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Abstract

Ni
41

Co
9
Mn

31.5
Ga

18.5
 is a re-entrant and metamagnetic Heusler alloy. In order to investigate 

the magnetic functionality of polycrystalline Ni
41

Co
9
Mn

31.5
Ga

18.5
, magnetic field-induced 

strain (MFIS) measurements were performed. A 0.12% MFIS was observed at 340 K and 
10 T. Strict MFISs between 330 and 370 K were observed. These magneto-structural vari-
ances acted in concert with the metamagnetic property observed by the magnetization 
measurements and magneto-caloric property observed by the caloric measurements in 
applied magnetic fields. The MFISs were proportional to the fourth power of the magne-
tization, and this result is in agreement with Takahashi’s spin fluctuation theory of itiner-
ant electron magnetism. The investigation of time response of the MFIS was performed 
by means of water-cooled electric magnet, zero magnetic field to 1.66 T in 8.0 s at 354 K. A 
2.2×10−4 MFIS was observed, which was 80% of the MFIS in a 60-s mode. This indicates 
that a high-speed transition has occurred on applying magnetic fields.

Keywords: magnetostriction, Heusler alloys, shape memory alloys, metamagnetic 
transition, itinerant magnetism

1. Introduction

In recent years, the ferromagnetic shape memory alloy (FSMA) was investigated as a candi-

date of the functional materials widely. Among FSMA, Ni
2
MnGa is the most famous alloy 

[1]. The alloy has a cubic L2
1
 Heusler structure (space group of  Fm  ̄  3 m ), and ferromagnetic 

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



transition realized [2, 3]. Cooling from room temperature, a martensite transition occurred 

at the martensitic transition temperature, T
M

. Below T
M

, a superstructure state occurred as a 

result of lattice deformation [4-6].

New alloys in the FMSAs of NiMnIn-, NiMnSn-, and NiMnSb-type Heusler alloys have 

been studied [7, 8]. In these alloys, a metamagnetic transition from paramagnetic martensite 

phase to ferromagnetic austenite phase occurred, and reverse martensitic transition, which 

was induced by magnetic fields, occurred under high magnetic fields [9, 10]. These alloys 

are hopeful as a metamagnetic shape memory alloys with a magnetic field-induced shape 
memory effect (MSIF) and as magnetocaloric materials which can be cooled down or heated 
up on applying external magnetic fields. It is noticeable that 3% MFIS has been observed for 
Ni

45
Co

5
Mn36.7In13.3

 single crystal in compressive stress–strain measurements [11].

The Co-doped NiCoMnGa-type alloys turned the magnetic order of the parent phase from 

antiferromagnetic or paramagnetic phase, due to a large magnetization change across the 

transformation. As a result, it strengthens magnetic field driving force dramatically [12-24]. 

As for Ni
50-x

Co
x
Mn

31.5
Ga

18.5
, the determined phases are a paramagnetic austenite (Para-A) 

phase, ferromagnetic austenite phase (Ferro-A), paramagnetic martensite phase (Para-M), 

and ferromagnetic martensite (Ferro-M) phase, with cooling from a higher temperature than 

T
C
, which indicates re-entrant ferromagnetism [23].

Albertini et al. performed the experimental studies regarding the composition dependence of 

the structural and magnetic properties of the Ni-Mn-Ga ferromagnetic shape memory alloys 

substituting Co for Ni atoms around the composition of Ni
50

Mn
30

Ga
20

 [12, 20]. The magnetic 

and structural properties indicated remarkable discontinuities around the martensitic tran-

sition. A metamagnetic transition appeared in the magnetic field around 400 K. The field 
dependence of the reverse martensitic transition temperature dT

R
/μ

0
dH was −2.8 K/T and that 

of the thermal strain was reported. The most characteristic alloy is Ni
41

Co
9
Mn

32
Ga

18
. The mag-

netic susceptibility indicates a re-entrant magnetism property. We studied the magnetic prop-

erties of polycrystalline Ni
41

Co
9
Mn

31.5
Ga

18.5.
 Magnetization results indicated the metamagnetic 

transition between 330 and 370 K for 0–10 T. Moreover, a 0.1% magnetic field-induced strain 
(MFIS) was observed at the temperature of 340 K [23].

