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Abstract

With the development of telemedicine systems, collected ECG records are accumulated on
a large scale. Aiming to lessen domain experts’ workload, we propose a new method
based on lead convolutional neural network (LCNN) and rule inference for classification
of normal and abnormal ECG records with short duration. First, two different LCNN
models are obtained through different filtering methods and different training methods,
and then the multipoint-prediction technology and the Bayesian fusion method are suc-
cessively applied to them. As beneficial complements, four newly developed disease rules
are also involved. Finally, we utilize the bias-average method to output the predictive
value. On the Chinese Cardiovascular Disease Database with more than 150,000 ECG
records, our proposed method yields an accuracy of 86.22% and 0.9322 AUC (Area under
ROC curve), comparable to the state-of-the-art results for this subject.

Keywords: telemedicine, cardiovascular disease, ECG, deep learning, convolutional
neural network, rule inference, classification

1. Introduction

As an inexpensive, noninvasive and well-established diagnostic tool for cardiovascular dis-

ease, the electrocardiogram (ECG) has been widely applied since the 1980s. In clinics, its main

applications are as follows: (1) long-time ECG monitoring, such as 24-hour ambulatory ECG

and (2) short-term ECG recording, such as standard 10-second, 12-lead ECG.

With the improvement of living standards, more and more people pay attention to their own

health problems and performing an ECG test is the preferred method for preventing cardio-

vascular disease. Although it is easy to collect ECG now, diagnostic conclusions cannot be
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accurately provided since domain experts are in short supply, especially in the basic commu-

nity medical insurance system (BCMIS) of China. A feasible solution is that ECG records are

sent to be interpreted by domain experts in telemedicine centers, who send back their diag-

nostic conclusions via the Internet. In fact, such institutions are common in China now, for

instance, Shanghai Aerial Hospital Network, Henan Telemedicine Center, and so on. But in

telemedicine centers, a large number of ECG records need to be interpreted and the workload

of domain experts will be very heavy considering the huge possible audience. Since ECG

records are mainly collected from people attending physical examinations, their diagnostic

conclusions are likely to be “normal.” If computer-assisted ECG analysis algorithms filter out

most normal records and then domain experts only focus on interpreting the remaining

abnormal ones, that is, man–machine integration [1], the diagnostic efficiency will be greatly

increased and the social benefits will be significant. The key technical indicator is that the

detection precision of normal records must be at least 90% for long-time ECG monitoring and

95% for short-term ECG recording [2].

As heartbeat classification is an important step in computer-based ECG analysis regardless of

application scenarios, a considerable amount of research has been dedicated to this subject. In

general, the processing flow of these works is such that feature vectors, including physiology

characteristics with diagnostic value (such as RR interval and PR interval) [3] and statistical

characteristics (such as wavelet transform [4] and independent component analysis [5]), are

extracted from heartbeat segments first, and feature selection [6] is conducted when necessary.

Afterwards, a number of machine learning algorithms are employed for classification, such as

support vector machine (SVM) [7] and Neural Network [8]. The relevant literature can be

categorized into two different types based on the adopted evaluation scheme, namely, “intra-

patient” and “inter-patient” [9].

The intra-patient evaluation has been adopted by extensive literature and its main characteris-

tic is that the training and testing sets contain heartbeat segments from the same patients. By

this scheme that is not in conformity with clinical practice, classification results tend to be

overly optimistic, since the human heartbeat can be used for identity recognition [10]. Using

the MIT-BIH arrhythmias (MIT-BIH-AR) database [11] and the Advancement of Medical

Instrumentation (AAMI) recommendation [12], de Chazal et al. [9] proposed the inter-patient

evaluation where the training and testing sets are constructed by heartbeat segments from

different ECG records so that inter-individual variation can be taken into account. This scheme

adopted by recent works [5, 6, 8, 13, 14] can evaluate the clinical performance of heartbeat

classification algorithms in a relatively effective manner.

Note that heartbeat classification is just an intermediate step and what domain experts are

concerned about is the classification result of an ECG record provided by computer-assisted

ECG analysis algorithms. However, due to limited standard ECG databases, there are less

research works relevant to this subject compared with heartbeat classification [15–17]. For the

MIT-BIH-AR database, there are a total of 48 two-lead ECG records with approximately 30 min

in duration, each containing heartbeat annotations for both R-peak position and disease type.

The lead configurations (sensor locations) are not the same at all and only 40 records have both

II and VI. Based on this database, we cannot use the obtained classifier for telemedicine
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centers. For the Common Standards for Quantitative ECG (CSE) database [18], there are

approximately 1000 standard 10-second, 12-lead ECG records, each containing annotations

for P, QRS and T positions. However, this database is not free, which makes many scholars

unable to carry out research on it. For other databases (such as American Heart Association

(AHA) database [19] and ST-T database [20]), there are also some advantages and disadvan-

tages.

