð50Þ

where denotes the evaluation at the upper and lower limits of integration.

In the first case of Eq. (50), the coefficients and in the integral (49) become zero, and the

analytical solution corresponding to the separatrix describes a one-sided energy

transfer from the vertical vibration to the torsional vibration (a low aperiodic regime), which

leads in time to the conversion of the flexural-torsional vibrations to the predominantly tor-

sional vibrations. This regime is the most unfavorable and dangerous for suspension bridges.

In the second case of Eq. (50), the analytical solution corresponding to the separatrix

describes a one-sided energy transfer from the torsional vibration to the vertical

vibration (an upper aperiodic regime), so that the flexural-torsional vibrations evolve into the

predominantly vertical vibrations with time.

The solutions obtained may be interpreted on the phase plane by virtue of streamlines of

the phase fluid which is demonstrated in Figures 5 and 7 for solutions (32) and (50), respec-

tively. Digits near curves indicate the magnitudes of the values and corresponding to the

streamlines.

The analysis of the phase portraits in terms of the variables ξ and γ for various oscillatory

regimes demonstrates that they contain both closed and nonclosed streamlines which are

separated by the curves separatrixes. Along the separatrixes, one succeeds in finding analytical

solutions that are inherently soliton-like solutions in the theory of vibrations and describe the

complete one-sided energy transfer from one subsystem to another.

Note that soliton-like solutions could be found also in an analytical form for the case of free

damped vibrations of a suspension bridge, when damping features of the system are described
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by ordinary first-order time derivative [21] or defined by a fractional derivative with a frac-

tional parameter (the order of the fractional derivative) changing from zero to one [22].

5. Conclusions

From the review presented, the following conclusions could be deduced. In all considered

vibratory systems—1dof, 2dof, and multi-dof—under certain conditions, there exist solutions

that describe irreversible processes of energy transfer from its one type to another. Such

solutions are called soliton-like solutions and could be written in an analytical form.

Figure 7. Phase portraits: (a) , and (b)
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On the phase plane, these solutions correspond to streamlines which separate closed lines of

phase fluid flow from nonclosed ones. These lines are called separatrixes.

Since soliton-like solution may describe unfavorable vibratory regimes of real mechanical

systems, then they should be investigated systematically by virtue of mathematical models of

these systems, in order to avoid, wherever possible, such dangerous vibratory regimes when

designing and constructing real structures. A thorough analysis of internal resonances in thin

plates and cylindrical shells could be found in [23, 24] and [25, 26], respectively.

Soliton-like solutions in the cases of combinational internal resonances for systems with an

infinite number of degrees-of-freedom, when more than two natural modes of vibration are

coupled, could be found in sight as well, and such examples for nonlinear plates and cylindri-

cal shells are presented in [27, 28] respectively.
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