In our former article [25], we determined the magnetic field dependence of the magnetization 
of Ni

41
Co

9
Mn

31.5
Ga

18.5
 around the Curie temperature in the martensite phase in order to inves-

tigate the properties of the itinerant electron magnetism according to Takahashi’s spin fluc-

tuation theory of itinerant electron magnetism [26, 27]. The M4 versus H/M plot was crossed 

across the coordinate axis at the Curie temperature in the martensite phase, T
CM

 = 263 K, and 
indicates a good linear relation behavior around T

CM
. The results were in agreement with 

the Takahashi’s theory concerning itinerant electron magnetism [26, 27]. Moreover, the spin 

fluctuation temperature T
A
 can be obtained from the M4 versus H/M plot. The obtained T

A
 was 

703 K. This value was much smaller than Ni (1.76 × 104 K). The value was comparable to that of 

UGe
2
 (493 K), which is famous for the strongly correlated heavy fermion ferromagnet [27, 28].

Takahashi suggested that the anomalous behavior for the magnetostriction can be observed 

under the influence of the itinerant spin fluctuations around the critical temperature [27]. It 

is mentioned that the reason is that the magnetostriction is given by the volume derivative 
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of the free energy. By Eq. (6.101) of [27], the magnetostriction is proportional to the fourth 

power of the magnetization, M4. The experimental magnetostriction study of weak itinerant 

ferromagnet MnSi was performed by Matsunaga et al. [29]. They plotted the magnetostriction 
against M2. Around the Curie temperature, T

C
 = 30 K, the plot considerably deviated from the 

linearity. Takahashi mentioned that the linearity was confirmed by plotting the magnetostric-

tion data against M4 at T = 29 K around T
C
.

In this chapter, we preformed MFIS measurements by means of a 10-T helium-free super-

conducting magnet and a 1.7-T water-cooled electric magnet. We compared the results 

of the strain and calorimetric differential scanning colorimetry (DSC) measurements and 
discussed the irreversibility of the MFIS and the reverse martensitic and metamagnetic 

transition. We investigated the correlations between magneto-structural variance and 

the magneto-caloric property observed by the caloric measurements in applied magnetic 

fields. It is interesting with the investigation of time response of the MFIS for the purpose 
of industrial use [30]. The time response of the MFIS performed by means of a 1.6-T water-
cooled electric magnet and under atmospheric pressure, P = 0.1 MPa, was investigated. We 

also investigated the relation between the magnetostriction and the magnetization accord-

ing to Takahashi’s spin fluctuation theory of the itinerant ferromagnet for Ni
2
MnGa and 

Ni
41

Co
9
Mn

31.5
Ga

18.5.

2. Sample properties and experimental details

The crystal structure of Ni
41

Co
9
Mn

31.5
Ga

18.5
 is tetragonal DO

22
 structure, and the sample prepa-

ration of polycrystalline alloy was shown in our former article [23]. The nominal concentra-

tions of the elements were Ni 41.0, Co 9.0, Mn 31.5, and Ga 18.5 at.%. The concentrations of 

the elements after thermal treatment are shown in Table 1. The ratio was almost the same as 

that of the nominal state. When cooling from 500 K, a ferromagnetic transition in the austen-

ite phase was realized at T
C

A = 465 K. At the martensitic transition temperature, T
M

 = 315 K, 

the magnetization decreased drastically. The reverse martensitic transition temperature T
R
 

was 380 K. The re-entrant magnetism, ferromagnetic-paramagnetic state, should be interacted 

with the crystal structures. The hysteresis of temperature, T
R
 - T

M
 was 65 K, which is much 

larger than that of other Ni
2
MnGa-type alloys. This is due to the large motive force in order 

for a martensitic transition to occur [24].

MFIS measurements were performed with bulk samples with the size of 0.8 × 3.0 × 4.0 mm3. 

Strain gauges were used (KFH-02-120-C1–16, size: sensor grid 0.2 mm length × 1.0 mm width, 
film base 2.5 mm length × 2.2 mm width, Kyowa Dengyo Co., Ltd., Yamagata, Japan). Strain 
gauge was fixed parallel to the long distance direction (4.0 mm) of the sample.

