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Abstract

Counter electrode (CE), as one of the key components of dye-sensitized solar cells 
(DSSCs), plays a significant role in the overall efficiency and cost of the device. Platinum 
metal has long been considered one of the most efficient CEs for DSSCs, but its scarcity, 
high cost, and low stability in I−/I

3
− redox couple limit its application in the large scale. In 

this chapter, we provide a broad overview on porous carbon materials as supreme metal-
free counter electrode for DSSCs. In the first part, we concisely discuss on the importance 
and working principle of DSSCs and then the influence of counter electrode on the pho-
tovoltaic performance of DSSCs. Afterward, we review different synthetic methods and 
precursors of porous carbon materials and their efficiency in DSSCs. In the last section, 
we discuss in detail with example how to characterize and evaluate the device perfor-
mance using porous carbon materials as counter electrode. Finally, we finish this chapter 
with a brief summary and outlook of porous carbon materials as counter electrodes in 
DSSCs.

Keywords: porous carbon, synthesis, characterization, counter electrode, dye-sensitized 
solar cells

1. Introduction

As the third-generation solar cells, dye-sensitized solar cell (DSSC) is one of the most promis-

ing alternatives to the silicon solar cells, due to their simple assembly procedure, good plas-

ticity, transparency, mechanical robustness, ability to work at wider angles, and in low light 

and environmental friendliness [1, 2]. After a significant breakthrough in the photoelectric 
conversion efficiency (7.1–7.9%) of DSSCs in 1991, through introducing mesoporous film of 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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TiO
2
 nanocrystalline to adsorb dye instead of planar semiconductor electrode by O’Regan and 

Grätzel research group [3], DSSCs have stimulated a great research interest over the following 
25 years and attained an efficiency of ca. 14% [4, 5].

The working principle of DSSCs is not similar to conventional solar cell, but it is similar to 
natural photosynthesis process where light absorption and charge carrier transportation have 
different substances, as shown in Figure 1. DSSCs consist of three important components: 
dye-coated TiO

2
 film, counter electrode (CE), and electrolyte (or redox shuttle). In the DSSCs, 

after photoexcitation of sensitized dye, electrons from the LUMO level of dye molecule are 
injected into the conduction band of semiconductor metal oxide. Then, electrons transport 
to the anode and flow to the counter electrode (CE) via an external circuit. Finally, mediator 
electrolyte through reduction and oxidation carries electrons from counter electrode to the 

HOMO level of dye molecules, and dye is regenerated. This cycle is repeated again and again, 
and the device generates electric power continuously.

In this overall process of electron transfer, counter electrode plays a significant role on the 
photovoltaic parameters of DSSCs. The theoretical maximum photovoltage or open-circuit 
voltage of the DSSCs is higher than the output voltage after loading. This voltage loss is due to 
the mass transfer overpotential and the kinetic overpotential or charge transfer over potential. 
The former is mainly attributed to the ionic conductivity of electrolytes and the transportation 
of mediator species from the CE to the photoanode, whereas the latter is from the electrocata-

lytic activity of the CE surface toward mediator [6, 7]. The catalytic activity of the CEs can be 

Figure 1. Schematic representation of the working principle of DSSCs.
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explained in terms of current density J
o
 which is calculated from the charge transfer resistance 

(R
ct
) by Eq. (1):

   J  
o
   =   RT _____ 

 nFR  
ct
  
    (1)

where R, T, n, and F are the gas constant, the temperature, the number of electrons transferred 

in the elementary electrode reaction (n = 2), and the Faradays constant, respectively.

The overall performance of solar cell is evaluated by the solar-to-electrical energy conversion 
efficiency, η, which is given by Eq. (2):

  η =   
 J  
SC

    V  
OC

   FF
 _______ 

 P  
in
  
     (2)

where J
sc
 is the short-circuit current, V

oc
 is the open-circuit voltage, FF is the fill factor, and P

in
 is 

the incident light intensity. FF depends on the charge transfer resistance, on series resistance, 
as well as on the overvoltage for diffusion and electron transfer. Low charge transfer resis-

tance, series resistance, and overvoltage for diffusion and electron transfer lead to a higher FF 
value, thus resulting in greater efficiency and pushing the output power of the solar cell closer 
toward its theoretical maximum.

As low-cost and environmentally friendly materials, porous carbon has high surface area, 
high catalytic activity, high stability in I−/I

3
− redox shuttle, and better performance than the Pt 

CEs. The goal of this chapter is to discuss about the synthesis, characterization, and photovol-
taic performance of porous carbon materials as supreme counter electrode for DSSCs.

2. Porous carbon materials as counter electrodes for DSSCs

As counter electrode (CE) is one of the most crucial components regulating the efficiency of 
DSSCs by catalyzing the reduction of the redox couples used as mediators to regenerate the 

sensitizer after electron injection, it is important to find a low-cost, high-efficiency, easy scal-
ability, and corrosion-stable counter electrode. Platinum (Pt) has been widely employed as 
the standard CE in DSSCs due to its high catalytic reduction for redox shuttles, good chemical 
stability, and high conductivity. However, Pt is an expensive and scarce noble metal, which 
causes a problem for its large-scale production.

