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Abstract

Adult skeletal muscle has a remarkable capacity to initiate a rapid and extensive repair 
process after damage due to injury or degenerative disease. Although satellite cells are 
the primary skeletal muscle stem cells, there are many reports of non-satellite cell popula-
tions with myogenic capacity resident within skeletal muscle. The activity of muscle-resi-
dent stem cells during the regeneration process is tightly controlled through the dynamic 
interactions between intrinsic factors within the cells and extrinsic factors constituting 
the muscle stem cell niche. The extracellular matrix (ECM) in skeletal muscle plays an 
integral role in force transmission, structural maintenance, and regulation of stem cell 
niche. ECM interacts with stem cells either directly by binding cell surface receptors or 
indirectly through growth factor presentation, and maintains a balance between their 
quiescence, self-renewal, and differentiation. These interactions are reciprocal since the 
stem cells can remodel the niche and secrete or degrade ECM components. Natural ECM 
scaffolds, derived from decellularized tissues can influence stem cell activity both in vitro 
and in vivo and are widely being investigated for skeletal muscle repair. In this chapter, 
we discuss the regenerative potential of stem cell populations and ECM bioscaffolds in 
the treatment of skeletal muscle injury and disease.

Keywords: stem cells, extracellular matrix, regeneration, trauma, decellularization

1. Introduction

Skeletal muscle injuries are common in military service members and professional athletes and 

can range from minor sprains and contusions to severe lacerations and penetrating trauma. 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
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The type and severity of muscle injury greatly influences the healing outcome. While skeletal 
muscle can regenerate very well following minor injuries, severe penetrating trauma involv-

ing physical loss of muscle tissue is well beyond the innate capacity for repair [1, 2]. In acute 

and self-healing muscle injuries, the typical muscle repair process consists of the destruc-

tion and inflammatory phase (1–3 days), the repair phase (3–4 weeks), and the remodeling 
phase (3–6 months). Extracellular matrix (ECM) deposition can be observed within a week 
post-injury and is primarily due to the activity of fibroblasts in response to locally produced 
mediators such as transforming growth factor beta 1 (TGF-β1) [3]. In chronic muscle injuries 

the inflammatory phase persists for weeks and the deposition of ECM proceeds more rapidly 
than myogenesis [4, 5]. A major impediment to the complete recovery of skeletal muscle post-

injury is the development of fibrosis, defined as an abnormal and chronic over proliferation 
of ECM components [6]. If unresolved, fibrotic tissue can interfere with stem cell activity and 
myofiber regeneration. Furthermore, since fibrotic tissue lacks the elasticity and contractile 
properties of native skeletal muscle, patients with muscle fibrosis are dramatically more likely 
to suffer subsequent muscle injuries, each worsening muscle damage and fibrosis [7]. Fibrotic 

tissue deposition in the absence of muscle regeneration reduces both muscle strength and 

range of motion, impeding physical rehabilitation.

In skeletal muscle, fibrosis is also associated with muscular dystrophies. These degenerative 
diseases are characterized by muscle inflammation and wasting, which compromises patient 
mobility [1]. Duchenne muscular dystrophy (DMD) is a severe and progressive form of mus-

cular dystrophy that may cause premature death due to respiratory and cardiac failure [8]. 

Despite continuing efforts, there are currently no effective therapies for severe muscle trauma or 
DMD. Recently, many novel therapeutic strategies focusing on muscle stem cells and ECM have 

emerged, as discussed below, and their efficacy is under evaluation in both preclinical and clini-
cal studies.

2. Stem cells for skeletal muscle regeneration

The skeletal muscle microenvironment is heterogeneous, with diverse cell populations that 

can be influenced by local structural and biochemical cues. Skeletal muscle is endowed with 
a remarkable capacity for regeneration, primarily due to the reserve pool of muscle-resident 

satellite cells. The anatomic location of satellite cells is in proximity to vasculature where 

they interact with other muscle-resident stem/stromal cells such as mesenchymal stem cells 