Ni Co Mn Ga

40.8 9.0 31.5 18.7

Table 1. The concentrations of elements by means of EDS spectrometry (at. %).

Magnetic Field-Induced Strain of Metamagnetic Heusler Alloy Ni41Co9Mn31.5Ga18.5
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External magnetic field was applied parallel to the long distance direction of the sample, 
and elongation of the sample was measured in applied magnetic fields and in atmospheric 
pressure. Measurements were performed by means of a 10-T helium-free magnet (10 T-CSM) 

at High Field Laboratory for Superconducting Materials, Institute for Materials Research, 
Tohoku University. We also performed MFIS measurements by means of a 1.7-T water-cooled 

electric magnet at Ryukoku University in order to investigate time response of MFIS. The 

magnetization measurements were performed by using a pulsed-field magnet with the time 
constant of 6.3 ms. The absolute value was calibrated against a sample of pure Ni.

3. Results and discussion

3.1. Relation between the magnetic field-induced strain and the magnetic entropy of 
Ni

41
Co

9
Mn

31.5
Ga

18.5

In this section, we compared the results of the strain and calorimetric DSC measurements of 
Ni

41
Co

9
Mn

31.5
Ga

18.5
. We considered the correlation between the magnetic field-induced strain 

and the magnetic entropy.

Figure 1 shows the MFIS under steady field by means of the helium-free superconducting 
magnet. The MFIS measurements in this study were performed under atmospheric pressure 

and without the compression to make a pre-strain. The point zero of MFIS at each tempera-

ture is moved by 1 × 10−4 below 315 K and by 5 × 10−4 above 330 K. The thermal condition 

was the same as that for the magnetization measurement [23]. When increasing the magnetic 

field, distinct MFIS was observed. The maximum MFIS was 0.12%, which was approximately 
the same value as that of the thermal strain for the reverse martensitic transition. The shape 

of MFIS is similar to that of polycrystalline Ni
41

Co
9
Mn

32
Ga16In2

, where the alloy is also a re-

entrant metamagnetic Heusler alloy, and 0.30% MFIS was observed [12]. The field dependence 
of the reverse martensitic transition temperature, dT

R
/μ

0
dH, are −7.9, −6.8, and − 4.8 K/T for 

Ni
41

Co
9
Mn

31.5
Ga

18.5
 [23], Ni

41
Co

9
Mn

32
Ga16In2

 [12], and Ni
45

Co
5
Mn36.7In13.3

, respectively [11]. The 

field dependence of the reverse martensitic transition temperature of the ferromagnetic and 
non-metamagnetic Ni

2
MnGa type alloys is between 0.2 and 1.0 K/T [2, 31, 32]. As for meta-

magnetic Heusler alloys, dT
R
/μ

0
dH is much larger than that of non-metamagnetic Heusler 

alloys. Therefore, the MFIS occurs at a wide temperature range. The strain curves shown in 

Figure 1 and the thermal strain in Ref. [23] suggest that the magneto-structural transition 

of Ni
41

Co
9
Mn

31.5
Ga

18.5
 alloy is very sensitive to magnetic fields. Below 330 K, the MFIS value 

returned to zero when a magnetic field became zero. By contrast, the MFIS value remained at 
the limit value without returning zero.

The MFIS of 2, 4, 6, and 8 T is shown in Figure 2. Between 340 and 370 K, large MFIS was 

observed. Metamagnetic S-shape like M-H curve was observed for the magnetization around 

360 K [23]. The decreasing field process shows ferromagnetic behavior. Magnetization process 
indicates that the paramagnetic to ferromagnetic transition occurred. Considering the magne-

tization, MFIS indicates that the structural transformation from the paramagnetic martensite 

phase to the austenite ferromagnetic phase occurred. The MFIS and metamagnetism indicate  

Shape-Memory Materials4



that the magneto-structural coupling is large. The 0.12% (1200 ppm) MFIS is larger than the 

magnetostriction of TbDyFe single crystal under atmospheric pressure [33]. In this study, 

Ni
41

Co
9
Mn

38.5
Ga

18.5
 is a polycrystalline sample; then, it is easier to process and handle the sam-

ple than single crystals. Table 2 indicates the thermal linear striction ΔL/L(t), saturated mag-

netostriction ΔL/L(m), and relative volume discontinuity at the martensitic transition, ΔV/V.

