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Abstract

Point-cloud clustering is an essential technique for modeling massive point clouds 
acquired with a laser scanner. There are three clustering approaches in point-cloud clus-
tering, namely model-based clustering, edge-based clustering, and region-based clus-
tering. In geoinformatics, edge-based and region-based clustering are often applied for 
the modeling of buildings and roads. These approaches use low-resolution point-cloud 
data that consist of tens of points or several hundred points per m2, such as aerial laser 
scanning data and vehicle-borne mobile mapping system data. These approaches also 
focus on geometrical knowledge and restrictions. We focused on region-based point-
cloud clustering to improve 3D visualization and modeling using massive point clouds. 
We proposed a point-cloud clustering methodology and point-cloud filtering on a mul-
tilayered panoramic range image. A point-based rendering approach was applied for 
the range image generation using a massive point cloud. Moreover, we conducted three 
experiments to verify our methodology.

Keywords: point-cloud clustering, point-based rendering, terrestrial laser scanning, 
surface extraction, 3D edge extraction

1. Introduction

Massive point-cloud acquisition is an effective approach for 3D modeling of unknown objects 
in various fields, such as urban mapping, indoor mapping, plant management, factory man-

agement, heritage documentation, and infrastructure asset inspection and management. In 

construction fields, base maps and 3D data are required for managing processes of construc-

tion, maintenance, rehabilitation, and replacement. Online maps, such as Google Maps and 
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OpenStreetMap, are useful for approximate construction surveys in urban areas. However, 

online maps are often insufficient for infrastructure inspection to recognize the details of nat-
ural features. Thus, base maps and 3D data should be prepared before inspection. Massive 

point-cloud data can be acquired with a terrestrial laser scanner, mobile mapping systems 

(MMSs), handheld laser scanners, and cameras using structure from motion (SfM) methodol-

ogy. SfM is a methodology for reconstructing a scene using multiple cameras simultaneously 

from all available relative motions through key point detection, feature matching, motion 

estimation, triangulation, and bundle adjustment. In an open sky environment, aerial photo-

grammetry and SfM using an unmanned aerial vehicle (UAV) are more effective than ground-
based scanning. On the other hand, when environments include natural obstacles, such as 

trees, a terrestrial laser scanner is more effective than a UAV or MMSs. In indoor navigation 
and building information modeling (BIM), floor maps and 3D data are also required. We 
expected terrestrial laser scanners and indoor MMSs to be adequate for colored point-cloud 

acquisition in an indoor environment.

Moreover, point-cloud clustering is an essential technique for modeling massive point clouds. 

Figure 1 shows an example of point-cloud clustering using a terrestrial laser scanner data 

acquired in an indoor environment.

There are three clustering approaches in point-cloud clustering, namely model-based clus-

tering [1], edge-based clustering [2], and region-based clustering [3]. Model-based cluster-

ing is a 3D model preparation approach. The model-based clustering requires 3D models 

such as CAD models to estimate simple objects or point clusters from the point cloud. In 
3D industrial modeling, standardized objects, such as pipes, boxes, and parts, are prepared 
as CAD models in advance. Although the model-based clustering is suitable for modeling 

known objects such as the standardized objects, the model-based clustering is unsuitable for 
modeling unknown objects such as complex and natural objects. On the other hand, in mod-

eling unknown objects, such as buildings and roads in geoinformatics and civil engineering 

Figure 1. Point-cloud clustering: colored point cloud (left image) and clustered point cloud (right image).
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fields, edge-based and region-based clustering are often applied [4]. These approaches use 

low-resolution point-cloud data that consist of tens of points or several hundred points per 

m2, such as aerial laser and vehicle-borne MMSs data. These approaches also focus on geo-

metrical knowledge [5] and 2D geometrical restrictions, such as the depth from a platform [6] 

and discontinuous point extraction on each scanning plane from the MMSs [7] to extract fea-

tures. In urban areas and indoor environments, although there are simple features consisting 

of lines and planes, there are many complex features consisting of curved lines and surfaces 

with unclear boundaries. Moreover, point-cloud data are generally acquired with a terrestrial 

and mobile laser scanner from many viewpoints and view angles for 3D modeling. Like the 

conventional approaches, range image processing is proposed to apply 2D restrictions with 

an interactive procedure in 3D plant modeling. However, viewpoints for range image render-

ing are limited to data acquisition points.