(MSCs) and pericytes through paracrine mechanisms (Figure 1) [9, 10]. A variety of other 

stem cell populations have also been identified in skeletal muscle including, side population 
cells [11, 12], fibro/adipogenic progenitors [13, 14] and interstitial stem cells [15]. These cell 

types share many features with MSCs such as multipotency and cell surface marker expres-

sion and are known to undergo proliferation in response to muscle injury [16]. Additionally, 

muscle-resident or marrow-derived hematopoietic stem cells (HSCs) are known to rapidly 

colonize skeletal muscle post-injury [9]. Here, we review the contribution of satellite and non-

satellite stem cells to muscle repair in animal models of injury and disease.
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2.1. Satellite cells

Satellite cells (Pax7+) reside in between the basal lamina and the sarcolemma in a quiescent 

state. They express integrin α7β1 receptors that bind with laminin in the basal lamina and 
M-cadherin adhesion molecules that interact with the sarcolemma [9]. In response to injury, 

they undergo asymmetrical cell-division and give rise to transit-amplifying cells and myo-

blasts that can either fuse with each other or with existing myofibers to initiate repair. The 
indispensable role of satellite cells in skeletal muscle regeneration has been well-documented 

using selective depletion of the Pax7+ cell population [17–20]. Interestingly, these studies also 

highlighted a role of Pax7+ satellite cells in the inhibition of fibrosis development by negative 
regulation of muscle-resident fibroblasts.

Besides Pax7, several markers have been used for the isolation of satellite cells such as 

VCAM-1 [21], α7 integrin [22], M-cadherin [23], and nestin [24]. However, it is unclear if these 

cell surface markers allow for the isolation of the same stem cell population. While the trans-

plantation of autologous satellite cells seems like an effective therapeutic strategy, several 
challenges have been identified with this approach. For instance, the regenerative capacity 
of cultured satellite cells is significantly lower than freshly isolated cells [25]. Poor survival 

and migration of transplanted cells, as well as undesirable immune reactions, have also been 

Figure 1. Satellite cells (white) constitute the major muscle stem cell population that reside beneath the basal lamina near 

the vasculature. Other muscle-resident stem cell populations such as pericytes (purple) and mesenchymal progenitors 

(green) contribute to muscle repair and regeneration. Reproduced with permission from Elsevier Ltd. Pannerec A, 

Marazzi G, Sassoon D. Stem cells in the hood: the skeletal muscle niche. Trends in Molecular Medicin; 2012;18(10):599-

606. DOI:10.1016/j.molmed.2012.07.004.
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reported [26, 27]. To circumvent these issues, alternative modes of satellite cell delivery have 

been attempted in preclinical studies. Collins et al. transplanted single intact myofibers into 
radiation-ablated muscles and demonstrated that as few as seven satellite cells associated with 

a single myofiber could generate >100 new myofibers containing thousands of myonuclei [28].  

Other groups have shown beneficial effects of single fiber transplantation in preclinical mod-

els of aging [29] and heart failure [30]. However, the isolation of single myofibers is challeng-

ing and requires a high degree of technical skill and expertise as well as the need for regulatory 

approval. An alternative approach is to deliver bundles of minced muscle fibers to transfer not 
just satellite cells but also other cell types with an intact ECM. Corona et al. have repeatedly 

demonstrated appreciable muscle regeneration by transplantation of minced muscle auto-

grafts in both rodent [31–33] and porcine [34] models of volumetric muscle loss (VML).

A scaffold-based strategy for satellite cell encapsulation and delivery has also been attempted 
in various studies. Rossi et al. reported improvement in muscle structure, the total number of 

new myofibers as well as muscle function by delivering satellite cells encapsulated in a hyal-
uronan-based photocrosslinkable hydrogel to partially ablated tibialis anterior muscles [35]. 

Recent work by Corona et al. has evaluated the myoconductive properties of collagen gels 

[36], and laminin-111 supplemented hyaluronic acid hydrogels [37] by co-delivering them 

with minced muscle autografts in rodent models of VML. However, none of these strategies 

were able to augment the regenerative potential of minced muscle autografts, possibly due 

to an exacerbated immune response to the implanted materials or due to the inability of the 

materials to influence satellite cell activity.