In the former article, we studied the magneto-caloric properties of Ni
41

Co
9
Mn

31.5
Ga

18.5
 poly-

crystalline sample by means of the differential scanning calorimetry (DSC) measurements [25]. 

Magneto-calorimetric measurements and magnetization measurements of Ni
41

Co
9
Mn

31.5
Ga

18.5
 

polycrystalline ferromagnetic shape memory alloy (FSMA) were performed across the T
R
, at 

atmospheric pressure. When the sample was warmed from the martensite phase, a gradual 

increase in the thermal expansion due to the reverse martensitic transition at T
R
 was observed 

by the thermal expansion experimental study. These transition temperatures decreased 

steeply with an increasing magnetic field. The field dependence of the reverse martensitic 
transition temperature, dT

R
/μ

0
dH, is −7.9 K/T near zero fields. From the DSC measurements, 

the value of the latent heat was obtained as 2.6 kJ/kg in zero fields. The maximum value of 

Figure 1. MFIS of Ni
41

Co
9
Mn

31.5
Ga

18.5
 in static magnetic fields. The point zero at each temperature is moved by 1 × 10−4 

below 315 K and by 5 × 10−4 above 330 K.

Magnetic Field-Induced Strain of Metamagnetic Heusler Alloy Ni41Co9Mn31.5Ga18.5
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the entropy change ΔS was 7.0 J/kgK in zero fields, and with increasing magnetic fields, ΔS 

was gradually increased. The relative cooling power (RCP) is obtained by integration ΔS with 

the temperature. The RCP was 104 J/kg at 2.0 T, which was almost as same as the value with 
In-doped Ni

41
Co

9
Mn

32
Ga16In2

 alloy [12].

Now, we compare the results of the strain and calorimetric DSC measurements. Figure 3 

shows the temperature dependence of the MFIS and entropy change. The entropy change 

ΔS = S(6 T) - S(0 T) was obtained from magnetization results and DSC results between zero 
field and 6 T, from the DSC results ΔS in steady fields [25].

ΔS shows a finite value above 330 K. On the contrary, the MFIS shows almost zero below 
330 K. The reversible MFIS (magnetostriction) was observed below 330 K. Above 330 K, irre-

versible MFIS and S-shape like M-H curve were observed. Considering these results, in the irre-

versible region T≥ 330 K, metamagnetic and reverse martensitic transition occurred between the 

paramagnetic martensite and ferromagnetic parent austenite phases. Around T
R
, large latent 

heat was observed by DSC measurement. The irreversible MFIS, S-shape like M-H curve, and 

the observation of latent heat indicates that this transition is first-order transition. Therefore, in 
the finite ΔS value region (330 K≤T≤ 390 K), irreversible and large MFIS can be observed. This 

result indicates the strong influence of magnetic fields for magneto-structural transformation.

Figure 2. Field dependences of the MFIS of Ni
41

Co
9
Mn

31.5
Ga

18.5
. The values of MFIS at 350 K were quoted from our former 

result [23].

Alloys ΔL/L(t) ΔL/L(m) ΔV/V (%) Reference

Ni
41

Co
9
Mn

31.5
Ga

18.5
1.1  ×  10−3 1.2  ×  10−3  ~ 0.33 This work

Ni
41

Co
9
Mn

32
Ga16In2

3.5  ×  10−3 3.0  ×  10−3  ~ 0.9 [12]

Table 2. The thermal linear striction ΔL/L(t), saturated magnetostriction ΔL/L(m), and the relative volume discontinuity 

at the martensitic transition, ΔV/V.
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3.2. Forced magnetostriction around the critical temperatures

In this section, we offer a topic of forced magnetostriction around the Curie temperature or mag-

neto-structural transition temperature. The spin fluctuation theory of itinerant electron magne-

tism suggests that the critical index δ is defined by the critical magnetic isotherm function, H ∝ Mδ, 

where δ is around 5 [27]. Some scientists studied this relation concerning itinerant ferromagne-

tism. Nishihara et al. studied the magnetic field dependences of Ni and Ni
2
MnGa [34]. As for Ni, 

the M4 versus H/M plot shows the reasonable linear relation at the Curie temperature. The critical 

temperature of the spin fluctuation temperature, T
A,

 was obtained as 1.76 × 104 K. This value is 

comparable with the value of 1.26 × 104 K, which was obtained by neutron diffraction experiments 
[35]. As for Ni