Aiming to carry out relevant research for telemedicine centers, we constructed the Chinese

Cardiovascular Disease Database (CCDD) [21] containing 193,690 standard 12-lead ECG

records with about 10–20 s in duration. As shown in Figure 1, the ECG record consists of 6

limb leads of I, II, III, aVR, aVL, aVF and six chest leads of V1, V2, V3, V4, V5, V6 that describe

cardiac electrical activity jointly. If it is collected for 10 s at the sampling frequency of 500 Hz,

there are 60,000 (=500 � 10 � 12) sampling points.

In this study, we develop a method for classification of normal and abnormal ECG records

with short duration (record classification), but one that can also be easily extended to other

cases since a long-term ECG record can be divided every T s into segments of length T [12].

Based on the CCDD, our research group has tried and proposed some methods for this subject.

Using existing methods for heartbeat classification [22, 23] and the average-prediction technol-

ogy, Zhu [24] obtained an accuracy of 72% with a specificity of 94% and a sensitivity of 25%

when testing 11,760 ECG records. Wang [25] proposed a Multi-Way Tree Based Hybrid Clas-

sifier (MTHC), including analysis of RR interval, similarity analysis of QRS complex, analysis

of physiology characteristics (such as P wave, T wave and PR interval) and statistical learning

based on morphological and numerical characteristics. The specificity, sensitivity and accuracy

are 54.62, 95.13 and 72.49%, respectively, on the 140,098 ECG records. Zhang [13] proposed a

heartbeat classification method which has certain advantages over the relevant literature [5, 6,

8, 9, 14], but the accuracy is about 50–60% when he used it for record classification. For this,

our prior work [26] analyzed traditional feature-based methods from the ability to construct

nonlinear functions and proposed lead convolutional neural networks (LCNNs) for multi-lead

ECGs. Using the explicit training method and the single-point-prediction technology, we

Figure 1. Standard 12-lead synchronous ECG.
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achieved an accuracy of 83.66% with a specificity of 83.84% and a sensitivity of 83.43% when

testing 151,274 records. Figure 2 depicts the whole process flow.

To improve the classification performance further, this study extends our prior work in the

following aspects. (1) Two different LCNN models are obtained through different filtering

methods (a low-pass filter and a band-pass filter) and different training methods (the explicit

method and the implicit method), and then the multipoint-prediction technology and the

Bayesian fusion method are successively applied to them. (2) Four effective disease rules based

on R peaks are developed for further analysis. (3) The final classification result is determined

by utilizing the bias-average method.

The rest of the chapter is organized as follows: in Section 2, the CCDD used in this study is first

introduced; in Section 3, the proposed method is described in detail; then in Section4, the

experimental results, as well as comparison with the published results are presented; discus-

sions and conclusions are provided in Section 5 and 6, respectively.

2. Dataset

There are 193,690 standard 12-lead ECG records with about 10–20s in duration and sampling

frequency of 500 Hz in the CCDD. These data were successively obtained from hospitals (i.e.,

real clinical environment) located at different districts in Shanghai, Suzhou and Changsha. For

data1–251, all the records have detailed heartbeat annotations including P-onset, P-peaks,

P-offset, QRS-onset, R-peaks, QRS-offset, T-onset, T-peaks, T-offset and disease type. For

data252–943, all the records only have heartbeat annotations for R-peak position and disease

type. Just like the MIT-BIH-AR database, all the records in data1–943 were chosen purpose-

fully and two or more cardiologists provided the annotations. As heartbeat annotations are

available, we can carry out research on heartbeat classification. For data944–193,690, all the

records only have diagnostic conclusions provided by one cardiologist. Note that a diagnostic

conclusion may contain more than one disease type.

As shown in Figure 3, we use hexadecimal codes, that is, form of “0�dddddd”, to encode

disease types divided into three grades. There are 12 first-grade types (i.e., Invalid ECG,

Figure 2. LCNN-based method for record classification.
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Normal ECG, Sinus Rhythm, Atrial Arrhythmia, Junctional Rhythm, Ventricular Arrhythmia,

Conduction Block, Atrial Hypertrophy, Ventricular Hypertrophy, Myocardial Infarction, ST-T

Change and Other Abnormalities), 72 second-grade types and 335 third-grade types, including

all the possible diagnostic conclusions provided by cardiologists in clinic. More details can be

seen on our website (http://58.210.56.164:88/ccdd/).