2.2. Mesenchymal stem cells

MSCs are a multipotent stem cell population located in several adult tissues. From a tissue 

engineering standpoint, MSCs exhibit several attractive features such as self-renewal, multi-
potency, immunomodulation, and the secretion of a wide variety of pro-regenerative growth 

factors and cytokines. While MSCs can undergo differentiation into osteogenic, chondrogenic, 
adipogenic, and myogenic lineages in vitro under specific culture conditions, their capacity 
for site-specific differentiation post-transplantation into injured tissues is controversial [16]. 

Regardless, 646 on-going clinical trials are currently investigating the therapeutic efficacy of 
MSCs for a wide-range of different conditions in various tissues (source: clinicaltrials.gov).

Muscle-resident MSCs, isolated as Sca1+ CD45− cells, are reported to be non-myogenic, as 

they do not form myotubes in culture or fuse with myofibers in vivo. However, intramuscular 

delivery of this cell population can increase Pax7+ satellite cell quantity, new fiber synthesis, 
myofiber hypertrophy, and arteriogenesis in eccentrically exercised mouse hindlimb muscles 
[38–40]. Muscle-derived MSCs are also known to secrete a wide variety of growth factors in 

response to exercise in vivo [38] and mechanical strain in vitro [41, 42]. Overall, these studies 

indicate that muscle-resident MSCs serve as a crucial component of the cellular niche that can 

facilitate muscle regeneration.

In clinical and preclinical studies, bone marrow remains the most commonly utilized source 
for the isolation of MSCs. Intramuscular delivery of bone marrow-derived MSCs (BMMC) 

into rodent models of crush trauma has improved muscle function in a dose-dependent 
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manner [43, 44]. Additionally, systemic delivery of BMMC via intra-arterial transplantation 

was also reported to restore muscle functional capacity in a rodent model of crush trauma. 

Since systemically delivered cells were not found in the traumatized muscle tissue, the 
authors speculated that the observed improvements in muscle function were likely due to 

the secretion of soluble factors by the transplanted cells [45]. Pumberger et al. [46] deliv-

ered BMMC with recombinant growth factors in an alginate cryogel in traumatized soleus 
muscles. This biomaterial driven approach enhanced paracrine signaling in MSCs, which 

resulted in improved muscle function, remodeled scar tissue, and increased the formation 

of new myofibers.

Corona et al. worked with a lineage depleted (Lin−) fraction of bone marrow cells to increase 

the concentration of stem and progenitor cells in the isolated cell population. In a mouse 

model of ischemia-reperfusion (I/R) injury, the Lin− bone marrow-derived stem cells were 

injected intramuscularly. While the cells survived transplantation for up to 1 month after 
injury, they did not improve muscle function [47]. In a subsequent study, these cells were 

delivered intravenously in a mouse model of I/R injury to avoid potential muscle damage 

from intramuscular injections. This approach resulted in stem cell homing to the injured leg 

and improvements in muscle regeneration as well as function [48]. However, the exact mecha-

nism of repair or the contribution of specific stem cell subsets remains unclear.

In a muscle model of repeated laceration injury, BMMC were suspended in Matrigel and 

transplanted in the soleus muscles [49]. The BMMC treated muscles showed fewer fibers with 
a centrally located nucleus, and larger muscle fiber cross-sectional area compared to non-
treated muscles, but no differences in fibrotic tissue deposition were observed. The study 
did not determine whether the BMMC participated in muscle regeneration directly by dif-

ferentiating into myogenic cells, or indirectly through the secretion of angiogenic and pro-

regenerative soluble mediators. In another study, it was demonstrated that transplantation of 

BMMC suspended in a fibrin matrix in a rodent model of muscle laceration restored muscle 
function. Again, the cells did not differentiate into or fuse with skeletal myofibers, signifying 
an alternate mechanism for repair [50]. Currently, the trophic support provided by MSCs (via 

the release of soluble growth factors and cytokines) is increasingly being considered as the 

primary mechanism for tissue repair and regeneration. This prevailing hypothesis has pro-

vided the underlining foundation for a plethora of clinical trials.

