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Abstract

The present chapter is focused on studies concerned with three-dimensional flow and heat
transfer analysis of Carreau fluid with nanoparticle suspension. The heat transfer analysis
in the boundary was carried out with the fluid flow over a stretching surface under the
influence of nonlinear thermal radiation, mixed convection and convective boundary
condition. Suitable similarity transformations are employed to reduce the governing par-
tial differential equations into coupled nonlinear ordinary differential equations. The
equations in non-linear form are then solved numerically using Runge-Kutta-Fehlberg
fourth fifth-order method with the help of symbolic algebraic software MAPLE. The
results so extracted are well tabulated and adequate discussions on the parameters affect-
ing flow and heat transfer analysis were carried out with the help of plotted graphs.

Keywords: Carreau nano fluid, nonlinear thermal radiation, mixed convection, stretching
sheet, convective boundary condition, numerical method

1. Introduction

Thermal radiation, the fundamental mechanism of heat transfer is an indispensable activity in

rocket propulsion, plume dynamics, solar collector performance, materials processing, com-

bustion systems, fire propagation and other industrial and technological processes at high

temperatures. With the developments in computational dynamics, increasing attention has

been diverted towards thermal convection flows with the significant radiative flux. Rayleigh

initiated the theory of thermal convection, by deriving critical temperature gradient (Critical

Rayleigh number). Importance of such radiations is intensified with absolute temperatures at
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higher level. Thus a substantial interest is driven towards thermal boundary layer flows with a

strong radiation. Governing equation of radiative heat transfer with its integro-differential

nature makes numerical solutions of coupled radiative-convective flows even more challeng-

ing. Multiple studies were conducted employing several models to investigate heat and mass

transfer in boundary layer and fully-developed laminar convection flows. As a consequence

several simultaneous multi-physical effects in addition to radiative heat transfer including

gravity and pressure gradient effects [1], mhd flow of nanofluids [2], buoyancy effects [3, 4],

ferrofluid dynamics [5], stretching surface flow [6, 7], time-dependent, wall injection and Soret/

Dufour effects [8–11].

These studies have however been confined to Newtonian flows. But industries related with

fabrication of polymers and plastics at high temperatures show greater importance towards

radiative flows of non-Newtonian fluids. The potential of non-Newtonian flows in ducts with

radiative transfer were significantly developed after the studies on novel propellants for

spacecraft [12]. The developments are extant and diversified the application of non-Newtonian

fluid models. Most studies in this regard have employed the Rosseland model which is

generally valid for optically-thick boundary layers. Recently, Kumar et al. [13] used such

model to study melting heat transfer of hyperbolic tangent fluid over a stretching sheet with

suspended dust particles. Cortell [14] and Batalle [15] have shown their earlier contribution

towards radiative heat transfer of non-Newtonian fluids past stretching sheet under various

circumstances. Relating to the studies Khan et al. [16] developed a numerical studies correlat-

ing MHD flow of Carreau fluid over a convectively heated surface with non-linear radiation.

Appending to this studies Khan et al. [17] provided his results on hydromagnetic nonlinear

thermally radiative nanoliquid flow with Newtonian heat along with mass conditions. Mean-

while, Rana and Bhargava [18] provided a numerical elucidation to study of heat transfer

enhancement in mixed convection flow along a vertical plate with heat source/sink utilizing

nanofluids. Hayat et al. [19] investigated the mixed convection stagnation-point flow of an

incompressible non-Newtonian fluid over a stretching sheet under convective boundary con-

ditions. Many diverse -physical simulations with and without convective and/or radiative heat

transfer have been studied. Representative studies in this regard include [20–23] with analo-

gous to the property of radiation flow.

Endeavoring the complications in three dimensional flow analysis, Shehzad et al. [24] studied

the effect of thermal radiation in Jeffrey nanofluid by considering the characteristics of

thermophoresis and Brownian motion for a solar energy model. Hayat et al. [25] analyzed the

effect non-linear thermal radiation over MHD three-dimensional flow of couple stress

nanofluid in the presence of thermophoresis and Brownian motion. Rudraswamy et al. [26]

observations on Soret and Dufour effects in three-dimensional flow of Jeffery nanofluid in the

presence of nonlinear thermal radiation clearly showed that concentration and associated

boundary layer thickness are enhanced by increasing Soret and Dufour numbers. Many such

problems [27–29] were considered disclosing the feature of thermal radiation in three dimen-

sional flow of non-Newtonian fluids.