In telemedicine centers, ECG records that are not explicitly diagnosed as “normal” all need to

be further interpreted by domain experts, so that the potential cardiovascular disease of a

patient can be detected as early as possible. Therefore, in this study we only regard ECG

records whose diagnostic conclusions are “0�01” or “0�020101” or “0�020102” as “normal”

(denoted as 0-class) and all the others as “abnormal” (denoted as 1-class). Moreover, we throw

away some exception data, that is, the diagnostic conclusion is “0�00” or the duration is less

than 9.625 s.

The training and testing sets are organized as follows [26]: “data944–25,693” is partitioned into

three parts where the numbers of training samples, validation samples and testing samples

(i.e., the small-scale testing set) are 12,320, 560 and 11,789, respectively, and the large-scale

testing set is composed of 151,274 ECG records from data25694–179,130. Note that we will

combine training samples and validation samples together for implicit training. Table 1

Figure 3. Disease types in the CCDD.

# Dataset Normal Abnormal Irregular Total

Training samples data 944–25,693 8800 3520 763 12,320

Validation samples data 944–25,693 280 280 56 560

Small-scale testing set data 944–25,693 8387 3402 822 11,789

Large-scale testing set data 25694–179,130 85,141 66,133 9172 151,274

Table 1. Data distribution.
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summarizes the detailed information, where “irregular” denotes the abnormal ECG records

whose heart rhythms are irregular (their diagnostic conclusions are “0�0202”).

3. Methodologies

Figure 4 shows the overall framework of the proposed method. As we can see, it consists of

three parts, namely, statistical learning, rule inference as well as summarizing. In the part of

statistical learning, the ECG record is first preprocessed by two different methods respectively,

and then two probability values are outputted by utilizing LCNNs and the multipoint-

prediction technology (LCNN[A] and LCNN[B] have the same architecture and are obtained

by “explicit training” and “implicit training”, respectively). After that, we use the Bayesian

fusion method to incorporate the two outputs. In the part of rule inference, all R-peak positions

in the ECG record are detected first [27], and then four disease rules based on them are used for

further analysis. Finally, in the part of summarizing, we utilize the bias-average method to

determine the classification result, that is, “normal” or “abnormal.”

Figure 4. Overall framework of the proposed method.
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Essentially, Figure 4 describes an ensemble method including two homogeneous classifiers

(i.e., LCNN[A] and LCNN[B]) and five heterogeneous classifiers (i.e., RI[A], RI[B], RI[C], RI

[D], LCNN[AB] consisting of LCNN[A] and LCNN[B]). For the homogeneous ensemble,

different base classifiers must be obtained if we want to be able to enhance classification

performance. In fact, our generation strategy has certain advantages over some well-known

ensemble methods such as Bagging and AdaBoost [28]. For the heterogeneous ensemble,

different classifiers should be complementary to each other. Since LCNNs are not good at

detecting abnormal heart rate and irregular heart rhythm, we use simple disease rules. Next,

we will introduce each of the steps in detail.

3.1. Statistical learning

3.1.1. Preprocessing

Generally speaking, ECG records collected in clinics are often contaminated by several types of

interfering noise, such as low-frequency waves (less than 0.5 Hz) caused by breathing move-

ments, high-frequency waves (50 or 60 Hz) caused by electricity, and biological waves (about

33 Hz) caused by physical activities. Although we can use many methods to de-noise, some

useful information may be lost after doing that. Since LCNNs which belong to deep learning

[29, 30] have the ability to capture useful information but ignore interfering noise after learning

from a certain number of training samples, we do not perform special de-noising.

An effective strategy for homogeneous ensemble learning is to make input data different, so

we apply a low-pass filter and a band-pass filter of 0.5–40 Hz [31] to the ECG record, respec-

tively. Of course, there is no problem if we exchange the low-pass filter for the band-pass filter;

here we just make one path consistent with our prior work. After that, we conduct the down-

sampling operation (from original 500 to 200 Hz) and extract a data segment of 9.5 s from the

incoming ECG record after ignoring the first 0.125 s. Only eight basic leads, namely II, III, V1,

V2, V3, V4, V5 and V6 are reserved since the remaining four leads can be linearly derived from

them. As a result, each ECG record consists of 8 � 1900 sampling points.

3.1.2. Lead convolutional neural network

Convolutional neural networks (CNNs) [32] have been successful in the field of ECG signal

classification. Zhu used the CNN-based method for both heartbeat classification and record

classification, and obtained an accuracy of 99.20% on the MIT-BIH-AR database with 47,190

heartbeats in the “intra-patient” evaluation, and an accuracy of 83.49% and 0.8819 AUC on the

CCDD with 11,760 ECG records, respectively [24]. Kiranyaz applied CNNs on 1-lead ECGs for

patient-specific heartbeat classification and achieved good results [33, 34]. However, multi-

lead ECGs are different from two-dimensional images: data in the horizontal direction (intra-

lead) are relevant while data in the vertical direction (inter-lead) are independent. For this, our

prior work proposed lead convolutional neural networks (LCNNs) for multi-lead ECGs, which

have better classification performance. Figure 5 shows an example of three-stage LCNN.