Thus, our aim was to improve region-based point-cloud clustering in modeling after point-

cloud integration. We also focused on region-based point clustering to extract a polygon 

from a massive point cloud, because it is not easy to estimate accurate edges from point 

clouds acquired with a laser scanner. In region-based clustering, random sample consensus 

(RANSAC) [8] is a suitable approach for surface detection and estimation. However, local 

work space should be selected to improve performance in a surface estimation from a massive 

point cloud. Moreover, it is hard to determine whether a point lies inside or outside a surface 

with conventional RANSAC.

In this chapter, we first proposed a point-cloud clustering methodology on a panoramic lay-

ered range image generated with point-based rendering from a massive point cloud. Next, we 

conducted three experiments to verify our methodology. The first experiment was a 3D edge 
and surface extraction for indoor modeling using an indoor MMS. The second experiment 

was a 3D edge and surface extraction for 3D bridge modeling using a terrestrial laser scanner. 

The third experiment was a 3D edge and surface extraction for ground surface and feature 

extraction using a terrestrial laser scanner. Even though the acquired data had low homo-

geneity of spatial point density, these experiments confirmed that a terrestrial laser scanner 
could cover complex surfaces, including flat surfaces, slopes, and steps. We also confirmed 
that our proposed methodology could achieve point-cloud clustering to extract these features 

from complex environments.

2. Methodology

Our proposed processing flow for point-cloud clustering is shown in Figure 2. First, we reg-

ister and integrate point-cloud data acquired from a viewpoint. Next, the point-cloud data 

are projected into the image space with translation, view angle, and resolution parameters 
in “Panoramic multilayered range image generation with point cloud rendering” to generate 

several range images. Then, normal vectors around each projected point are estimated using 
the 3D coordinate values of the point cloud in “Normal vector estimation in panoramic multi-

layered range image.” Next, edges are extracted from depth images generated in the panoramic 
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multilayered range image generation in ”Depth edge detection.” Finally, groups that have 

similar direction in the point cloud are extracted after normal vector classification in the pro-

jected image in “Normal vector classification in projected image.” Generated range images 
are managed in a multilayered range image.

2.1. Panoramic multilayered range image generation with point-cloud rendering

An advantage of 3D point-cloud data is that they allow accurate display from an arbitrary 

viewpoint and 3D modeling. Additionally, point-cloud data have the potential for applica-

tions such as panoramic image geo-referencing and distance value-added panoramic image 

processing for 3D geographical information system (GIS) visualization [9, 10]. However, 

point-cloud visualization has two technical issues. The first issue is the near-far effect caused 
by distance differences from the viewpoint to scanned points. The second issue is the trans-

parency effect caused by rendered hidden points. These effects degrade the quality of point-
cloud visualization. Thus, we focus on methodologies to improve the quality of point-cloud 

visualization. The Splat-based ray tracing [11] can generate a photorealistic curved surface 

from point-cloud data; surface generation requires the long period in the 3D work space. 

Moreover, the curved-surface description is unsuitable for representing urban objects such as 
CAD and GIS data. Therefore, we have applied a point-based rendering and filtering, which 
we call a layered image-based depth arrangement refiner for versatile rendering (LIDAR VR) 
[12] for point-cloud rendering.