Carbon materials are one of the promising substitutes of Pt CE due to their low cost, environ-

mentally friendly, scale availability, high surface area, high catalytic activity, high electrical 
conductivity, high thermal stability, good corrosion resistance toward iodine, high reactiv-

ity for triiodide reduction, etc. In 1996, Kay and Grätzel first explored graphite-carbon black 
mixture as CE and achieved a power conversion efficiency of 6.7% [8]. Thereafter, intensive 
research efforts have been focused on carbonaceous materials, such as carbon black, mesopo-

rous carbon, graphite [9], graphene [10, 11], carbon nanotubes [12–15], and carbon nanofibers 
[16–18], and they have been successfully employed as counter electrodes.
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Among the carbonaceous materials, porous carbon materials have captured extensive atten-

tion as CE materials for DSSCs, owing to its exceptional properties, including ultrahigh sur-

face areas, large pore volumes, and tunable pore sizes and shapes, and also exhibit nanoscale 
effects in their mesopore channels and on their pore walls. High surface areas provide a large 
number of reaction or interaction sites for surface- or interface-related processes such as 

adsorption and catalysis. Moreover, mesopore channels facilitate the transport of atoms, ions, 
and large molecules through the bulk of the material and assist to overcome charge transfer 
resistance [19, 20].

2.1. Synthetic methods of porous carbon materials and photovoltaic performance in 

DSSCs

Porous carbon materials are mainly produced by activation [21, 22] and templating [19, 23–25] 

methods from different precursors, and the efficiency of porous carbon electrodes depends 
on synthesis methods and precursors. The synthetic process of porous carbons by activation 
is simple, low-cost, and environmentally friendly. Also, activated carbons (ACs) have excel-
lent chemical and thermal stability as well as relatively good electrical conductivity. ACs are 
derived from different types of carbon-rich organic precursors (coffee waste, wood, pitch, 
coal, polymers, etc.) by carbonization in inert atmosphere with subsequent physical and/or 
chemical activation or plasma surface treatment. Depending on the activation process and the 
used carbon precursors, a variety of ACs with different physicochemical properties and well-
developed specific surface area (SSA) from 500 to 3000 m2 g−1 have been prepared and used 
as CEs for DSSCs. The high surface area of activated carbons can considerably contribute to 
improving the catalytic activity of the CEs in DSSCs.

Imoto et al. firstly reported that porous carbon materials prepared with an activation process 
were superior to a Pt-sputtered electrode as the DSSC CEs. Moreover, they observed that the 
photovoltaic performance was strongly influenced by the roughness factor and the appar-

ent charge transfer resistance of DSSC CEs. Generally, the roughness factor of the carbon 
electrode becomes larger when a porous carbon material with larger surface area was used. 
Thus, the photovoltaic performance was improved with increasing the roughness factor of  
the carbon-based CE. Also, the apparent charge transfer resistance for redox reaction of I−/I

3
−  

couple on the porous carbon CE decreased with increasing the roughness factor. Therefore, 
back transfer of the photoinjected electrons to the oxidized dyes and/or I

3
− ions was inhibited 

which in turns improved the FF value significantly. Furthermore, the V
oc
 value for the carbon 

counter electrode compared to the Pt counter electrode was increased by about 60 mV, maybe 
because of a positive shift of the formal potential for I−/I

3
− couple [26].

Nitrogen-doped porous carbon nanorods (N-PCNRs) with high accessible surface area were 
prepared by Wang group through carbonization of polyaniline (PANI) nanorods and con-

sequent chemical activation and explored as the DSSC CEs. The unique combination of the 
porosity with high accessible surface area, nitrogen doping, and nanorod structure endows 

the N-PCNR electrode with an excellent electrocatalytic activity for the I
3

− reduction, which 

is illuminated by electrochemical measurement. Under simulated AM 1.5 illumination 
(100 mW cm−2), the DSSC based on N-PCNR counter electrode achieves a conversion effi-

ciency of 7.01%, which is nearly close to that of the cell based on Pt CE (7.25%).
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In their experiment, PANI nanorods were firstly prepared by polymerization of aniline in 
aqueous solution using ammonium persulfate (APS) as the initiator, as shown in Figure 2. Ten 
grams of aniline and 7 g of citric acid were mixed in 500 mL of distilled water, and then 20 g 
of ammonium persulfate was dissolved in 150 mL of distilled water. Afterward, ammonium 
persulfate solution was added into the mixture solution of aniline and citric acid with vigor-

ous stirring. The resulting solution was left standing at about 3°C for 20 h. The obtained dark 
green sample was filtered and washed with distilled water and then dried under vacuum at 
50°C. The as-prepared PANI nanorods were pyrolyzed at 600°C under nitrogen atmosphere 
for 3 h to obtain nitrogen-doped carbon nanorods (N-CNRs). Finally, N-PCNRs were pre-

pared by activating N-CNRs with KOH [27].

Recently, H. K. Kim group synthesized anchovy-derived nitrogen and sulfur Co-doped 
porous carbons (AnCs) by a simple carbonization and alkali activation method for DSSC CEs, 
as shown in Figure 3. Typically, a three-step strategy was used to prepare the activated car-

bon. Firstly, a dried anchovy powder was weighed and transferred into a quartz tubular fur-

nace and then pre-carbonized at 300°C for 1 h under atmosphere, yielding a pre-carbonized 
material. An activation and carbonization process was sequentially carried out as follows: The 
pre-carbonized material was mixed with various mass ratios of KOH and then directly heated 
at an elevated temperature (700, 800, 900°C) for 2 h under inert nitrogen atmosphere. Finally, 

Figure 2. Preparation of nitrogen-doped porous carbon nanorods (N-PCNRs) [27] (copyright (2017) Elsevier).

Figure 3. Approximate composition of a dried anchovy powder and schematic illustration for the preparation of anchovy-
derived nitrogen and sulfur co-doped porous carbon materials [28] (copyright (2017) Royal Society of Chemistry).
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the anchovy-derived activated carbon obtained was washed several times with aqueous 2 M 
HCl solution and deionized water in order to remove the potassium compounds and any 
impurities. After filtration, the samples were dried at 70°C in an electric vacuum oven.