In Figure 5, CU denotes a convolution unit consisting of a convolutional layer and a sub-

sampling (max-pooling) layer; 1DCov and SubSamp denote the one-dimensional convolution
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operation and the sub-sampling operation, respectively. The computational process consists of

data for each lead going through three different CUs, and then inputting information from all

leads into a fully connected (FC) layer. Finally, the logistic-regression (LR) layer output the

predictive value. In fact, we can regard each CU as a feature extractor, and the subsequent

multilayer perceptron consisting of the FC layer and the LR layer as a classifier.

To describe the LCNN clearly, we present its computational formula as follows: let [x1, x2,…,

x8] be the incoming ECG record where xi (a vector, 1 < =i < =8) is the data of the i-th lead, then

f xð Þ ¼ gE gD

[

8

i¼1

gCi
gBi

gAi
xið Þ

� �� �

 ! !

gD xð Þ ¼ φ WTxþ b
� �

gE xð Þ ¼
1

1þ e� WTxþbð Þ

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

(1)

Here, gE and gD are the computational formulas for the LR layer and the FC layer, respectively,

W and b are the weights and the biases of the corresponding layer,ϕ(x) is the sigmoid function.

gAi, gBi and gCi (1 < = i < = 8) are the computational formulas for the CUs whose expression are

all fsub(fcov(x)), the only differences between them exist in weights and biases. For the i-th lead,

ECG data is inputted into gAi first, and then the output of gAi continues to be inputted into gBi
and gCi. After that, the outputs of gC1, gC2, …, gC8 (namely 8 vectors) are concatenated

together (namely 1 vector) using the union operation U. Finally, the resulting vector is inputted

into gD and gE successively and a value ranging from 0 to 1 is outputted. Note that both the

input and the output of each function are vectors and the expressions of fsub(x) and fcov(x) are

given by

Figure 5. Architecture of a three-stage LCNN.
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Here, Pi and Qi denote the size of the convolutional kernel and the sub-sampling step in the

i-th layer, respectively, U denotes the union operation. vij
k denotes the output value of the k-th

neuron (start from 1) in the j-th feature map (unit) of the i-th layer.wij,(i � 1)m
p is the weight that

connects the j-th unit of the i-th layer with the m-th unit of the (i � 1)-th layer, and bij is the bias

in the j-th unit of the i-th layer.

The setting of each parameter (such as Pi,Qi and the number of CUs for each lead) will greatly

influence the classification performance, and too large or too small parameters all result in

unfavorable outcome. In practical applications, they can be determined by a trial-and-error

method. To keep things simple and ensure a fair comparison, we use two 3-stages LCNNs with

the same architecture, namely LCNN[A] and LCNN[B] in Figure 4, and the corresponding

parameters are the same as those in our prior work. The number of the neurons in the input

layer is 8� 1700; the sizes of three convolutional kernels are 21, 13 and 9, respectively; the sizes

of three sub-sampling steps are 7, 6, and 6, respectively; the numbers of three feature maps are

6, 7 and 5, respectively; the number of the neurons in the FC layer is 50.

3.1.3. Training method

To obtain different LCNNmodels, we develop two training methods for LCNN based on mini-

batch gradient descent [35] in supervised learning, that is, the explicit method and the implicit

method. The main difference between them exists in validation mechanisms. Since gradient

descent is a typical local search algorithm, we incorporate “translating starting point” and

“adding noise” into it to increase the number of training samples presented to the network, so

that classifiers with good generalization performance can be obtained.

The explicit method is commonly used for training neural networks, which utilizes indepen-

dent validation samples to evaluate the obtained classifier during the training phase. As

shown in Figure 6(a), the training process can be described as follows: a random 8 � 1700 local

segment is extracted from the 8 � 1900 training sample first (translating starting point), and

then it is added with random signals whose maximal amplitude is less than 0.15 millivolts

(adding noise) with high probability, finally back propagation is invoked. When Batchsize

training samples have been presented to the network, the weights will be adjusted and the

current LCNN model will be tested by the particular 8 � 1700 local segments (start from the

first position) extracted from 8 � 1900 validation samples. If the accuracy is the best up to the
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present, the current LCNN model will be saved. Of course, the training will stop when

reaching the maximum number of epochs.

Besides the explicit method, we develop an implicit method for training LCNN, whose main

characteristic is that a small number of local segments extracted from training samples are

Figure 6. (a). Pseudo-code of explicit training method. (b). Pseudo-code of implicit training method.
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used for evaluating the obtained model. As shown in Figure 6(b), most of the steps are the

same as those shown in Figure 6(a). When Batchsize training samples have been presented to

the network, the weights will be adjusted and the current LCNN model will be tested by the

particular 8 � 1700 local segments (start from the first position) extracted from the 8 � 1900

training samples, which are used between two adjacent weight-updating processes. At the end

of each epoch, the current LCNN model will be saved if the total accuracy is the best up to the

present.