The processing flow of LIDAR VR is described as follows. First, the sensors acquire a point 
cloud with additional color data such as RGB data. The sensor position is defined as the origin 
point in a 3D work space. Second, a multilayered range image from the simulated viewpoint 

is generated using the point cloud. Finally, the generated multilayered range image is filtered 

Figure 2. Processing flow for point-cloud clustering.
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to generate missing points in the rendered result using distance values between the view-

point and objects. The colored point cloud is projected from a 3D space to a panorama space. 
This transformation simplifies viewpoint translation, filtering, and point-cloud browsing. 
The LIDAR VR data consist of a projection model and multilayered range image, as shown 
in Figure 3. The panorama model can be selected from a spherical, cylindrical, plane, hemi-

spherical, or cubic model. In this chapter, the spherical model is described. First, the mea-

sured point data are projected onto a spherical surface as a range of data. Next, the measured 
point data are projected onto a spherical surface to manage X, Y, Z, R, G, B, and the intensity 
values in the multilayered panorama space. Then, azimuth and elevation angles are calcu-

lated using 3D vectors generated from the viewpoint and the measured points. The azimuth 

and elevation angles are converted to panorama image coordinate values with adequate spa-

tial angle resolution in the range data. Finally, a spherical panorama image is generated from 

the measured point cloud.

Based on this panorama projection, the multilayered range data with a translated viewpoint 
are generated using the point cloud, as shown in Figure 4. When a panorama space is gener-

ated using points from P
1
 to P

10
 from a viewpoint X

o
 the points from P

1
 to P

10
 are continuously 

Figure 3. LIDAR VR data model.
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arranged in the range data. An azimuth or elevation angle from a viewpoint X
o
 to a measured 

point P
1
 is denoted as R

o
. On the other hand, when a panorama space is generated using the 

points from P
1
 to P

10
 from a different viewpoint X

t
, the angle from the viewpoint X

t
 to the mea-

sured point P
1
 is denoted as R

t
. Thus, the change in angle from R

o
 to R

t
 affects the arrangement 

of the projected points in the range data.

After the viewpoint translation, three types of filtering are applied to point-cloud rendering, 
as shown in Figure 4. The first filtering is the occluded point overwriting. Figure 4 shows an 

example to overwrite the projected point P
1
 by the projected point P

2
. After the viewpoint 

translation from X
o
 to X

t
, the projected point P

1
 becomes an occluded point behind P. Thus, 

Figure 4 shows that P
1
 is overwritten by P

2
. The second filtering is the new point generation 

in the no-data space. Figure 4 also shows an example to generate a new point P
new1

. After the 

viewpoint translation from X
o
 to X

t
, a no-data space occurs between the projected points P

3
 

and P
4
. Therefore, Figure 4 shows that P

new1
 is generated between the projected points P

3
 and 

P
4
. The third filtering is the occluded point replacement. Figure 4 shows an example to replace 

an occluded point P
8
 with a new point P

new2
. After the viewpoint translation from X

o
 to X

t
, the 

point P
8
 is visible between points P

9
 and P

10
. However, the point P

8
 exists behind the real sur-

face. Thus, the occluded point P
8
 should be given a new distance value as P

new2
. The new dis-

tance value is calculated the distance values of points P
9
 and P

10
 through the pixel-selectable 

averaging filter developed in this study, which we now describe.

In general image processing, each pixel value in an image is resampled by using pixel values 

around it when the image is transformed. A similar technique is applied to the pixel-selectable  

Figure 4. Point distribution calculated by viewpoint translation in range data, occlusion detection using the point cloud, 

and point-cloud interpolation with distance information.
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averaging filter to improve the quality of the range data generated from point-cloud data 
with the view-point translation. However, general image resampling techniques, such as the 

nearest interpolation, linear interpolation, and cubic interpolation, degrade the quality of 

the range data because the resampling blends various data, such as valid points, occluded 

points, measurement noises, and missing data. Therefore, the pixel-selectable averaging filter 
is applied to this technical issue. The pixel-selectable averaging filter extracts valid points 
around a point for the resampling, as shown in Figure 5. This processing consists of a detec-

tion of valid data extraction and rejection of occluded points, noises, and missing data, and 
missing-point regeneration.