The anchovy-derived activated carbons as a DSSC CE exhibited superior PCE of 12.72% to the 
Pt CE with 12.23%. It is ascribed to an improved fill factor caused by its better electrocatalytic 
ability [28]. To the best of our knowledge, this PCE is the highest efficiency value reported for 
DSSCs based on carbon nanomaterial-based CEs. Table 1 summarizes porous carbon materi-

als produced by activation and their precursors with photovoltaic performance.

Although activated carbon possesses high surface area, but most of the pores are micropore 
which may increase diffusion impedance of electrolytes into the pore of CEs especially 
for the bulkier redox couples like Co(bpy)

3
2+/3+. Templating method is used to synthe-

size mesopore and macropore carbon materials with connected channel. Depending on 
the template used, templating method can be classified into two classes: hard template 
and soft template. Typically, silica nanoparticles, zeolites, anodic aluminum oxide (AAO) 
films, and mesoporous silica have been used as the hard templates. The synthetic process 
involves the impregnation of carbon precursor into the porous structure of pre-synthesis 
template following the carbonization and removal of the template. On the other hand, soft 
templating involves the self-assembly of copolymers and their direct removal through 
carbonization. Various commercially available triblock copolymers PEO-PPO-PEO (PO, 
propylene oxide; EO, ethylene oxide), such as F127 (EO

106
PO70EO

106
), P123 (EO

20
PO70EO

20
), 

and F108 (EO
132

PO
50

EO
132

), have been extensively used as the soft templates.

Hierarchical nanostructured carbon with a hollow macroporous core of ca. 60 nm in diameter 
in combination with mesoporous shell of ca. 30 nm in thickness was synthesized and explored 
as CE in metal-free organic dye-sensitized solar cells exhibited in Figure 4 [33]. The superior 

CE Precursor Dye-

electrolyte

R
ct

(𝛺 cm2)

FF 

(%)

J
sc

(mA cm−2)

PCE (%) PCE-Pt 

(%)

Reference

AnCs Anchovy SM-315-

Co(bpy)
3

2+/3+

7.56 75.9 18.78 12.72 12.23 [28]

Carbon 

chunks

Coffee waste N719-I−/I
3

− 0.46 72.6 15.09 8.32 8.07 [21]

N-PCNRs Polyaniline N719-I−/I
3

− 2.2 63.0 15.85 7.01 7.25 [27]

HPC Pine cone N719-I−/I
3

− 51.6 13.51 4.98 6.25 [29]

a-NCs Resol N719-I−/I
3

− 7.5 55.0 17.92 6.9 7.1 [30]

Porous 
carbon

Commercial N719-I−/I
3

− 2.2 67.5 15.5 6.1 7.0 [31]

Flexible 
carbon

Commercial N719-I−/I
3

− 0.9 67.3 13.3 6.17 6.37 [32]

Bellfine AP Commercial N719-I−/I
3

− 60.7 7:93 3.89 3.61 [26]

Table 1. Carbon materials produced by activation and their precursors with photovoltaic performance.
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structural characteristics, particularly, the unique hierarchical core/shell nanostructure along 

with 3D large interconnected interstitial volume with large specific surface area and mesopo-

rous volume, were observed compared with other porous carbon counterparts such as acti-
vated carbons and ordered mesoporous carbon CMK-3 (fabricated by replication through 
nano-casting of SBA-15 silica and using phenol as the carbon source) and Pt counter electrode. 
This hierarchical core/shell nanostructural feature with 3D large interconnected interstitial 

volume facilitates mass transportation in hollow macroporous core/mesoporous shell carbon 
(HCMSC), which was synthesized by replicating through nano-casting of solid core/mesopo-

rous shell silica and phenol and paraformaldehyde as precursor, and enables HCMSC to have 
highly boosted catalytic activity toward the reduction of I

3
− and so substantially enhanced 

photovoltaic performance. HCMSC as a DSSC CE displays a V
oc
 of 0.74 V, which is superior to 

that of the Pt CE by 20 mV. Moreover, it also exhibits a fill factor of 0.67 and an energy conver-

sion efficiency of 7.56%, which are markedly higher than those of its carbon counterparts and 
comparable to that of Pt (i.e., fill factor of 0.70 and conversion efficiency of 7.79%). In addi-
tion, superb chemical stability was observed by HCMSC in the liquid electrolyte containing 
I−/I

3
− redox couples, and its initial efficiency of ca. 87% was attained by the HCMSC counter 

electrode-based solar cell, even after 60 days of aging.

Gokhale et al. introduced a laser photochemical process to synthesize broccoli-type hier-

archical morphology for use as a metal-free CE in DSSCs. The method includes pulsed 
excimer laser irradiation on a thin layer of liquid halo-aromatic organic solvent containing 
o-dichlorobenzene (DCB). The obtained coating reflects a self-assembled carbon nanopar-

ticle and process-controlled morphology that yields a PCE of 5.1% which was comparable 
to the PCE of 6.2% with the conventional Pt-based counter electrode [24].