While some may think this method would result in overfitting, this is a false assumption. We

extract random local segments and add random signals to them with high probability for

training. Differently, we extract particular local segments and do not add random signals to

them for validation. Therefore, the probability of overlap is very small.

To be consistent with our prior work, we employ the back propagation algorithm of inertia

moment and variable step [36] and do not use any unsupervised pre-training. The relevant

parameters are set as follows: the initial step length is 0.02, the step decay is 0.01 except for the

second and the third epoch (set as 0.0505), Batchsize is 560, and the maximum number of

training epochs is 500.

3.1.4. Multipoint prediction technology

We can immediately get the classification result after inputting a 8 � 1700 local segment

extracted from the incoming ECG record into the obtained LCNN model. This is the method

our prior work adopted, namely the single-point-prediction technology. However, the output

of the LCNN is a probability value ranging from 0 to 1 and the classification confidence is low

if the value is around 0.5. For this, we develop a new testing method, namely the multipoint-

prediction technology.

As shown in Figure 7, nine 8 � 1700 local segments which start from the 1st, 26th, 51st, 76th,

101st, 126th, 151st, 176th and 201st positions are extracted from the ECG record, respectively,

then their predictive values outputted by the LCNN are aggregated by the average rule (for

simplicity’s sake), so that the classification confidence can be enhanced.

3.1.5. Bayesian fusion method

In this study, we employ a Bayesian fusion method [37] to incorporate the outputs of the two

LCNNs: givenM classifiers and K classes, the predicted class k can be determined based on the

final probability estimates P(y = i|c1, c2,…, cm) and is given by

P y ¼ ijc1; c2;…; cmð Þ ¼
1

M

X

M

m¼1

P y ¼ ijcmð Þ

k ¼ argmax
1 ≤ i ≤K

P y ¼ ijc1; c2;…; cmð Þf g

8

>

>

<

>

>

:

(3)

Here, P(y = i|cm) is the probability value predicted on the i-th class by the classifier cm. What

we focus on is a binary classification problem (i.e., “normal” vs. “abnormal”), thus K = 2, and
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obviously, M = 2. Of course, other fusion methods can be employed for this purpose. For

example, we can train one logistic regression using the concatenation of the outputs of both

LCNNs, and it may be able to give better results. The part of statistical learning is denoted as

the LCNN[AB] classifier.

3.2. Rule inference

R-peaks detection algorithms have reached a very high level at present [38]. On the other hand,

there is no doubt that an ECG record is abnormal if it is identified as a specific disease. Hence,

we develop four disease rules based on R peaks to detect abnormal heart rate and irregular

heart rhythm.

Let fs be the sampling frequency, Ri (1 < = i < = n) be the i-th R-peak position in an ECG record,

and std.(.) be the function of calculating the standard deviation. The formula for calculating

the average RR interval is given by

AvgRR ¼
1

n� 1

Xn

i¼2

Ri � Ri�1ð Þ (4)

Figure 7. Pseudo-code of testing process.
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The four disease rules are defined as follows:

1. Heart rate

The formula for calculating heart rate is given by

HR ¼
60� fs� n� 1ð Þ

Rn � R1
(5)

Normal heart rate is defined as 60–100 CPM (i.e., counts per minute) clinically; here we regard

59–101 CPM as normal, otherwise as abnormal. This rule is denoted as the RI[A] classifier.

2. Irregular heart rhythm based on local characteristics.

The first rule for detecting irregular heart rhythm is defined as follows: three successive RR

intervals exceed 15% of the average RR interval, that is, ∃k∈ 1; n� 3½ �, ∀j∈ 1; 3½ �satisfies

Rkþj � Rkþj�1

� �

� AvgRR

AvgRR

�

�

�

�

�

�

�

�

> 0:15 (6)

We regard an ECG record as abnormal if Eq. (6) is satisfied, otherwise as normal. This rule is

denoted as the RI[B] classifier.

3. Irregular heart rhythm based on local and global characteristics.

The second rule for detecting irregular heart rhythm is defined as follows: one RR interval

exceeds 15% of the average RR interval and the standard deviation of the rates between two

neighboring RR intervals is greater than 0.05, that is, ∃k∈ 1; n� 1½ � satisfies

Rkþ1 � Rkð Þ � AvgRR

AvgRR

�

�

�

�

�

�

�

�

> 0:15

std
Riþ2 � Riþ1

Riþ1 � Ri
1 ≤ i ≤ n� 2

�

�

�

�

�� 	

> 0:05




8

>

>

>

<

>

>

>

:

(7)

Likewise, we regard an ECG record as abnormal if Eq. (7) is satisfied, otherwise as normal.