2
MnGa, the critical index δ of the magnetic field dependence of the magnetization, H ∝ Mδ, at the Curie temperature was 4.70 ± 0.5 [34]. We measured the magnetization of Ni

2
MnGa at 

the Curie temperature, T
C
 = 375 K. Figure 4 presents the Mδ−1 versus H/M plot. This figure indicates 

good linearity. These results indicate that the critical index δ of the magnetic field dependence of 

the magnetization is 4.70 and confirms the result of the former magnetization experiment.

In this study, we measured the magnetostriction of Ni
2
MnGa at the Curie temperature in 

order to investigate the magnetization dependence of the forced magnetostriction. Figure 5 

presents the magnetostriction ΔL/L versus M4 plot. The dotted line indicates a linear plot in 
order to guide the eyes. The result shows good linearity. It is considered that this result orders 

the Takahashi’s spin fluctuation theory. The magnetization analysis of Ni
41

Co
9
Mn

31.5
Ga

18.5
 

around the Curie temperature in the martensite phase according to the Takahashi’s spin 

fluctuation theory was performed in the former article, as mentioned in Section 1 [25].

Figure 3. Temperature dependence of the MFIS at 6 T. Entropy change obtained from DSC results ΔS [29] between 

zero field and 6 T is also shown. Thin dotted lines indicate the area for ΔS > 0. Bold dotted lines indicate the area for ΔS 

around 7.5 J/kgK.

Magnetic Field-Induced Strain of Metamagnetic Heusler Alloy Ni41Co9Mn31.5Ga18.5
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We studied the magnetostriction at the Curie temperature in the martensite phase, T
C

M = 263 K. At 
this temperature, no structural phase transition occurred. Therefore, the striction under mag-

netic fields was decided as the magnetostriction. Figure 6 shows the plot of the magnetostric-

tion against M2 at 263 K for Ni
41

Co
9
Mn

31.5
Ga

18.5
. The magnetostriction was not proportional to 

M2. The plot was rounded. The plot of the numerically estimated magnetostriction at T
C
 was 

also rounded against M2 [27]. Figure 7 shows the plot of the magnetostriction against M4 at 

263 K. The dotted lines are linearly fitted lines. The fitted line passed the origin and shows good 
linearity, as that of Ni

2
MnGa. It is conceivable that these results indicate that the magnetostric-

tion is proportional to the fourth power of the magnetization, M4.

Figure 4. The M3.7 versus H/M plot of Ni
2
MnGa. The dotted line is a fitted linear line.

Figure 5. The magnetostriction ΔL/L versus M4 plot of Ni
2
MnGa. The dotted line is a fitted linear line.

Shape-Memory Materials8



Further, we investigated the MFIS around the reverse martensitic transition temperature. 

Figures 8 and 9 show the magnetic field dependences of the magnetization and the MFIS at 
330 and 340 K, respectively. These temperatures are around the reverse martensitic transi-

tion start temperature. The gradient of the magnetization and magnetostriction has tenden-

cies toward increasing with the magnetic field increases for each temperature. However, the 
degree of the rate of increase of the magnetostriction is larger than that of the magnetiza-

tion. From these figures, a correlation between the magnetostriction and magnetization could 
not be identified. As mentioned in Section 1, Ni

41
Co

9
Mn

31.5
Ga

18.5
 is an itinerant ferromagnet. 

The magnetostriction is proportional to M4 at the Curie temperature in the martensite phase. 

Figure 6. The plot of the magnetostriction against M2 at 263 K for Ni
41

Co
9
Mn

31.5
Ga

18.5
.

Figure 7. The plot of the magnetostriction against M4 at 263 K for Ni
41

Co
9
Mn

31.5
Ga

18.5
. The dotted line is a fitted linear line.