Wang et al. designed and fabricated a novel bioinspired Pt- and FTO-free integrated pure car-

bon counter electrode for DSSCs with orderly mesoporous carbon (OMC) as the catalytic layer 

and a porous carbon sheet as a conducting substrate (see in Figure 5). On a porous conducting 
substrate, a stiff, crustose lichen-like, integrated carbon-carbon architectured composite as 
a catalytic layer was made by a sequential process of spin coating, infiltration, and pyroly-

sis of polymer precursor. To fabricate the integrated pure carbon electrode, porous carbon 
plates (PCPs) were firstly prepared by a bulk molding-carbonization process using cheap coal 
powder as precursor. The permeation of electrolyte through the porous substrate has been  
fairly resolved by impermeable pretreatment through a repeat pitch impregnation-carbonization  
treatment of paraffin-protected PCPs. A phenol-formaldehyde resin solution including 

Figure 4. Typical synthetic scheme for HCMSC capsule [33] (copyright (2010) American Chemical Society).
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Pluronic F127 (EO
106

PO70EO
106

) as a template was spin coated onto the open pore side of the 

conductive substrate and then carbonized at 800°C under inert nitrogen atmosphere. By an 
evaporation-induced self-assembly (EISA) mechanism, an identical mesostructured resin film 
was formed. Successively, a catalytic mesoporous carbon layer that was embedded in the 
porous carbon plate was produced by carbonization. The architecturally integrated carbon-
based CE displays very low charge transfer resistance (R

ct
), owing to the large specific surface 

area of the OMC layer that is accessible to the redox couple, and low series resistance (R
s
), due 

to the high conductivity of the carbon sheet (sheet resistance of 488 m𝛺 cm−1). The values of 
R
s
 and R

ct
 are far lower than those of the platinized fluorine-doped tin oxide glass (Pt/FTO) 

electrode. DSSCs with this CE show higher PCE of 8.11% than the Pt/FTO-based devices with 
the PCE of 8.16% [34].

Heteroatom-doped mesoporous carbons have received a great attention because of their 
enhanced electrocatalytic activity resulted from heteroatoms [35, 36]. The electrocatalytic 
properties of these systems are typically attributed to high charge polarization arising from 
the difference in electronegativity between carbon and heteroatom leading to enhanced charge 
transfer capability and thus increased catalytic activity. Also, to enhance the ordered graphitic 
layer and stability, porous carbon materials are mixed with polymer, transition metal, and 

other nanocarbon materials like graphene and CNTs [37–41].

Wang et al. synthesized activated N-doped porous carbons (a-NCs) by pyrolysis and alkali 
activation of graphene-incorporated melamine formaldehyde resin (MF). To prepare a-NCs, 
firstly a homogeneous mixture of activated graphene (a-G) with melamine and formalde-

hyde was prepared and pre-carbonized in Teflon-lined autoclave at 140°C for 4 h to form 
graphene-incorporated MF resin. The as-prepared graphene-incorporated MF resin compos-

ite then carbonized at 800°C for 2 h in N
2
 atmosphere followed by activation with KOH, 

yielding a-NCs. a-NCs with the moderate N-doping level, mesopore-rich porous texture, 
and incorporation of graphene enable the applications of a-NCs in electrode materials with 

high specific surface area and good conductivity for dye-sensitized solar cell (DSSCs). At the 

Figure 5. The fabrication procedure of the integrated pure carbon counter electrode for DSSCs [34] (copyright (2013) 

Royal Society of Chemistry).
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 optimum activation temperature of 700°C, the obtained sample, labeled as a-NC700, pos-

sesses a satisfactory graphitization, a specific surface area of 1302 m2 g−1 and an N fraction 

of 4.5%. A PCE of 6.9% is reached, when as-prepared a-NC700 used as a DSSC CE, which is 
comparable to that of the Pt CE-based DSSC (7.1%) [30].

H. K. Kim group prepared copolymer-templated nitrogen-enriched nanocarbons (CTNCs) 
and observed the better PCEs for both I−/I

3
− and Co(bpy)

3
2+/3+ redox couples. CTNCs were syn-

thesized by the pyrolysis of PAN-b-PBA copolymer as shown in Figure 6.

The block copolymer was pyrolyzed at 600–1000°C for 0.5 h under N
2
 gas flow (150 mL min−1) 

at a heating rate of 10°C min−1, after stabilization through the cross-linking of the PAN block 
at 280°C for 1 h under air flow (150 mL min−1) at a heating rate of 1°C min−1, purged with N

2
 

gas for 1 h during cooling. Superior performance in catalytic activity toward the reduction 
of Co(bpy)

3
2+/3+ compared to the conventional Pt CE was observed. The detected remarkable 

activity of CTNCs is owing to their distinctive electronic properties stemming from the pres-

ence of nitrogen heteroatoms placed on the edges of nanographitic domains in combination 

with high specific surface area delivered by a three-dimensional, hierarchical pore structure. 
Overall, the application of CTNC CEs enhanced the efficiency and fill factor (FF) of JK-306 dye 
and Co(bpy)

3
2+/3+ redox couple-based DSSCs at one sun illumination, up to 10.32 and 73.5%, 

respectively, suggesting the substantial potential of these materials as an striking substitute 
to expensive Pt-based CEs [42].

Hasin group prepared Co or Ni species incorporated N-doped mesoporous carbon (Co-N-MC 

or Ni-N-MC) with high specific surface area and observed brilliant electrocatalytic activity 
toward the electrochemical reaction of I−/I

3
− redox couple in DSSC systems as compared with 

N-doped mesoporous carbon (N-MC) displayed in Figure 7.