The detailed flow of the pixel-selectable averaging filter is described as follows. First, a three-
by-three block of pixels is prepared in the range data projected from point clouds. The center 
point in the block is the focus point in the range data. Second, the block is checked to see 

whether valid points exist. When there are more than two valid pixels, the processing moves 

to the next step. If there is only the focus point, it is deleted as spike noise. When the focus 

point is a missing part, a new pixel value such as color and intensity value is given to the 

focus point using the other valid points around the center point in the block. Third, after 

these point extraction steps, an average value of valid points in the block within the search 

range is calculated to overwrite the focus point value. The average value is a distance from 

the viewpoint to the valid points. This processing is applied to each channel in the RGB and 

intensity image. However, when the center point in the block has a distance value within the 

search range, the overwriting processing is not performed. Because, when the point can be 

defined approximately as the nearest surface, the overwriting processing has a possibility of 
degrading geometrical accuracy and image quality in this case. This processing sequence is 

applied to all points.

In the valid point extraction, a range of search distances should be given. The distance from 

the viewpoint to the nearest point found among the extracted points is defined as the start 

Figure 5. Pixel-selectable averaging filter.
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value of the search range. Moreover, the start value plus a defined distance parameter is 
assumed as the end value. The defined distance parameter is determined with the continuity 
of the points in the point cloud. For example, the defined parameter would be between 10 cm 
and 1 m from experience, when trees and building walls are measured.

Thus, the pixel-selectable averaging filter uses valid points in the range data to achieve an 
interpolation without reducing geometrical accuracy by a uniform smoothing effect. Figure 6 

shows an example of processing result.

2.2. Normal vector estimation in a panoramic multilayered range image

A normal vector can be estimated using three points in point cloud with a triangle patch or 

mesh generation processing. In 2D image processing, the Delaunay division is a popular algo-

rithm. The Delaunay division can also be applied for 3D point-cloud processing with millions 

of points [13]. However, using the Delaunay division, it is hard to generate triangle patches 

for more than hundreds of millions of points without a high-speed computing environment 

[14, 15]. Thus, we focused on point-cloud rendering that restricts visible point-cloud data as 

a 2D image. A closed point detection and topology assignment can be processed as 2D image 

processing.

In our normal vector estimation, four faces in a range image are generated to estimate normal 

vectors of a point in point cloud, as shown in Figure 7. First, a point in the projected point cloud 
on a panoramic layered range image is defined as point C. Next, the projected points P

1
, P

2
, P

3
, 

Figure 6. LiDAR VR processing result: input point cloud (upper image) and output point cloud (bottom image).
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and P
4
 in the range image are set from point C with d

1
, d

2
, d

3,
 and d

4
 pixels in vertical and hori-

zontal directions. Triangulation is applied to these points as vertexes C-P
1
-P
2
, C-P

2
-P
3
, C-P

3
-P
4,
 

and C-P
4
-P
1
 with a clockwise topology in the image space. Moreover, parameters d

1
, d
2
, d
3,
 and d

4
 

in this procedure depend on the accuracy and resolution of the measurement data taken from 

the laser scanner or stereo camera. When the accuracy and resolution are high enough, these 

parameters are set as one pixel. These parameters are set to more than one pixel for low accu-

racy and resolution measurement data to keep a smooth condition of normal vectors on a flat 
surface. This procedure, which is based on 2D image processing, can provide a higher topology 

attachment to the point cloud.