Inspired by the above works, we put forth the studies on the effect of non-linear thermal

radiation on three dimensional flow of Carreau fluid with suspended nanoparticles. Present
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studies even include the phenomenon of mixed convection and convective boundary condi-

tions. A numerical approach is provided for the above flow problem by employing Runge-

Kutta-fourth-fifth order method.

2. Mathematical formulation

A steady three-dimensional flow of an incompressible Carreau fluid with suspended nano

particles induced by bidirectional stretching surface at z ¼ 0 has been considered. The sheet is

aligned with the xy� plane z ¼ 0ð Þ and the flow takes place in the domain z > 0. Let

u ¼ uw xð Þ ¼ ax and v ¼ vw yð Þ ¼ by be the velocities of the stretching sheet along x and y

directions respectively. A constant magnetic field of strength B is applied in the z� direction.

Heat and mass transfer characteristics are taken in to account in the presence of Brownian

motion and Thermophoresis effect. The thermo physical properties of fluid are taken to be

constant.

Extra stress tensor for Carreau fluid is.

τij ¼ μ0 1þ
n� 1

2
Γ _γ
� �2

� �

_γij

In which τij is the extra stress tensor, μ0 is the zero shear rate viscosity, Γ is the time constant, _γ

is the power law index and is defined as.

_γ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2

XX

_γ ij

r

_γ ji ¼

ffiffiffi

1

2

r

Π

Here Π is the second invariant strain tensor.

The governing boundary layer equations of momentum, energy and concentration for three-

dimensional flow of Carreau nanofluid can be written as,

∂u

∂x
þ

∂v

∂y
þ

∂w

∂z
¼ 0, (1)

u
∂u

∂x
þ v

∂u

∂y
þ w

∂u

∂z
¼ ν

∂
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n� 1ð Þ

2
Γ

∂u
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� �2
∂
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∂z2
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∞
ð Þ �

σB2
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u, (2)
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þ w

∂T

∂z
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∂
2T

∂z2
þ τ DB
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∞

∂T

∂z

� �2
" #

�
1

rcð Þf

∂qr
∂z

, (4)

u
∂C
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∂z
¼ DB

∂
2C
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þ
DT

T
∞
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: (5)
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The boundary conditions for the present flow analysis are,

u ¼ ax, v ¼ by, w ¼ 0, k
∂T

∂z
¼ �hf Tf � T∞

� �

, C ¼ Cw at z ¼ 0 (6)

u ! 0, v ! 0, T ! T
∞
, C ! C

∞
as z ! ∞, (7)

where ν is the kinematic viscosity of the fluid, μ is the coefficient of fluid viscosity, r is the fluid

density, B is the magnetic field, σ is the electrical conductivity of the fluid, T is the fluid

temperature, α is the thermal diffusivity of the fluid, k is the thermal conductivity. τ is the ratio

of effective heat capacity of the nanoparticle material to heat capacity of the fluid, qr is the

radiative heat flux, g is the gravitational acceleration, βT is thermal expansion coefficient of

temperature, DB is the Brownian diffusion coefficient, hf is the heat transfer coefficient, DT is the

thermophoretic diffusion coefficient, cp is the specific heat at constant pressure, Tf is the temper-

ature at the wall, T∞ is the temperatures far away from the surface. C is the concentration and C∞
is the concentration far away from the surface. The subscript w denotes the wall condition.

Using the Rosseland approximation radiation heat flux qr is simplified as,

qr ¼ � 4σ∗

3k∗
∂T4

∂z
¼ � 16σ∗

3k∗
T3 dT

dz
, (8)

where σ∗ and k∗ are the Stefan-Boltzmann constant and the mean absorption coefficient

respectively.