Co-N-MC and Ni-N-MC were synthesized on the basis of replication through nano-casting 

of SBA-15 mesoporous silica. The polymerization of aniline was conducted in the pore of  
SBA-15 mesoporous silica functionalized with alkyldiamine group. Cobalt(II) or nickel(II) ion 
was doped in the polyaniline (PANI) within the pores of SBA-15 followed by pyrolyzing in 

Figure 6. Schematic representation of preparation of CTNC [42] (copyright (2015) Royal Society of Chemistry).
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quartz tube. The considerable photoelectric conversion efficiency of Co-N-MC- and Ni-N-
MC-based DSSCs is ascribed to the good electrical conductivity in their frameworks and the 
dominating contents of pyridinic and quaternary N species over pyrrolic N in their structural 
configuration. Furthermore, significantly lower charge transfer resistance (R

ct
) associated 

with metal doping of the Co-N-MC and Ni-N- MC and excellent structural surface proper-

ties can also be responsible to enhance the photovoltaic performance. The fill factor (FF) and 
power conversion efficiency (η) of DSSC utilizing Ni-N-MC counter electrode (FF = 0.70 and 
η = 8.42%) were higher compared to the DSSC using platinized counter electrode (FF = 0.66 
and η = 8.22%). Additionally, Ni-N-MC counter electrode exhibited good electrochemical 
stability after experiencing ten CV cycles. Moreover, compared to platinized electrode in 
catalyzing the T

2
/T− organic redox system, all N-MC, Co-N-MC, and Ni-N-MC show better 

performance. The integration of electrocatalytic Co or Ni species and N-doped mesoporous 
carbon matrix is an alternative approach for counter electrode electrocatalyst to diminish the 
cost of DSSCs [43]. Precursors and photovoltaic performance of porous carbon materials syn-

thesized by soft- and hard-templating methods are summaries in Tables 2 and 3, respectively.

2.2. Morphological and structural characterization of porous carbon materials

The morphology of porous carbon materials is usually characterized by using scanning elec-

tron microscopy (SEM) or field emission scanning electron microscopy (FE-SEM) and trans-

mission electron microscopy (TEM). Figure 8(a)–(c) shows the FE-SEM images for the surface 
morphology and microstructures of honeycomb-like activated porous carbons (HPCs) [29]. As 
shown in Figure 8(a), the micro-sized particles of the as-prepared sample revealed a  
honeycomb-like morphology containing a huge number of minute holes over its entire frame-

works. Magnified view of FE-SEM image of the sample confirmed the interconnected mac-

roporous structures with sizes of ~100–600 nm (in Figure 8(b)). Moreover, a close inspection 
reveals that the pore and surface wall of HPC sample comprised of many mesopores and 
micropores as shown in Figure 8(c). In addition, the TEM image in Figure 8(d) also confirmed 
the honeycomb-like morphology with the porous property.

X-ray diffraction (XRD) and Raman spectroscopy are used to ascertain the extent of crystal-
linity in the structure of porous carbon samples. Porous carbon materials display diffraction 
peaks at about 24 and 44°, which are the equivalent of hexagonal graphitic 002 (2θ = 24°) and 

Figure 7. Immobilized Co or Ni on N-doped mesoporous carbons [43] (copyright (2017) Elsevier).
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101 (2θ = 44°) crystal planes as shown in Figure 9(a) [50]. To identify the degree of graphitiza-

tion, Raman spectra are used as follows: Two peaks at 1340 and 1590 cm−1 that is assigned to 

the D band and G band are observed as shown in Figure 9(b).

The breathing mode vibration of A
1g

, associated with the disordered carbon or defective 
graphitic carbon appeared at around 1353 cm−1 corresponding to the D band. Another peak 
related to the G band appeared at around 1590 cm−1, which specifies the in-plane stretching 
vibration mode of E

2g
 in sp2   sp   2  C–C bond vibrations, as in graphitic phase [51].

CE Precursor Dye-electrolyte R
ct

(𝛺 cm2)

FF 

(%)

J
sc

(mA cm−2)

PCE 

(%)

PCE-Pt 

(%)

Reference

CTNC PBA-b-PAN JK-306-

Co(bpy)
3

2+/3+

0.31 73.5 14.57 10.32 9.80 [42]

JK-306-I−/I
3

− 72.9 14.58 7.88

HPCs Resol N719-I−/I
3

− 4.68 65.0 14.97 7.22 7.25 [25]

MC Resol N719-I−/I
3

− 17.2 61.0 14.32 6.06 6.29 [19]

OMC Coal powder N719-I−/I
3

− 6.99 73.0 14.26 8.11 8.16 [34]

Broccoli-

carbon

O-dichlorobenzene N719-I−/I
3

− 46.1 13.86 5.1 6.2 [24]

HPC Resol N719-I−/I
3

− 0.3 67.0 15.44 6.48 6.45 [44]

OMC Resol Thiocyanate-

I−/I
3

−

6.5 68.0 14.13 7.69 8.25 [45]

MC Resol N3-I−/I
3

− 0.7 65.0 15.5 6.18 6.26 [46]

Table 2. Porous carbon material synthesis by soft template and their precursors with photovoltaic performance.

CE Precursor Dye-

electrolyte

R
ct

(𝛺 cm2)

FF 

(%)

J
sc

(mA cm−2)

PCE 

(%)

PCE-Pt 

(%)

Reference

Carbon 

framework

Quinoline N719-I−/I
3

− 0.14 69.0 16.54 8.75 7.55 [36]

S-PC Pitch N719-I−/I
3

− 3.99 67.0 14.98 6.97 7.28 [47]

NMC Resol N719-I−/I
3

− 60.0 15.46 7.02 7.26 [35]

MSU-F–C Resol N719-I−/I
3

− 8.75 70.0 14.95 8.18 8.85 [48]

HCMSC Resol N719-I−/I
3

− 0.5 67.0 16.86 7.56 7.79 [49]

Fe-MCF-C Divinylbenzene N719-I−/I
3

− 69.0 14.70 7.89 [23]

Table 3. Porous carbon material synthesis by hard template and their precursors with photovoltaic performance.
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Additionally, X-ray photoelectron spectroscopy (XPS) analysis gives the information 
about the presence of surface functional groups in the porous carbon. In Figure 9(c), the 

high-resolution XPS spectrum of C1s in the binding energy range between 280 and 288 eV 
revealed several carbon-based functional groups, which are assigned to the C–OH, C–C/
C–H, C–O, and C=O bonds, respectively. Meanwhile, as shown in Figure 9(d), the decon-

voluted XPS spectra of the O 1 s exhibited the three distinct peaks at the binding energies 
of 526–538 eV, which are attributed to the C–OH, C=O groups and chemisorbed water 
molecules, respectively [29].