2.3. Adipose-derived stem cells

Adipose-derived stem cells (ASCs) are morphologically and phenotypically similar to 

MSCs and have gained increased popularity in regenerative medicine because large quanti-

ties can be easily isolated using minimally invasive procedures [51]. ASCs are reported to 

exhibit myogenic potential in vitro [52]. Myogenic progenitors derived from ASC cultures 

have successfully engrafted into skeletal muscle, promoted myofiber synthesis, and restored 
dystrophin expression in dystrophic (mdx) mice [53]. Besides improving muscle regenera-

tion, ASCs can also modulate inflammation and fibrosis to ameliorate the dystrophic pheno-

type in mouse models [54]. To combat fibrosis development in injured dystrophic muscles, 
ASCs were delivered in combination with an anti-fibrotic medication called losartan. The 
combined treatment was able to downregulate TGF-β1, inhibit fibrosis, and simultaneously 
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improved muscle regeneration and hypertrophy [55]. In another study, transplantation of 

ASCs  alleviated  skeletal muscle fibrosis induced by high dose radiation by suppressing the 
level of TGF-β1 [56]. In a VML model, ASCs were delivered to the defect site in a collagen 

hydrogel. The results showed that this treatment approach accelerated muscle repair and 

vascularization while simultaneously reducing inflammation and fibrosis [57]. Collectively, 

these studies suggest that ASCs can support muscle repair and regeneration either directly by 

giving rise to myogenic progenitors or indirectly by attenuating inflammation and fibrosis.

2.4. Hematopoietic stem cells

HSCs are multipotent stem cells that continuously replenish all classes of blood cells includ-

ing both the lymphoid and the myeloid lineages. Cells of the adaptive immune system com-

prise the lymphoid lineage while cells of the innate immune system, megakaryocytes, and 

erythrocytes comprise the myeloid lineage [58]. Adult bone marrow, cord blood, and mobi-

lized peripheral blood are the primary sources of HSCs used in clinical transplantation proto-

cols for the treatment of cancer and other blood or immune disorders [59].

The first report of bone marrow-derived cell-mediated muscle regeneration in vivo was pub-

lished in 1998 by Ferrari et al. [60]. Since then several studies have repeatedly shown that bone 

marrow-derived cells can contribute to myogenesis and muscle regeneration. For instance, 

Gussoni et al. [61] showed that HSCs derived from wild-type mice could participate in myo-

genesis and partially restore dystrophin expression in lethally irradiated mdx mice following 

intravenous transplantation. LaBarge et al. [62] demonstrated that following irradiation-

induced depletion of satellite cells, cells from a bone marrow transplant could occupy the sat-

ellite cell niche and contribute to myofiber regeneration. In a recent report, Goldman et al. [63]  

transplanted bone-marrow derived mononuclear cells in a rat model of VML. The trans-

planted cells contributed to limited de novo muscle fiber regeneration, without any significant 
changes in myogenic gene transcription and muscle function.

Other studies have highlighted the role of injury in HSC-mediated myogenic repair. It 

has repeatedly been shown that HSCs contribute to myogenic events only in response to 

damage or injury, but do not participate in myofiber repair under normal physiological 
conditions. For instance, Corbel et al. [64] showed that although the fusion of hematopoi-

etic progenitors with myofibers could occur at low frequency under normal physiological 
conditions, this capacity increases significantly with muscle damage. Polesskaya et al. [65] 

observed a 10-fold increase in the numbers of cells coexpressing the cell surface mark-

ers CD45 and Sca1 following cardiotoxin injury in skeletal muscle. It was further demon-

strated that while the CD45+ cell population from uninjured muscle did not differentiate 
into myogenic cells, the CD45+ cells from injured muscle readily underwent myogenic dif-

ferentiation in vitro. The myogenic commitment of this cell population was induced by the 

stimulation of the Wnt signaling cascade.

In contrast, Camargo et al. [66] suggested that in response to muscle injury, myeloid inflam-

matory progenitors derived from HSCs are recruited to the site of muscle damage and 

undergo stochastic fusion with regenerating myofibers. Due to these conflicting reports, it 
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remains unclear if the HSCs can give rise to myogenic cells in response to environmental cues 

or if they undergo nuclear reprogramming post-fusion with a damaged myofiber.

The hematopoietic capacity of adult muscle-resident stem cells has also been investigated. 