In view to Eq. (8), Eq. (4) reduces to.

u
∂T

∂x
þ v

∂T

∂y
þ w

∂T

∂z
¼ ∂

∂z
αþ 16σ∗T3

3k∗ rcð Þf

 !

dT

dz

" #

þ τ DB
∂T

∂z

∂C

∂z
þDT

T
∞

∂T

∂z

� �2
" #

: (9)

The momentum, energy and concentration equations can be transformed into the corresponding

ordinary differential equations by the following similarity variables,

u ¼ axf 0 ηð Þ, v ¼ byg0 ηð Þ, w ¼ �
ffiffiffiffiffi

aν
p

f ηð Þ þ g ηð Þð Þ,

θ ηð Þ ¼ T � T
∞

Tw � T
∞

,ϕ ηð Þ ¼ C� C
∞

Cw � C
∞

, η ¼
ffiffiffi

a

ν

r

(10)

where T ¼ T
∞
1þ θw � 1ð Þθ ηð Þð Þ, θw ¼ Tf

T∞
, θw > 1ð Þ being the temperature ratio parameter.

Then, we can see that Eq. (1) is automatically satisfied, and Eqs. (2)–(7)are reduced to:

f ‴ þ f þ gð Þf 00 � f 0
2 þ 3

n� 1

2
Wef 00

2
f ‴ þ λθ�Mf 0 ¼ 0 (11)

g‴ þ f þ gð Þg00 � g0
2 þ 3

n� 1

2
Weg00

2
g‴ �Mg0 ¼ 0 (12)
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1

Pr
1þ R θw � 1ð Þθð Þ3θ0 0

	 


þ f þ gð Þθ0 þNbθ0φ0 þNtθ02 ¼ 0, (13)

ϕ00 þ LePr f þ gð Þϕ0 þ Nt

Nb
θ00 ¼ 0 (14)

With the boundary conditions,

f ¼ 0, g ¼ 0, f 0 ¼ 1, g0 ¼ c,θ0 ¼ �Bi 1� θ 0ð Þð Þ, ϕ ¼ 1, at η ¼ 0,

f 0 ! 0, g0 ! 0,θ ! 0,ϕ ! 0 as η ! ∞: (15)

We ¼ cU2
wλ

2

ν is the Weissenberg number, M ¼ σB2

ra is the magnetic parameter, c ¼ b
a is the ratio of

stretching rates, Pr ¼ ν
α is Prandtl number, R ¼ 16σ∗T3

∞

3kk∗ is the radiation parameter,Nb ¼ τDB Cw�C∞ð Þ
ν

is the Brownian motion parameter, Nt ¼ τDT Tf�T∞ð Þ
νT∞

is the Thermophoresis parameter,

λ ¼ gβT Tf�T∞ð Þ
Rex

is the mixed convection parameter, Bi ¼ hf
k

ffiffi

ν
a

p

is the Biot number, Le ¼ α
DB

is the

Lewis number.

The local skin friction Cf

� �

, local Nusselt number Nuxð Þ and local number Sherwood Shxð Þ are
defined as,

Cfx ¼
τw

ruw xð Þ2
, Cfy ¼

τw

rvw yð Þ2
, Nux ¼

uwqw
ka Tf � T

∞

� � and Shx ¼
uwqm

DBa Cw � C∞ð Þ

The local skin friction, local Nusselt number and Sherwood number is given by,

ffiffiffiffiffiffiffiffi

Rex
p

Cfx ¼ f 00 0ð Þ þ n� 1ð ÞWe2

2
f 00 0ð Þ
� �3

� �

,
ffiffiffiffiffiffiffiffi

Rex
p

Cfy ¼ g00 0ð Þ þ n� 1ð ÞWe2

2
g00 0ð Þð Þ3

� �

,

Nux
ffiffiffiffiffiffiffiffi

Rex
p ¼ � 1þþRθ3

w

� �

θ0 0ð Þ, Shx
ffiffiffiffiffiffiffiffi

Rex
p ¼ �ϕ0 0ð Þ:

where Rex ¼ uwx
ν is the local Reynolds number based on the stretching velocity. uw xð Þ:

3. Numerical method

The non-linear ordinary differential Eqs. (11)–(14) subjected to boundary conditions (15) has

been solved using the Runge-Kutta-Fehlberg fourth-fifth order method with the help of sym-

bolic algebraic software MAPLE. The boundary conditions for η ¼ ∞ are replaced by

f 0 ηmax

� �

¼ 1,θ ηmax

� �

¼ 0 and ϕ ηmax

� �

¼ 0, where ηmax is a sufficiently large value of η at

which the boundary conditions (15) are satisfied. Thus, the values of η ¼ ηmax are taken to be

6. To validate the employed method, the authors have compared the results of f 00 0ð Þ and g00 0ð Þ
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with the that of published works by Wang [27] and Hayat [30] for the different values

stretching parameter. These comparisons are given in Table 1 and it shows that the results are

in very good agreement.