This rule is denoted as the RI[C] classifier.

4. Irregular heart rhythm based on global characteristics.

The last rule for detecting irregular heart rhythm is defined as follows: the standard deviation

of RR intervals is greater than (0.05 � AvgRR), that is, satisfies

std Riþ1 � Rij1 ≤ i ≤ n� 1f gð Þ > 0:05� AvgRR (8)

In the same way, we regard an ECG record as abnormal if Eq. (8) is satisfied, otherwise as

normal. This rule is denoted as the RI[D] classifier.

Of course, false R-peak detections will influence the classification performance of the four

disease rules and result in an unfavorable outcome. In this study, we utilize the Zhu method
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[27] to detect R peaks since its accuracy is 99.83% in the MIT-BIH-AR database with 48 ECG

records and 99.78% in the CCDD with 251 ECG records, respectively. Note that 0 is outputted

if the classification result is “normal”, otherwise 1 is outputted.

3.3. Summarizing

As we can see, there are five classifiers, namely RI[A], RI[B], RI[C], RI[D] and LCNN[AB],

involved in Figure 4. We can regard an ECG record as “abnormal” if any one of the classifiers

gives such a result. However, the outputs of the four rule-based classifiers are 0 or 1, while the

output of the LCNN[AB] classifier is a probability value ranging from 0 to 1. We hope that the

predictive value can be outputted in the form of a probability, so a new fusion method, namely

the bias-average method, is developed, given by

ro ¼ max ro1; ro2; ro3; ro4ð Þ

output ¼

roþ nno

2
, ro ¼¼ 1

nno, otherwise

8

<

:

8

>

>

<

>

>

:

(9)

Where, ro1, ro2, ro3, ro4 and nno are the outputs of the RI[A], RI[B], RI[C], RI[D] and LCNN

[AB] classifiers, max(.) is to choose the maximum value. If we use the first three disease rules,

just replace “max(ro1,ro2,ro3,ro4)” with “max(ro1,ro2,ro3).” The final output value ranges from

0 to 1 and the classification result is “normal” if it is less than 0.5, otherwise it is “abnormal.”

Figure 7 shows the whole testing process including the multipoint-prediction technology, the

Bayesian fusion method and the bias-average method.

4. Result

4.1. Performance metrics

In this study, we use several metrics to investigate the performance of different algorithms: Sp

(specificity), NPV (negative predictive value), Se (sensitivity) and Acc (accuracy), given by

Sp ¼
TN

TN þ FP

NPV ¼
TN

TN þ FN

Se ¼
TP

TPþ FN

Acc ¼
TPþ TN

TN þ FPþ FN þ TP

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

(10)

Here, TP is the number of abnormal ECG records that are correctly classified as abnormal, TN

is the number of normal ECG records that are correctly classified as normal, FP is the number

of normal ECG records that are incorrectly classified as abnormal, and FN is the number of
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abnormal ECG records that are incorrectly classified as normal. We also use receiver operating

characteristic (ROC) curve-related metrics, including area under ROC curve (AUC), true pos-

itive value (TPR) (e.g., “Sp” in this study) and false positive value (FPR)(e.g., “1-Se” in this

study). A rough suggestion for measuring classification performance using “AUC” is as fol-

lows [39]:

1. 0.90–1.00 = excellent classification;

2. 0.80–0.90 = good classification;

3. 0.70–0.80 = fair classification;

4. 0.60–0.70 = poor classification;

5. 0.50–0.60 = failure.

Note that “NPV” in this study is also called the detection precision of normal ECG records.

4.2. Numerical experiment

Our prior work [26] has achieved the best results for record classification on the CCDD up to

now, so it is meaningful to compare the proposed method with it. As described in Section 2, the

same training, validation and testing samples are used. To show the contribution of each

strategy intuitively, we present the corresponding results in Tables 2 and 3 in turn. The

classification results on the small-scale testing set is only used for reference; what we mostly

focus on is the results on the large-scale testing set, which can be deemed as a more realistic

estimate of potential performance in real applications.