Jackson et al. [67] isolated muscle-resident stem cells by enzymatic digestion and co-trans-

planted them into irradiated mice with whole bone marrow cells. After 6–12 weeks the recipi-
ent mice showed engraftment of muscle-derived cells in the bone-marrow and reconstitution 

of all the major blood cell lineages. Therefore, endogenous adult stem cells resident in skeletal 

muscle may represent a multipotent stem cell population capable of giving rise to both blood 

and muscle tissue.

Taken together, these studies indicate that adult stem cells may have differentiation potential 
beyond their tissue of origin. It further calls into question the influence of environment versus 
lineage in the commitment and differentiation of stem cell populations and highlights a previ-
ously unrecognized potential for plasticity in tissue-resident adult stem cells.

2.5. Pericytes

Pericytes are perivascular stem cells that encase and form intimate connections with adja-

cent capillary endothelial cells [68]. They influence the migration, proliferation, permeability, 
and contractility of endothelial cells and play essential roles in various stages of angiogenesis 

[69–71]. These cells can also regulate vascular diameter and capillary blood flow by producing 
both vasoconstriction and vasodilation within capillary beds [72]. Two major subpopulations 

of pericytes have been identified: type 1 (Nestin−NG2+) and type 2 (Nestin+NG2+). While type 
1 pericytes are reported to contribute to fat accumulation, type 2 pericytes are known to sup-

port new muscle formation [73].

Recent reports have suggested an indispensable role of pericytes in the postnatal growth of 

skeletal muscle [74, 75]. Type 2 pericytes have been identified in the satellite cell niche and are 
believed to be the primary population involved in muscle formation [73]. Kostallari et al. [76] 

showed that pericyte depletion could result in significant myofiber hypotrophy with a slight 
increase in a total number of Pax7+ satellite cells. In vitro co-culture studies demonstrated that 

pericytes could promote both myogenic differentiation and quiescence in satellite cells through 
the secretion of insulin-like growth factor 1 (IGF-1) and angiopoietin 1 (ANGPT1), respectively 

[76]. Dellavalle et al. [75] showed that vascular pericytes are bi-potent, as they give rise to both 

the smooth muscle layer of blood vessels and skeletal muscle fibers, during postnatal growth 
in mice. They also demonstrated that pericytes express myogenic markers only in differen-

tiated myotubes, and when transplanted into immunodeficient dystrophic (scid-mdx) mice, 

pericytes can generate dystrophin-positive myofibers [77]. However, the environmental or 

biochemical signals that regulate the myogenic differentiation of pericytes remain unknown. 
This study also demonstrated that pericytes delivered systemically can cross the vessel wall 

to colonize skeletal muscle—a feature that is absent in satellite cells. Lorant et al. [78] were 

able to corroborate these findings by injecting human perivascular stem cells into cryoinjured 
muscles of scid mice. The cells were able to integrate into the host injured tissue and were 

associated with the production of structural proteins expressed in differentiated myofibers.
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Meng et al. also attempted to replicate these studies by delivering muscle-derived pericytes intra-
arterially in scid-mdx mice [79]. Surprisingly, their results showed that pericytes did not contribute 

to muscle regeneration. They attributed the discrepancies between their findings and previous 
data to the differences in cell-isolation and culture protocols, animal models, and outcome mea-

surements. Therefore, these studies suggest that while pericytes may represent a useful cell 

population for future cell therapy of musculoskeletal disorders, more comprehensive studies are 

needed to establish a clear and definitive role for these cells in muscle regeneration and repair.

3. Extracellular matrix for skeletal muscle regeneration

The ECM in skeletal muscle is critical for tissue development, structural support, and force 

transmission [10]. The main components of ECM are largely conserved across animal species 

[80, 81]. The ECM of skeletal muscle is organized into three layers; the endomysium layer sur-

rounds the individual muscle fibers, the perimysium surrounds the bundles of muscle fibers 
known as fascicles, and the epimysium surrounds the entire muscle (Figure 2). Collagen type 

I is predominant in the perimysium, whereas collagen type III is prevalent in the endomysium 