4. Result and discussion

The purpose of this section is to analyze the effects of various physical parameters on the

velocities, temperature and concentration fields. Therefore, for such objective, Figures 1–11 has

been plotted. Observations over these data with plotted graphs are discussed below.

c Wang [27] Hayat et al. [30] Present result

�f 00 0ð Þ �g00 0ð Þ �f 00 0ð Þ �g00 0ð Þ �f 00 0ð Þ �g00 0ð Þ

0 1 0 1 0 1 0

0.25 1.0488 0.1945 1.048810 0.19457 1.04881 0.19457

0.5 1.0930 0.4652 1.093095 0.465205 1.09309 0.46522

0.75 1.1344 0.7946 1.134500 0.794620 1.13450 0.79462

1.0 1.1737 1.1737 1.173721 1.173721 1.17372 1.17372

Table 1. Comparison of different values of c with Wang [27] and Hayat et al. [30].

Figure 1. Influence of We on velocity profiles of both f 0 ηð Þ and g0 ηð Þ.

Impact of Thermal Conductivity on Energy Technologies38



Figure 2. Influence of M on velocity profiles f 0 ηð Þ and g0 ηð Þ.

Figure 3. Influence of c on velocity profiles f 0 ηð Þ and g0 ηð Þ.
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Figure 4. Influence of λ on velocity profiles f 0 ηð Þ and g0 ηð Þ.

Figure 5. Influence of Nb on θ ηð Þ and ϕ ηð Þ profiles.
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Figure 6. Influence of Nt on θ ηð Þ and ϕ ηð Þ profiles.

Figure 7. Influence of Bi on temperature profile.
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Figure 8. Influence of R on temperature profile.

Figure 9. Influence of θw on temperature profile.
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Figure 1 characterizes the influence of Weissenberg number Weð Þ on velocity profiles for both x

and y direction. It is found that increasing values of the Weissenberg number increases the

momentum boundary layers in both directions. Physically, Weissenberg number is directly

proportional to the time constant and reciprocally proportional to the body. The time constant

to body magnitude relation is higher for larger values of Weissenberg number. Hence, higher

Weissenberg number causes to enhance the momentum boundary layer thickness.

The developments of a magnetic field Mð Þ on velocity profiles are circulated in Figure 2. We

tend to discover depreciation within the velocity profile for ascent values of magnetic field

parameter. Physically, the drag force will increase with a rise within the magnetic flux and as a

result, depreciation happens within the velocity field.

Figure 3 designed the velocity profiles of f 0 and g0 for various values of stretching

parameter cð Þ. The velocity profiles and associated momentum boundary layer thickness

decrease, once the stretching parameter will increase whereas velocity profile g’, exhibits the

opposite behavior of f’. Figure 4 shows the velocity profiles for different values of mixed

convection parameter λð Þ. It depicts that the velocity field and momentum boundary layer

thickness increases in both x and y direction by increasing mixed convection parameter.

Figure 5 portraits the consequences of Brownian motion parameter on temperature and con-

centration profile. The Brownian motion parameter Nbð Þ will increase the random motion of

the fluid particles and thermal boundary layer thickness conjointly will increase which ends up

Figure 10. Influence of Pr on temperature profile.
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in an additional heat to provide. Therefore, temperature profile will increase however concen-

tration profiles show opposite behavior.

The development of the thermophoresis parameter Ntð Þ on temperature and concentration

profiles is inspecting in Figure 6. Form this figure we observed that, the higher values of

thermophoresis parameter is to increases both θ ηð Þ and ϕ ηð Þ profiles. Further, the thermal

boundary layer thickness is higher for larger values of thermophoresis parameter. This is

because, it’s a mechanism within which little particles area unit force off from the new surface

to a chilly one. As a result, it maximizes the temperature and concentration of the fluid.