The surface area and pore volume of porous carbon materials are measured through the 
experiments of adsorption-desorption isotherms, as shown inset in Figures 9(a) and 10(b). 
Porous carbon materials typically exhibit III/IV isotherms with pronounced hysteresis loops, 
indicating the larger surface area.

The specific surface area is calculated from the Brunauer-Emmett-Teller (BET) equation, and 
the pore size distribution is derived from the desorption branches of the isotherms using the 
Barrett-Joyner-Halenda (BJH) method (Figure 10(b)) [52].

2.3. Electrochemical characterization of porous carbon material-based counter 

electrodes

The catalytic properties of counter electrodes in DSSCs are usually characterized by elec-

trochemical impedance spectroscopy (EIS) [53, 54]. EIS measurements are performed in a 
symmetric thin-layer cell (called dummy cell) comprising two identical electrodes and same 

electrolyte used in the full DSSCs. The Nyquist plots for porous carbon CE consist of three 

Figure 8. (a–c) FE-SEM images and (d) TEM images of the carbonized HPC sample under inert gas atmosphere [29] 

(copyright (2017) Elsevier).
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semicircles, which are assigned in the order of increasing frequency to the Nernst diffusion 
impedance in the bulk electrolyte (˂ 10 Hz), the charge transfer processes at the electrode/

electrolyte interface (2500–25 Hz), and the Nernst diffusion impedance in the pores of elec-

trode materials (100–2.5 KHz) in Figure 11(a).

Figure 9. (a) XRD pattern, (b) Raman spectrum, and (c-d) XPS spectra of the HPC sample. The inset of (a) shows the 
nitrogen adsorption–desorption isotherm of the HPC sample [29] (copyright (2017) Elsevier).

Figure 10. Nitrogen adsorption-desorption isotherms (a) and BJH pore-sized distributions (b) of the S-PC [47] (copyright 

(2015) Elsevier).
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The equivalent circuit elements for fitting the EIS data, which is well known as a Randles-type 
equivalent circuit, comprise of the ohmic serial resistance (R

s
), the resistance-capacitance (RC) 

network consisting of the charge transfer resistance (R
ct
) and the corresponding capacitance 

(C) at the electrode/electrolyte interface, and the Nernst diffusion impedance in the bulk elec-

trolyte (N
bulk

) between electrodes and the pores of electrode materials (N
pore

) as shown in 

Figure 11(b) [55]. The impedance spectrum of the Pt/electrolyte interface diverges to some 
extent from the behavior of a RC network with an ideal capacitance owing to the roughness 
of the TCO substrate surface. This effect can be defined by a term called as “constant phase 
element (CPE).” The impedance ZCPE of a CPE is given by Eq. (3) [53, 56]:

   Z  
CPE

   = B   (i𝜔)    −β   (3)

where  ω  is the angular frequency, B is the CPE parameter, and  β  is the CPE exponent (0≤𝛽≤1, 
for ideal capacitance 𝛽 = 1).

The parameter N
pore

 can be omitted for Pt CE where the catalytic reaction occurs on virtu-

ally nonporous surface (the equivalent circuit for the symmetric cell comprising of Pt CEs is 
shown in the inset of Figure 11(a)). As a result, the Nyquist plot for Pt electrode exhibits two 
semicircles, allocating in the order of decreasing frequency to the charge transfer process at 

Pt electrode/electrolyte interface and Nernst diffusion of redox couple in electrolyte. From the 

Figure 11. (a) Nyquist plots of the symmetric cells consisting of FTO glass, NMC-3, and Pt electrodes, respectively, 
equivalent circuit element for Pt CE in the inset. (b) Equivalent circuit element for NMC-3 porous carbon. (c) Tafel 
polarization curves of the symmetric cells fabricated with two identical Pt and NMC-3 electrodes [35] (copyright (2013) 

Elsevier).
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diameter of the high-frequency semicircle, R
ct
 value of the Pt CE can be estimated directly. 

The charge transfer resistance, R
ct
, of the porous carbon CEs depends on the thickness of 

electrodes. The data listed in Table 4 show that the R
ct
 of NMC-3 electrode decreases with 

increasing thickness of NMC-3 layer. R
ct
 value of NMC-3 electrode decreases by 10.36 𝛺 cm2 

(from 11.81 to 1.45 𝛺 cm2), once the thickness of NMC-3 layer increases by 3.44 m (from 0.95 to 
4.39 m). This result is mainly owing to the increase in active surface area of NMC-3 film with 
the thicker NMC-3 layer.

Nevertheless, R
ct
 value barely changes with additional increase of the thickness of NMC-3 

layer. The optimum thickness of NMC-3 layer is 4.39 m, which is considerably lower than that 
of the commonly studied carbon nanoparticle CE in DSSCs. Also, R

s
 value does not change 

significantly with the thickness of NMC-3 layer. This is due to the preparation of NMC-3 elec-

trodes on the same FTO substrate, and also the R
s
 value is controlled mainly by the electrical 

properties of the FTO substrate. Capacitance, C, increases systematically with the thickness of 

NMC-3 layer as expected due to an increase in active surface area.