Figure 2. Skeletal muscle consists of muscle fibers bound by connective tissue. The outermost sheath of connective tissue 
that wraps around the muscle is called the epimysium. Bundles of muscle fibers, called fascicles, are enclosed by the 
perimysium and each muscle fiber is covered in a thin connective tissue layer called the endomysium that contains the 
extracellular fluid and nutrients to support the muscle fiber. Reproduced with permission from Springer Nature. Sciorati, 

C., et al., Cell death, clearance and immunity in the skeletal muscle. Cell Death and Differentiation. 2016;23(6):927-937. 
DOI: 10.1038/cdd.2015.171.
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and the epimysium [82]. The basement membrane is a specialized layer of ECM between the 
sarcolemma of a muscle fiber and the surrounding endomysium [83]. Laminin and collagen 

type IV form the principal ECM components of the basal lamina layer [84]. The reticular lam-

ina, located below the basement membrane, is composed mainly of fibrils of collagens (type I, 
III, and VI) and fibronectin in a proteoglycan-rich gel [83, 85].

Two major transmembrane protein complexes in the muscle fiber membrane are responsible 
for force transmission from the outer ECM to the inner cytoskeleton: the dystroglycan/sarco-

glycan complex and the integrin α7-laminin complex [86]. These linkages are crucial for the 

stabilization of sarcolemma during contraction and are important for normal muscle function 
and strength. The importance of these linkages is demonstrated by the fact that defects in these 

molecules can result in the development of muscular dystrophy [87, 88]. A list of essential 

extracellular and intracellular components identified in skeletal muscle is provided in Table 1.

Stem cells in skeletal muscle are sensitive to biochemical and biophysical cues provided by 

the ECM [89]. For instance, loss of regenerative capacity in laminin-deficient (dy/dy) mice, as 

well as enhanced satellite cell activity with laminin-111 supplementation in vivo, suggest a 

pivotal role for this ECM protein in the regulation of stem cell function post-injury [90–92]. 

Similarly, the absence of collagen VI in Col6a−/− mice can impair satellite cell self-renewal and 

repair following injury [93, 94]. Conversely, stem cells can also influence ECM composition. 
While fibroblasts are considered the leading contributor of ECM production in the skeletal 

Table 1. The major extracellular and intracellular components responsible for regulating skeletal muscle function [126].
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muscle, stem cells including satellite cells and MSCs can also produce several ECM constitu-

ents including collagen, laminin, fibronectin, and matrix metalloproteinases [12, 42, 95–97]. 

Thus, ECM not only serves as a supportive framework for skeletal muscle, but also dynami-

cally regulates resident cell activity in a way that can direct tissue development, repair, 

remodeling, and function [89].

3.1. ECM scaffolds for skeletal muscle repair

Challenges associated with cell-centric therapies such as low survival, poor engraftment, 

inadequate supply of donor cells, and culture-induced changes in differentiation potential 
have motivated the development of acellular ECM-based tissue engineered therapeutic strat-

egies. Biologic ECM scaffolds are prepared by the removal of cellular antigens and are at the 
forefront of tissue engineering strategies for muscle repair. These decellularized scaffolds pre-

serve the ultrastructure and composition of the ECM [81] and are known to contain basement 

membrane structural proteins, growth factors, and glycosaminoglycans (GAG). Therefore, 

these scaffolds possess the potential to recruit endogenous host cells while evading the prob-

lems associated with the delivery of exogenous cells such as cellular apoptosis, immunogenic-

ity and ineffective delivery [98, 99].

In preclinical models, these scaffolds are reported to support vascularization and functional 
recovery post-VML injury [100–105]. While some studies have used skeletal muscle [102, 106] as 

the source of ECM, other studies have created decellularized scaffolds from dermis [104, 107], 

porcine urinary bladder (UBM) [108–110], and small intestinal mucosa (SIS) [104, 111, 112] for 

skeletal muscle tissue engineering. Additionally, scaffolds composed of single ECM proteins 
such as collagen [113], laminin-111 [37, 114], and cell-derived ECM such as Matrigel™ [115, 116] 

have also been used for skeletal muscle repair and regeneration.