Figure 7 describe the influences of Biot number Bið Þ on temperature profile. One can observe

form the figure, the larger values of Biot number cause an enhancing the temperature profile.

This is because, the stronger convection leads to the maximum surface temperatures which

appreciably enhance the thermal boundary layer thickness.

Figures 8 and 9 are sketched to analyze the effect of radiation parameter Rð Þ and temperature

ratio θwð Þ parameter on temperature profile. The above graphs elucidate that, the temperature

profile and thermal boundary layer thickness area unit increased by ascent values of radiation

parameter and temperature ratio. Larger values of thermal radiation parameter provide more

heat to working fluid that shows an enhancement in the temperature and thermal boundary

layer thickness.

The effect of the Prandtl number Prð Þ on θ ηð Þ is seen in Figure 10. Since Pr is that the

magnitude relation of the viscous diffusion rate to the thermal diffusion rate, the upper worth

Figure 11. Influence of Le on concentration profile.
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of Prandtl number causes to scale back the thermal diffusivity. Consequently, for increasing

values ofPr, the temperature profile gets decreases. The impact of Lewis number Leð Þ on

nanoparticle concentration is plotted in Figure 11. It is evident that the larger values of Lewis

number cause a reduction in nanoparticles concentration distribution. Lewis number depends

on the Brownian diffusion coefficient. Higher Lewis number leads to the lower Brownian

diffusion coefficient, which shows a weaker nanoparticle concentration.

Table 2 presents the numerical values of skin friction for various physical values in the

presence and absence We ¼ n ¼ 0ð Þ of non-Newtonian fluid. It is observed that skin friction

increase in both directions with increasing c for both presence and absence of non-Newtonian

fluid. In the other hand, the skin friction coefficient decreases in both directions by

increasingBi. The skin friction is higher in the presence of non-Newtonian fluid than in the

absence of non-Newtonian fluid.

Table 3 also elucidates that, the wall temperature for different physical parameter for linear as

well as nonlinear radiation. It reveals that, the wall temperature increases for increasing values

of Bi, R and c for both linear and nonlinear radiation but the wall temperature decreases by

Bi Le R c λ M Absence Presence

Cfx Cfy Cfx Cfy

0.2 1.2240 0.7261 1.3030 0.7836

0.4 1.1795 0.7280 1.2642 0.7847

0.6 1.1532 0.7289 1.2412 0.7854

2 1.1719 0.7283 1.2575 0.7850

3 1.1648 0.7285 1.2514 0.7851

4 1.1619 0.7285 1.2489 0.7851

1 1.1598 0.7289 1.2466 0.7855

2 1.1420 0.7301 1.2300 0.7866

3 1.1220 0.7314 1.2113 0.7878

0.2 1.0852 0.2066 1.1657 0.2083

0.4 1.1265 0.4509 1.2096 0.4657

0.6 1.1648 0.7285 1.2514 0.7851

0 1.3122 0.7242 1.3787 0.7816

0.2 1.2523 0.7259 1.3143 0.7834

0.4 1.1936 0.7276 1.2514 0.7851

0 0.9611 0.5965 1.0281 0.6293

0.5 1.1648 0.7285 1.2514 0.7851

1 1.3441 0.8413 1.4521 0.9248

Table 2. Numerical result of skin friction coefficient for different physical parameter values for present and absence non

Newtonian fluid.
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increasing Le,Nb,Nt and Pr. Further, it is noticed that the wall temperature is higher for

nonlinear radiation than that linear radiation.

Table 4 clearly shows the numerical values of skin friction, Nusselt number and Sherwood

number for various physical parameters values. It reveals that, numerical values of wall

temperature θ 0ð Þ increase by increasing Bi,θw, R and c. In the other hand Nusselt number

decreases by increasing. Le,M,Nb,Nt and Pr. From this table, the skin friction coefficient

increases by increasing Bi and m. Further, the Sherwood number increases by increasing

Bi,θw, R,Pr and We.