Additionally, the normal vector on each triangle is estimated using the 3D coordinate values 

of each point. When five points consisting of a center and four vertex points exist on the 
same plane in 3D space, each normal vector has the same direction. When point C exists on 

the edge of the 3D space, two clusters can be classified by two directions. Moreover, when 
point C exists on the corner of the 3D space, each triangle has a different direction. Surfaces, 
edges, and corners in the 3D space were estimated in point-cloud data using these clues. In 

this research, we used the point cloud taken from a laser scanner that presents difficulties for 
measuring edges and corners clearly. Thus, the average value of each normal vector is used 

as a normal vector of point C. These procedures were iterated to estimate the normal vectors 

of all points in point cloud.

2.3. Normal vector-based point clustering

Point clusters are generated from a classification result of normal vectors. The accuracy of 
point-cloud classification can be improved with several approaches such as the Mincut, 
Markov network, and fuzzy-based algorithms [16–18]. However, in this study, we focused 

on verifying the practicality of our point-based rendering for point-cloud clustering. Thus, 

we applied multilevel slicing as a simple classification algorithm to classify normal vectors, 
as shown in Figure 8.

This classification detected boundaries of point clusters with the same normal vectors. 
Moreover, clustered normal vectors were compared with normal vectors of neighboring 

Figure 7. Normal vector estimation in panoramic multilayered range image.
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planes to be integrated into a larger plane or deleted as a small segment. When a specified 
plane is extracted, the direction of a normal vector and the cluster number are available as 

initial value inputs. The point-cloud clustering methodology for extracting the intersection of 

planes as ridge lines requires appropriate initial values such as curvature, fitting accuracy and 
distances to closed points [19]. However, our approach can extract boundaries from a point 

cloud without these parameters.

3. Experiments

We conducted three experiments using point-cloud data acquired in indoor and outdoor 

environments. Here we present the point-cloud clustering results of these experiments.

3.1. Experiment 1: indoor MMSs data

We selected a floor in our university as the indoor environment. We prepared a point 

cloud taken from an indoor MMSs (TIMMS, Nikon-Trimble), which consisted of a laser 

scanner, an omni-directional camera, inertial measurement units (IMU), and a wheel 

encoder, as shown in Figure 9. Acquired point-cloud data, point-cloud rendering results, 

Figure 8. Normal vector-based point clustering.
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and point-cloud clustering results are shown in Figure 10. The results show that building 

features such as ceilings, beams, window shades, pillars, benches, and floors are classi-

fied clearly.

3.2. Experiment 2: terrestrial laser scanner data (1)

We selected a bridge as a study area in the outdoor environment. We acquired 25.9 mil-

lion points using a terrestrial laser scanner (GLS-2000, TOPCON) from four viewpoints. 

Rendered point cloud, depth range image, and point-cloud clustering results are shown 

in Figure 11. The results show that vertical planes, horizontal planes, and natural features 

are classified clearly. The processing time for the clustering was 6.1 s (Intel Core i7-6567U 
3.30 GHz, MATLAB).

Figure 9. Indoor MMSs.

Figure 10. Point-cloud clustering result: rendered point cloud (left image), filtered point cloud (center image), and 
clustered point cloud (right image).
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3.3. Experiment 3: terrestrial laser scanner data (2)

We selected a long narrow slope including slopes and stone steps as our study field. We 
prepared a point cloud acquired from 18 viewpoints over a wide area using a terrestrial laser 

scanner (VZ-400, RIEGL). Acquired point cloud and point-cloud clustering results are shown 
in Figure 12. The results show that features, such as steps, slopes, rock walls, and trees, are 

classified clearly. The processing time for the clustering was 11.4 s (Intel Core i7 2.80 GHz, 
MATLAB).

Figure 11. Point-cloud clustering result: colored point cloud (upper image), depth image (center image), and clustered 

point cloud (bottom image).
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4. Discussion

Our described processing flow in Figure 2 can be extended from point-cloud clustering to 

polygon extraction [20], as shown in Figure 13.