Lower R
ct
 denotes more efficient reduction of redox couples at the CE-electrolyte interface, 

which in turn reduces charge recombination process and increases the dye-regeneration 

process at the dye-coated TiO
2
/electrolyte interface. Electrochemically active surface areas 

(EASAs) were estimated from the results of chronoamperometric (CA) measurements accord-

ing to the Randles-Sevcik equation to expose the question of whether the lower R
ct
 originates 

from an intrinsically higher catalytic activity or the high surface area of porous carbon [42]. 
It was found that the intrinsically higher catalytic activity of porous carbon electrodes was 
mainly responsible for lower charge transfer at the interface.

Tafel polarization measurements are carried out in a symmetric cell similar to the one used in 

EIS experiment. Usually, the Tafel curve comprises of three distinguishable zones, the polar-

ization zone at low potential (voltage range of −120 to 120 mV), the Tafel zone at middle 
potential (with a sharp decrease), and the diffusion zone at high potential (horizontal part). 
The exchange current density (J

o
), which is directly associated to the electrocatalytic ability 

of an electrode, can be calculated by extrapolating the intercept of the anodic and cathodic 

branches of the corresponding curves in the Tafel zone. Figure 11(c) displays the Tafel polar-

Thickness of NMC layer ( μ m) R
s
 (𝛺) R

ct
 (𝛺 cm2) C (μF cm−2)

0.95 15.41 11.81 15.8

1.68 15.44 7.75 26.9

3.16 15.45 4.09 34.6

4.39 15.52 1.45 42.6

6.53 15.57 1.5 49.7

Table 4. Electrochemical impedance parameters for NMC-3 electrode with various thicknesses of carbon layer (35) 
(copyright (2013) Elsevier).
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ization curves of the NMC-3 and electrodepositing Pt electrodes. The cathodic and anodic 
branches of the Tafel curves show a steep slope for NMC-3 and Pt electrodes, indicating a 
high J

o
 on the surface of NMC-3 and Pt electrodes. This implies that NMC-3 can have an elec-

trocatalytic ability as effective as Pt electrode toward the I−/I
3
− redox reaction. Furthermore, 

the limiting diffusion current density of the NMC-3 and Pt electrodes is observed to be of the 
same magnitude. This result describes that the bimodal mesopore structure can deliver an 
advantageous network for the diffusion of the electrolyte.

Furthermore, cyclic voltammetry of dummy cell is used to verify the electrocatalytic activity 
of porous carbon. The peak-to-peak separation (E

pp
) and the peak current are two important 

parameters for comparing catalytic activities of both CEs. A smaller E
pp

 and larger peak cur-

rents indicate higher catalytic performance. Figure 12(a)–(b) shows the comparison of the CV 
curves of CTNC-800 and Pt electrodes in the Co(bpy)

3
2+/3+ system acquired at different scan 

rates (25–200 mV s−1).

EIS is also used to check the stability of porous carbon CEs. Figure 13(a) and (b) shows the 

electrochemical stability of the dummy cells with CTNC-800 and Pt CEs under cumulative 
potential cycling with Co(bpy)

3
2+/3+ in acetonitrile. After 100 cycles, although only a very mod-

est increase of R
ct
 values was observed from 0.35 to 0.45 𝛺 cm2 for CTNC-800 CEs, but for Pt 

CEs, the R
ct
 values increased from 3.10 to 11.26 𝛺 cm2 by nearly 400%. The sluggish decline of 

R
ct
 for CTNC-800 compared to Pt clearly implies the higher stability of CTNC-800 in the ace-

tonitrile Co(bpy)
3
2+/3+ electrolyte as shown in Figure 13(c). Superior electrochemical stability of 

Figure 12. Cyclic voltammograms using CTNC-800 (a) and Pt (b) cathodes in   with various scanning rates. The oxidation 
(c) and reduction (d) peak currents with respect to the square root of scanning rate [42]. Copyright (2015) Royal Society 
of Chemistry.
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CTNC-800 was also confirmed by the EIS measurements of dummy cells after aging the two 
electrodes at room temperature and open circuit in Figure 13(d). The EIS curve of the CTNC-
800 electrode over the period of 14 days was nearly unchanged, while the EIS curves for Pt 
showed evidence of a progressive increase of the resistance upon aging.

The greater slopes of the linear dependence of the reduction and oxidation currents against 

the square root of potential and higher peak current of CTNC-800 electrodes at all scan rate 

confirm the better catalytic activity of CTNC-800 toward the reduction of Co(bpy)
3

2+/3+ than 

the Pt CE.

2.4. Photovoltaic performance evaluation of DSSCs with porous carbon CEs

To evaluate the photovoltaic performance of DSSCs employing porous carbon CEs, generally 
a prescribed amount of carbon materials is grounded in a mortar with 0.1 ml tetrabutyl tita-

nate and 8 ml n-butanol to obtain the carbon paste. Then, the electrode is prepared by coating 
carbon paste on FTO glass using doctor-blade method and heated at a certain temperature for 
30 min. On the other hand, photoanode is prepared by depositing TiO

2
 film with the thickness 

of 10 μm on FTO glass substrate by doctor-blade method and then sintered at a certain tem-

Figure 13. Electrochemical stability under potential-cycling on dummy cells with Pt (a), CTNC-800 (b) in acetonitrile 
solution of  . The sequence of measurements was as follows: 10 × CV scans (from 0V → 1V → 1V → 0V → 1 V, scan rate 
50  ) followed by 30 s relaxation at 0 V followed by an EIS measurement at 0 V from   Hz to0.1 Hz. This sequence of 
electrochemical stability testing was repeated 10 times. (c)   changes in the Pt and CTNC-800 according to the potential 
cycling. (d) Nyquist plots of symmetrical dummy cells consisting of Pt and CTNC-800 (inset) collected after 3 days 
(black), 7 days (red) and 14 days (green) of aging at room temperate and open circuit [42]. Copyright (2015) Royal Society 
of Chemistry.
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perature for 30 min. After that, the sintered TiO
2
 electrodes are immersed into a solution con-

taining dye in ethanol for a long time at room temperature to adsorb dye on TiO
2
 photoanode.