Bi Le M Nb R Nt Pr c Linear Nonlinear

�Nux Rexð Þ�
1=2 �Nux Rexð Þ�

1=2

0.2 0.1060 0.3289

0.4 0.1356 0.4683

0.6 0.1479 0.5421

2 0.1825 0.5501

3 0.1428 0.5102

4 0.1200 0.4886

0 0.1440 0.5206

0.5 0.1428 0.5102

1 0.1418 0.5011

0.2 0.3354 0.8074

0.4 0.2771 0.6974

0.6 0.2091 0.5974

1 0.1768 0.8621

2 0.2059 1.5030

3 0.2150 2.0523

0 0.1834 0.5641

0.5 0.1331 0.4971

1 0.0913 0.4351

2 0.2165 0.4958

3 0.2059 0.5260

4 0.1875 0.5307

0.2 0.1268 0.4606

0.4 0.1352 0.4870

0.6 0.1428 0.5102

Table 3. Numerical result of Nusselt number for different physical parameter values for linear and non nonlinear

radiation.
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Bi θw Le M Nb R Nt Pr We c λ �Cfx �Cfy �Shx Rexð Þ�
1=2 �Nux Rexð Þ�

1=2

0.2 1.3030 0.7836 1.4859 0.3289

0.4 1.2642 0.7847 1.4877 0.4683

0.6 1.2412 0.7854 1.4886 0.5421

1.8 1.2434 0.7856 1.4825 0.7398

2 1.2353 0.7860 1.4812 0.9218

2.2 1.2250 0.7865 1.4814 1.1226

2 1.2575 0.7850 1.1427 0.5501

3 1.2514 0.7851 1.4882 0.5102

4 1.2489 0.7851 1.7744 0.4886

0 1.0281 0.6293 1.5340 0.5206

0.5 1.2514 0.7851 1.4882 0.5102

1 1.4521 0.9248 1.4493 0.5011

0.2 1.3140 0.7831 1.2408 0.8074

0.4 1.2926 0.7837 1.4118 0.6974

0.6 1.2713 0.7844 1.4647 0.5974

1 1.2466 0.7855 1.4781 0.8621

2 1.2300 0.7866 1.4727 1.5030

3 1.2113 0.7878 1.4740 2.0523

0 1.2674 0.7845 1.4869 0.5641

0.5 1.2472 0.7853 1.4901 0.4971

1 1.2255 0.7863 1.5060 0.4351

2 1.2113 0.7878 1.4740 0.4958

3 1.2345 0.7863 1.4731 0.5260

4 1.2449 0.7857 1.4767 0.5307

0 1.1936 0.7276 1.4746 0.5070

1 1.2974 0.8329 1.4985 0.5127

2 1.3712 0.9109 1.5141 0.5164

0.2 1.1657 0.2083 1.2770 0.4606

0.4 1.2096 0.4657 1.3862 0.4870

0.6 1.2514 0.7851 1.4882 0.5102

0 1.3787 0.7816 1.4738 0.5068

0.2 1.3143 0.7834 1.4811 0.5085

0.4 1.2514 0.7851 1.4882 0.5102

Table 4. Numerical result of local skin friction coefficient, Sherwood number and Nusselt number for different physical

parameter.
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5. Conclusions

In the present study, influence of nonlinear radiation on three dimensional flow of an incom-

pressible non-Newtonian Carreau nanofluid has been obtained. The obtained results are

presented in tabulated and graphical form with relevant discussion and the Major findings

from this study are:

The velocity profiles increase in x� directions and decrease in the y� direction by increasing

the stretching parameter.

Concentration profile increase by increasing the values Nb but in case of Nt concentration

profile decreases.

Nb and Nt parameter shows the increasing behavior for temperature profile.

Effects of Le nanoparticle fraction ϕ ηð Þ show the decreasing behavior.

Magnetic parameter reduces the velocity profiles in both x and y� directions.

Temperature and thermal boundary layer thickness are decreased when the Pr and tl number

increases.

Nonlinear thermal radiation should be kept low to use it as a coolant factor.

The rate of heat transfer increases with the increases in parameters Rd and θw.

We also noticed that the velocity profile and its associated boundary layer thickness are

increases by increasing the values of We.
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