In Tables 2 and 3, “0”, “1”, “2”, “3” and “4” denote the LCNN[AB], RI[A], RI[B], RI[C] and

RI[D] classifiers, respectively. From the results, we can see that although NPV and Se are

slightly lower, “0” outperformed our prior work in all other metrics regardless of the small-

scale testing set and the large-scale testing set. On this basis, most metrics continue to increase

when “1”, “2” and “3” are added, while many metrics start to decrease when “4” is added. The

role of “4” is to increase NPV and Se, so that TPR under the condition of NPV being equal to

Model Sp NPV Se Acc AUC FPR = 1% NPV = 95% NPV = 90%

TPR NPV FPR TPR FPR TPR

LCNN [26] 88.84 90.48 76.95 85.41 0.9034 17.5 97.8 8.22 63.3 24.7 90.1

0 91.81 90.04 74.96 86.95 0.9172 23.0 98.3 9.61 74.1 25.2 91.9

0 + 1 91.77 90.11 75.16 86.98 0.9176 23.3 98.3 9.63 74.2 25.2 91.9

0 + 1 + 2 91.62 90.22 75.51 86.97 0.9180 23.3 98.3 9.63 74.2 25.2 91.9

0 + 1 + 2 + 3 90.28 91.11 78.28 86.82 0.9220 24.6 98.4 9.90 76.3 25.3 92.3

0 + 1 + 2 + 3 + 4 80.60 93.09 85.24 81.94 0.9196 25.8 98.5 9.71 74.8 25.1 91.7

Table 2. The results of different classification models on the small-scale testing set.
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95% (TPR95) can be increased. Compared with our prior work, the “0 + 1 + 2 + 3” model

increased all the metrics and significantly improved the classification performance.

As mentioned previously, the aim of this study is to develop a computer-assisted ECG analysis

algorithm for telemedicine centers. Specially, the normal ECG records are filtered out first, and

then the remaining abnormal ones are delivered to domain experts for further interpretation,

so that their workload can be lessened and diagnostic efficiency can be improved [1]. The key

technical indicator is to make TPR95 as high as possible [2]. From Tables 1 and 3 we can see

that, 38.21% (=56.28% � 67.9%) of domain experts’ workload can be lessened. The more

normal ECG records there are, the less work domain experts do. Although the proposed

method increases the computational complexity, we can use the classification system in prac-

tical applications. The total computing time for an ECG record is about 125 ms on an Intel

Core2 CPU@2.93GHz, 2GB RAM, 32bit Window 7 OS.

Some may think that the self-compared results are not supportive enough to show the effec-

tiveness. In fact, Zhu [24], Wang [25] and Zhang [13] have proposed methods for this subject,

but their results are significantly inferior to those of our prior work. Since the heartbeat

classification method [5] has achieved the highest accuracy of 99.3% in the “intra-patient”

evaluation by now and a good accuracy of 86.4% in the “inter-patient” evaluation, we re-

implement it using the CCDD and classify each ECG record with any abnormal heartbeats as

“abnormal”, but the performance is poor. The open-source software ECG-KIT [11] has recently

been made available on Physionet (http://physionet.org/physiotools/ecg-kit/). However, differ-

ent from the classification standard in this study, ECG-KIT uses the AAMI recommendation to

output the result, so it would not necessarily be meaningful to compare our proposed method

with ECG-KIT.

Finally, let us consider the industrial applications. The statistical analysis on the classification

results given by General Electric Medical System shows that the total accuracy on 2112 ECG

records is 88.0%, where the accuracies of interpreting sinus rhythms and non-sinus rhythms

are 95 and 53.5%, respectively [40]. Hence, the total accuracy will only be 74.25% if the ratio of

the number of sinus rhythms to the number of non-sinus rhythms is 1:1. The similar statistical

analysis also shows that on 576 ECG records, the accuracies of Philips Medical Systems and

Model Sp NPV Se Acc AUC FPR = 1% NPV = 95% NPV = 90%

TPR NPV FPR TPR FPR TPR

LCNN [26] 83.84 86.69 83.43 83.66 0.9086 16.0 95.4 1.81 26.7 10.6 73.9

0 87.49 86.30 82.12 85.15 0.9199 22.1 96.6 3.42 50.4 11.3 79.3

0 + 1 87.43 86.75 82.81 85.41 0.9225 24.4 96.9 3.60 53.1 11.5 80.4

0 + 1 + 2 87.20 87.30 83.67 85.66 0.9251 26.2 97.1 3.83 56.5 11.7 81.6

0 + 1 + 2 + 3 86.03 89.11 86.46 86.22 0.9322 34.3 97.8 4.43 65.4 12.1 84.4

0 + 1 + 2 + 3 + 4 80.37 91.04 89.82 84.50 0.9320 36.7 97.9 4.60 67.9 11.8 82.4

Table 3. The results of different classification models on the large-scale testing set.
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Draeger Medical Systems are 80 and 75%, respectively, and the average accuracy of non-

experts is 85% [41]. Our proposed method achieved an accuracy of 86.22% and 0.9322 AUC

on 151,274 ECG records, indicating that it has competitive classification performance.