After the “Normal vector classification in projected image,” when a small region has a simi-
lar direction with the neighboring region, the small region is merged into the neighboring 

Figure 12. Point-cloud clustering result: colored point cloud (upper image) and clustered point cloud (bottom image).
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region. Otherwise, the small region is deleted from the clustering result. Boundary points are 

extracted through “Boundary point extraction” from the clustering result. Moreover, poly-

gons are extracted through “Boundary point tracing.” Boundaries of features can be extracted 

from the refined surfaces in a range image. Moreover, 3D polygons can be extracted with 
topology estimation using these extracted boundaries in the range image. In this procedure, 

point tracing connects points in the 3D space along the boundary, as shown in Figure 14. 

Although least squares fitting and polynomial fitting are generally applied for straight and 
curved line extraction from points, these fitting approaches require a straight-line recogni-
tion or curved-line recognition. When the point clouds include noises, RANSAC is a suitable 

approach for feature estimation. However, the RANSAC also requires the fitting procedure. 
Thus, tracing based on the region growing is applied to complex geometry extraction, as fol-

lows. First, a topology of points is estimated in a range image. Continuous 3D points can be 

extracted when a polyline or polygon is drawn in a range image. Next, a seed point is selected 

from the continuous 3D points for point tracing. Then, a possible next point is searched within 

a candidate area. The candidate area is determined using a 3D vector from the seed point. 

When a point exists within the candidate area, it is connected to the seed point. Otherwise, 

the point is assumed to be an outlier. A position of the outlier is corrected to a suitable posi-

tion using the 3D vector from the seed point. Then, the connected point is assumed as the next 

Figure 13. Overall processing flow.
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seed point. These steps are iterated to close the geometry for the 3D smooth polygon genera-

tion. These procedures are applied to each rendered point cloud from arbitrary viewpoints.

In indoor navigation and BIM, terrestrial laser scanners and indoor MMSs are used for colored 

point-cloud acquisition to generate floor maps and 3D data in an indoor environment. Figure 15  

shows the result of polygon extraction from the point cloud used in the first experiment.

However, missing areas and a non-uniform density of the point cloud would exist in point-

cloud acquisition. This issue causes transparent and near-far effects in point-cloud visualiza-

tion. To avoid these effects, we have developed a spatial interpolation based on point-based 
rendering in the point-cloud visualization and modeling. Nevertheless, when large missing 

and occluded areas exist, the spatial interpolation approach is inefficient and ineffectual. 
Therefore, we focused on a randomized algorithm to quickly find approximate nearest-neigh-

bor matches between image patches for image inpainting [21]. The image inpainting aims to 

improve image quality with deletion works of scratches and unnecessary objects in an image 
and reconstruction works of the natural image. That is, scratches and unnecessary objects are 
replaced by other textures in the image [22], as shown in Figure 16. In manual works, these 

objects are replaced using image retouching software such as Adobe Photoshop. The inpaint-
ing approach is an automated procedure for image retouches.

Figure 14. Point tracing.

Figure 15. Polygon extraction result.
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5. Conclusion

We have focused on improving region-based point-cloud clustering in 3D modeling after point-

cloud integration. We have also focused on region-based point clustering to extract a polygon 

from a massive point cloud, because it is difficult to estimate accurate edges from point clouds 
acquired with a laser scanner. First, we proposed a point-cloud clustering methodology on a 

panoramic layered range image generated from a massive point cloud with point-based render-

ing. Next, we conducted three experiments using laser scanning data to verify our methodology. 

The first experiment was 3D edge and surface extraction for indoor modeling using an indoor 
MMS. The second experiment was 3D edge and surface extraction for 3D bridge modeling using 

a terrestrial laser scanner. The third experiment was 3D edge and surface extraction for ground-

surface and feature extraction using a terrestrial laser scanner. The results of these experiments 

confirm that our proposed methodology can achieve point-cloud clustering to extract features 
such as flat surfaces, slopes, and steps from complex environments in practical processing times.
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