A DSSC device is fabricated by clamping a dye-sensitized TiO
2
 photoanode, a drop of electro-

lyte, and a counter electrode. For I−/I
3
− redox shuttle, a mixture of 0.5 M 1-methyl-3-propylimid-

azolium iodide, 0.3 MLiI, 0.06 M I
2
, and 0.4 M 4-tert-butylpyridine in 3-methoxypropionitrile 

is used as the electrolyte of DSSCs [35]. Finally, the photovoltaic performance of DSSC device 
is evaluated under AM 1.5 solar simulator illumination at 100 mW cm−2.

Figure 14 compares the photocurrent density-voltage (J-V) curves of the DSSCs with NMC-3, 
Pt, and FTO glass counter electrodes. The photovoltaic parameters of the DSSCs, including 
short-circuit current density (J

sc
   )  ,  ), open-circuit voltage (V

oc
), fill factor (FF), and power conver-

sion efficiency (η), are summarized in Table 5. The DSSC with FTO glass as counter electrode 
exhibits a V

oc
 of 0.49 V, a J

sc
 of 4.13 mA cm−2, and a FF of 0.10, leading to a poor power conversion 

efficiency of 0.20%. When NMC-3 porous carbon material is employed as the counter electrode 
in DSSC, the DSSC attains a V

oc
 of 0.71 V, J

sc
 of 15.46 mA cm−2, FF of 0.64, and η of 7.02%. This 

power conversion efficiency is considerably comparable to 7.26% of the DSSC with Pt counter 
electrode. The outstanding photovoltaic performances of the DSSCs with NMC-3 counter elec-

trode mostly originate from the vivid electrocatalytic performance of NMC-3 electrode associ-
ated with the nitrogen doping, bimodal mesopore structure, and large surface area.

Counter electrode V
oc
 (V) J

sc
 (mA cm−2) FF η (%)

Pt 0.68 16.43 0.65 7.26

NMC-3 0.71 15.46 0.64 7.02

FTO 0.49 4.13 0.10 0.20

Table 5. Photovoltaic parameters of the DSSCs using Pt, NMC-3, and FTO glass counter electrode [35] (copyright (2013) 
Elsevier).

Figure 14. Photocurrent density-voltage curves of DSSCs with Pt, NMC-3, and FTO glass counter electrodes [35] 

(copyright (2013) Elsevier).
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3. Conclusions and outlook

Dye-sensitized solar cells (DSSCs) have aroused intense interest and been regarded as one 
of the most prospective solar cells, due to low-cost, flexibility, simple device fabrication, and 
high conversion efficiency under weak light, in comparison to the conventional photovoltaic 
devices. Very recently, G2E in Swiss and G24i in the UK including Korean and Japan com-

panies have demonstrated commercial and prototyped components based on DSSC technol-
ogy with liquid electrolytes. However, the unit costs, long-term device stability, and power 
conversion efficiency must be further improved for real-life applications. For this purpose, 
considerable efforts have been devoted to the search for low-cost Pt-free catalysts that exhibit 
high electrochemical activity and fast electron transfer kinetics, while a platinum (Pt) metal 
is still known as the highly efficient and extensively used counter electrode (CE) in DSSCs; 
however, it has more or less problems that make it improper for the real-life application in 
DSSCs, such as its high manufacturing cost owing to its natural scarcity and insufficient long-
term instability to the I−/I

3
− redox couple in DSSCs. As a result, significant efforts have been 

devoted to finding possible alternatives to Pt, including carbon blacks, carbon nanotubes, 
functionalized graphene, and heteroatom-doped graphene nanoplatelets as efficient metal-
free electrocatalysts. An ideal counter electrode in DSSCs must possess the following prop-

erties: high electrocatalytic ability and high conductivity, optimum thickness, high surface 
area and porous nature, low charge transfer resistance, high electrochemical and mechanical 

stability, energy level that matches the potential of the redox couple electrolyte, high reflectiv-

ity, and good adhesivity with TCO. High electrocatalytic ability and low charge transfer resis-

tance of CEs increase FF and J
sc
 and subsequently PCE of the DSSC. In this chapter, porous 

carbon materials have been considered as one of the promising candidates for the alternative 
to PT CE, since they have high surface area and porous nature, chemical corrosion resistance, 
electrochemical and mechanical stability, low cost, and simple preparation methods com-

pared to Pt counter electrodes. Especially, heteroatom-doped porous carbon materials, such 
as CTNCs and AnCs, exhibited better electrocatalytic ability, lower charge transfer resistance, 
and higher PCE than the Pt CEs in Co(bpy)

3
2+/3+-based electrolyte which make them promis-

ing candidates as metal-free CE for DSSCs and open a new research area for porous carbon 

CEs in Co(bpy)
3
2+/3+-based DSSCs. However, they are not sufficiently active in iodide electro-

lytes, which are more common and desirable electrolytes. In the future, better electrocatalytic 
ability and electrochemical stability of carbon-based materials toward both redox couples of 

iodide and cobalt electrolytes still need to be significantly improved for the practical applica-

tion of DSSCs.
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