Degradation products of ECM scaffolds are known to exert chemotactic and mitogenic effects 
on multipotential progenitor cells in vitro [117] and in vivo [118]. The recruitment of several stem 

cell populations such as Sca1+ cells [32, 119], perivascular stem cells [120, 121], pluripotent adult 

progenitors (Sox2+) [122], CD133+ progenitor cells [123], and neural stem cells [124] has been 

reported post-implantation of ECM scaffolds in animal models. However, the ability of these 
scaffolds to recruit sufficient quantities of satellite cells to promote their activity in the VML 
defect region has not been conclusively established [32, 109]. For instance, Corona et al. reported 

that co-delivery of decellularized urinary bladder matrix negatively affects the regenerative 
capacity of minced muscle autografts in a rodent model of VML [108]. Using a similar approach, 

Kasukonis et al. implanted an allogeneic decellularized skeletal muscle scaffold with minced 
muscle autografts in a rat model of VML [125]. In contrast to the findings reported by Corona 
et al., they demonstrated significant improvements in muscle mass and peak contractile force.

3.2. Clinical application of ECM scaffolds

Recent work has also described encouraging clinical outcomes following the implantation 

of decellularized scaffolds in patients with VML injuries [126]. In a five patient cohort study, 
the VML injured muscle compartment was reconstructed with a commercially available ECM 
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bioscaffold (MatriStem, Acell Inc.) [98]. Within 24–48 hours after surgery, each patient was 

placed in an aggressive and exhaustive physical therapy program, as the application of a 

mechanical load during the ECM remodeling phase is reported to promote cellular infiltra-

tion, angiogenesis, and connective tissue reorganization and alignment. While this strategy 
promoted perivascular stem cell infiltration and angiogenesis at the site of scaffold implan-

tation, significant muscle regeneration was not observed. Histological images indicated the 
presence of small islands of desmin+ and myosin heavy chain (MHC+) myofibers separated 
from the adjacent healthy muscle by collagenous connective tissue. Six months after surgery, 

three of five subjects showed improvement in the functional outcomes [98].

In a subsequent report [127], six patients were implanted with MatriStem (UBM-ECM, Acell 

Inc.), and an additional seven patients were implanted with BioDesign (SIS-ECM, Cook 

Medical) or XenMatrix (dermis-ECM, C.R. Bard). Similar to the previous study, post-surgical 

physical therapy was initiated between 24 and 48 hours following surgery. In addition to peri-

vascular stem cell infiltration and desmin+ islands of regenerated myofibers, this study also 
reported the presence of neurogenic cells (β-III tubulin+) at the remodeling site. Ultrasound 

imaging revealed complete resorption of the BioDesign and MatriStem scaffold materi-
als by seven months. Out of 13 patients, 7 had improvement from pre-surgical maximum 
strength with an average force production change of ~15.2% at 6–8 weeks post-surgery. By 
24–28 weeks, an average improvement of ~37.3% was reported.

In the aforementioned studies, due to the lack of significant muscle regeneration, the improve-

ments in muscle function could be attributed to both “functional fibrosis” [102] and physical 

rehabilitation [128]. Although the exact mechanism by which ECM scaffolds support tissue 
remodeling is unclear, it has been associated with recruitment of stem/progenitor cells. While 
these studies do not provide conclusive evidence of a causal relationship between recruitment 

of stem cells and improved functional outcomes, the reported findings suggest that ECM-
based scaffolds are worthy of investigation as a viable treatment option for traumatic muscle 
injuries. Future studies could augment the regenerative potential of these scaffolds by simulta-

neous delivery of autologous stem cell populations or a more targeted rehabilitation program.

4. Conclusion

Muscle regeneration and recovery is a complex process that involves several different stem 
cell populations and ECM components. While the delivery of stem cells in injured or dys-

trophic muscles has been associated with improvements in muscle repair and function, the 

exact mechanism by which these cells contribute to muscle repair is unclear. Future stud-

ies should focus on identification of the intrinsic and extrinsic regulatory mechanisms that 
govern satellite and non-satellite cell differentiation and trophic factor secretion during the 
muscle regeneration process. Additionally, the mechanical and biochemical cues provided by 

key ECM components that can promote or dysregulate stem cell activity should be examined. 

This information will be crucial in the discovery of biomaterial-based strategies to augment 

the stem cell mediated muscle repair.
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