Magnetic Field-Induced Strain of Metamagnetic Heusler Alloy Ni41Co9Mn31.5Ga18.5
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Therefore, it is presumed that the MFIS is also conformed to the power law suggested by 

Takahashi’s theory.

Figure 10 shows the plot of MFIS against M2 at 330 and 340 K. The dotted lines are linearly fit-
ted lines. These fitted lines did not pass the origin, and the plot was rounded. Figure 11 shows 

the plot of MFIS against M4 at 330 and 340 K. The dotted lines are linearly fitted lines. These 
fitted lines passed the origin. It is conceivable that these results indicate that the MFIS is pro-

portional to the fourth power of the magnetization, M4, which was suggested by Takahashi’s 

theory [27]. It is interesting that the M4 behavior matures until 7 T at 330 K. At this temperature, 

magneto-structural transition (reverse martensitic and metamagnetic transition) occurred.

Figure 8. The magnetic field dependences of the magnetization and the MFIS at 330 K for Ni
41

Co
9
Mn

31.5
Ga

18.5
.

Figure 9. The magnetic field dependences of the magnetization and the MFIS at 340 K for Ni
41

Co
9
Mn

31.5
Ga

18.5
.

Shape-Memory Materials10



3.3. The time response of the magnetic field-induced strain of Ni
41

Co
9
Mn

31.5
Ga

18.5

In order to investigate time response of the MFIS, fast speed sweeping of the magnetic fields 
was performed at 354 K, as shown in Figure 12. The applied magnetic field increased from 
the zero magnetic field to 1.66 T in 8.0 s and under atmospheric pressure. Figure 13 shows 

the MFIS, in which the applied magnetic field increased from the zero magnetic field to 
1.66 T in 60 s. As for an 8.0-s mode, 2.2 × 10−4 MFIS was observed, which was 80% of the 

MFIS in a 60-s mode. This indicates that a high-speed transition has occurred on applying 
magnetic fields.

Figure 10. The plot of MFIS against M2 at 330 and 340 K for Ni
41

Co
9
Mn

31.5
Ga

18.5
.

Figure 11. The plot of MFIS against M4 at 330 and 340 K for Ni
41

Co
9
Mn

31.5
Ga

18.5
.

Magnetic Field-Induced Strain of Metamagnetic Heusler Alloy Ni41Co9Mn31.5Ga18.5
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The MFIS effect occurs at the temperature between room temperature and 370 K; therefore, 
it is useful for magnetic sensors, or actuators in the high temperature region, ex. the engine 

room in the motor vehicles.

4. Conclusions

In order to investigate the magnetic functionality of polycrystalline metamagnetic Heus-

ler alloy Ni
41

Co
9
Mn

31.5
Ga

18.5
, magnetic field-induced strain (MFIS) measurements were  

Figure 12. Time dependence of MFIS of Ni
41

Co
9
Mn

31.5
Ga

18.5
 at 354 K in increasing magnetic fields by means of a water-

cooled magnet. The applied magnetic field increased from the zero magnetic field to 1.66 T in 8.0 s.

Figure 13. MFIS of Ni
41

Co
9
Mn

31.5
Ga

18.5
 at 354 K by means of a water-cooled magnet. The applied magnetic field increased 

from the zero magnetic field to 1.66 T in 60 s.

Shape-Memory Materials12



performed. Strain gauge was fixed parallel to the long distance direction (4.0 mm) of the 
sample. The external magnetic field was applied parallel to the long distance direction of 
the sample, and the elongation of the sample was measured. A 0.12% MFIS was observed 

at 340 K and 10 T. Strict MFISs between 300 and 370 K were observed. These magneto-

structural variances acted in concert with the metamagnetic property observed by the 

magnetization measurements and magneto-caloric property observed by the caloric mea-

surements in the applied magnetic fields. The MFISs were proportional to the fourth 
power of the magnetization, and this result is in agreement with Takahashi’s spin fluc-

tuation theory of itinerant electron magnetism. The investigation of time response of the 

MFIS was performed by means of a sweep water-cooled electric magnet, and zero mag-

netic field to 1.66 T in 8.0 s at 354 K. 2.2  ×  10−4 MFIS was observed, which was 80% of the 

MFIS in a 60-s mode. This indicates that a high-speed transition has occurred on applying 
magnetic fields.
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