5. Discussion

Due to inter-individual variation in ECG characteristics and the complexity of clinical data,

record classification is a highly difficult problem. As a new research direction in recent years,

deep learning has already achieved great success in hard Artificial Intelligence tasks, such as

speech recognition [42] and image classification [43]. As an improved deep learning architec-

ture, the LCNN show good performance for record classification. However, one LCNN with

limited layers and neurons is not strong enough, so we use an ensemble method based on

LCNN in this study and the experimental results show its effectiveness. In fact, using the same

training and testing samples (heartbeat segments) from the MIT-BIH-AR database, the LCNN-

based ensemble method has achieved an accuracy of 99.46% with a specificity of 99.69% and a

sensitivity of 98.73% for detecting ectopic heartbeat, comparable to the state-of-the art results

for heartbeat classification in the “intra-patient” evaluation [5].

One may doubt the viability of LCNNs since no feature-extraction operations are involved. In

fact, if we let f(x) and g(x) be the corresponding function of feature extraction and classifica-

tion, respectively, the decision-making function of traditional machine-learning methods can

be written as g(f(x)). Therefore, we can directly construct the function g(f(x)) by deep-learning

techniques [26, 44]. Nevertheless, there is not a general-purpose method for all problems, and

what one needs to do is to choose or develop the most appropriate method for a special

problem. For instance, abnormal ECG records whose heart rhythms are irregular should be

collected first if we use the LCNN to detect irregular heart rhythm. It works well; however, the

LCNN will capture not only characteristics of heart rhythm, but also other characteristics such

as morphology and intervals during the training phase. That will result in more types of ECG

records to be collected if we want to obtain a good classifier. In fact, on the small-scale and

large-scale testing sets, the sensitivities of the LCNN[AB] classifier in the detection of irregular

heart rhythm are 58.15 and 58.54%, respectively, while the corresponding results for detecting

abnormal ECG records whose heart rhythm are regular are 80.31 and 85.92%. From Table 1,

we know that the two testing sets only have a small proportion of irregular heart rhythm. If

there are more abnormal ECG records whose heart rhythm is irregular, the LCNN[AB] classi-

fier will not achieve such good results. In a word, accurate detection of irregular heart rhythm

plays an important role in enhancing classification performance. Fortunately, we can achieve

this aim by running the calculation based on R-peak positions. It is also effective for detecting

abnormal heart rate, thus four disease rules are developed in this study.

From the perspective of simulating cardiologists’ diagnostic thinking, LCNNs and disease

rules express experiential knowledge and intuitive knowledge, respectively, and the combina-

tion of them is a complete simulation [1]. This is another reason why the proposed method can

achieve good classification results.
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In fact, our proposed method can be divided into two parts: the classification of “normal”

versus “abnormal” serves as a global classifier and the classification of each specific disease

serve as a local classifier. The advantage of the global classifier is that the error accumulation

due to introducing each local classifier can be avoided, since the detection performance for

many cardiovascular diseases is not very good regardless of whether LCNNs or disease rules

are used. There are not enough samples used for training LCNNs in many cases (especially the

disease with low detection rate in the general population); while for disease rules, the inaccu-

rate detection of fiducial points can result in subsequent misclassification. Nevertheless, to

enhance classification performance further, we can integrate classifiers of easily detectable

diseases into Figure 4. For instance, using LCNNs for atrial fibrillation detection, the sensitiv-

ity, specificity and accuracy are 98.93, 98.76 and 98.76%, respectively, on 142,167 ECG records

in the CCDD, and the detection performance is still excellent on ECG records collected by

Shanghai MicroPort Co. Ltd. (almost 100% accuracy). Likewise, using disease rules, we can

effectively identify QRS complexes with abnormal amplitude.

6. Conclusion

In order to lessen the workload of domain experts in telemedicine centers, we present a

systematic approach for record classification in this chapter. Based on LCNNs and disease

rules, an effective ensemble method including two homogeneous classifiers and five heteroge-

neous classifiers is developed. On the CCDD, our method yields an accuracy of 86.22% and

0.9322 AUC (excellent), which is a significant improvement on previously reported results [13,

24–26]. Specifically, TPR under the condition of NPV being equal to 95% can reach 67.9%,

which means that the workload of domain experts can be decreased by (N% � 67.9%) in a

clinically acceptable scope (especially in the BCMIS of China) if the percentage of normal ECG

records is N%. In general, at least 70 � 67.9 = 47.53% of domain experts’ workload can be

reduced since N% can be more than 70%. We have deployed the classification system on the

real-time cloud platform of Shanghai Aerial Hospital Network.

Regarding future work, our aim is to develop effective detection algorithms for other common

cardiovascular diseases such as premature atrial contraction and premature ventricular con-

traction, and to integrate them into Figure 4. Since both LCNNs and disease rules have

advantages and disadvantages, the combination of the two is a preferable research direction.
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