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Abstract

A harmonic analysis for a wind energy conversion system (WECS) based in a doubly fed
induction generator (DFIG) is presented. A back-to-back frequency converter as voltage
source for excite to rotor winding is used whereas than the electrical network excites to
stator winding. The analysis is based on the induction machine model and the steady-state
frequency converter model. Additionally, dynamic-state and steady-state models are devel-
oped and compared validating the results of the simulations obtaining a harmonic model, in
steady-state, clear, and precise of the wind energy conversion system.

Keywords: harmonic analysis, doubly fed induction generator, back-to-back frequency
converter, electrical network, harmonic and inter-harmonics

1. Introduction

Energy demand is increasing day by day around the world and renewable energy has proven

to be an excellent choice of competition against conventional energy sources, which produce

environmental pollution and contribute to climate change and global warming. An effective

and proven type of renewable energy is wind energy, which achieved an increase of 63 GW in

Mexico, reaching 433 GW in total capacity worldwide. This energy has been used by the

human civilization for millennia to navigate and pump water for agricultural activities. Now-

adays, the wind energy is used to produce electricity that leads the world of technology. This

energy is used to impulse, mechanically, the generators that produce electrical energy. The

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
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device that allows this conversion is called wind turbine. There are different concepts regarding

the coupling of the generator with the wind turbine being the most well-known fixed velocity

and variable velocity wind turbines. The squirrel-cage induction generator was the first fixed

velocity concept developed during the early years of wind turbines. This configuration is shown

in Figure 1. The generator is directly connected to the electrical network but has the disadvantage

of operating at low efficiency producing poor power quality. On the other hand, the double-fed

induction generator (DFIG) is the technology that has the largest presence in the wind industry

today as it has the advantage of have a higher energy efficiency compared to the squirrel-cage

induction generator, a reduction in mechanical loads, a simple system of pitch control, and

greater control of active and reactive power (see Figure 2). Due to the unpredictable nature of

wind, wind energy still presents several challenges such as fluctuations in voltage generated and

complications to achieve efficient couplings with the electrical network.

These problems have led to develop strategies to solve these mishaps. However, the devices

used by these strategies produce certain alterations in the energy signal required by the

generator to function properly. This implies variations in the energy delivered by the genera-

tor, which leads to a further challenge in the area of wind energy: the power quality. This

concept describes how close the energy is to the appropriate standards to operate and allow

the proper use of equipment that employ this energy. Variations in voltage can result in

malfunction of sensitive components of system, a reduction in generator efficiency and in

general, degradation of power quality, while harmonics, which are current and/or voltages

signals occurring in electrical systems with multiple frequencies of the fundamental, can cause

severe problems such as generator induction effects and torque oscillations reducing the life of

generator. Therefore, it is very important to obtain a clear harmonic analysis of the wind

energy conversion system (WECS) when they are excited by non-sinusoidal voltage sources

since the wind industry currently lacks models for harmonic propagation studies; this is done

using the Fourier transform tool described later in the chapter.

Figure 1. Configuration of squirrel-cage induction generator.

Compendium of New Techniques in Harmonic Analysis40



2. Harmonic analysis

In the beginning, Fourier series emerged as a method for the explanation of physics phenom-

ena, at a time when there was no knowledge of electronics or telecommunications, but they are

also very useful in our times applied in computer science and communication. This is possible

since electrical phenomena are also physical phenomena and their behaviors explained

through periodic functions or periodic wave movements, where a Fourier transform allows

obtaining discontinuous waves. In addition, the harmonic analysis is the process of calculating

the magnitudes and phases of the fundamental frequency and all the higher order of a periodic

waveform. The resulting series is known as the Fourier series [1], which for the periodic

function has the expression:

ð1Þ

This constitutes a representation in the time-domain of the periodic function. In this expres-

sion, is the average value and T is the period of the function , whereas and are the

coefficients of the series for the n-th harmonic. These signals can be visualized in a 3-D system

in which their magnitude, frequency location, and over time are represented (see Figure 3).

The constant term of the Fourier series is given by:

ð2Þ

Figure 2. WECS based in doubly fed induction generator connected to the electrical network.
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which represents the area under the curve of from to , divided by the period of the

waveform T, that is the average value of the function. While and are given respectively by:

ð3Þ

The above equations are simplified when the waveform has symmetry. If the waveform has

odd symmetry, this is , then is zero for all values of n, and is given by:

ð4Þ

The Fourier series for an odd function will have only sine terms. If the waveform has even

symmetry, this is , then is zero for all values of n, and is given by:

ð5Þ

2.1. Transform Fourier

Formerly the process to find the Fourier transform was a bit expensive, due to the calcula-

tions that had to be done manually, nowadays with the help of technology and computers,

different algorithms have been developed to simplify and make this process easier, besides

of the discrete Fourier transform (DFT) and the fast Fourier transform (FFT). The main idea

of the Fourier transform is to transform a signal from the time domain or space to the

frequency-domain. In addition, through inverse Fourier transform, you can pass functions

from the frequency-domain to the time-domain. The Fourier series therefore represents the

special case of the Fourier transform applied to a periodic signal. In practice, the data are

Figure 3. Harmonics signals in 3-D.
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frequently available in the form of a time-sampled function, represented by a time series of

amplitudes separated by fixed time intervals of limited duration. When Fourier analysis is

applied to a periodic continuous signal in the time-domain produces a series of discrete

frequency components in the frequency-domain [2]. The following equations form the pair

of the Fourier transform:

ð6Þ

where t is time, f is the frequency, x(t) is the test signal, is probing phasor and X(f) is

spectrum as a function of frequency f. Eq. (7) is called the ‘forward transformation’ and Eq. (8)

is the ‘reverse transform’. Generally, is complex and can be written as:

ð7Þ

The real part of is obtained:

ð8Þ

In analogous form, the imaginary part of is obtained from:

ð9Þ

The amplitude spectrum of the frequency signal is obtained from:

ð10Þ

In addition, the phase spectrum is:

ð11Þ

2.2. Fourier discrete transform

When frequency-domain spectrum is a sampled function, as well as the time-domain function,

a Fourier transform pair of discrete components is obtained [3]:

ð12Þ

Equation (14) can be written in condensed form as:
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ð13Þ

In Eq. (15), is a vector representing the N components of the function in the frequency-

domain, while is a vector representing the N samples of the function in the time-domain.

The calculation of the N frequency components of N time samples requires a total of

complex multiplications to solve Eq. (16).

2.3. Fourier fast transform

The implementation of Eq. (14) involves a number of complex additions and multiplications

that is proportional to . The term can be calculated at one time and summarized in a

table for subsequent applications; for this reason, the multiplication of k by n in this term is not

normally counted as part of the implementation. The fast Fourier transform is an algorithm

that allows calculating the discrete Fourier transform of a harmonic signal with a substantial

saving of calculations. For the case, a number of samples equal to where k is integer, only

(N) multiplications [4] are required. The saving in calculations increases as the number

of samples increases with the ratio:

ð14Þ

Thus for samples, the work is reduced to analyzing only 103 samples, which reduces the

number of operations 205 times. The algorithm that is proposed is based on the method called

‘successive folding’. Knowing that where M is a positive number, so

ð15Þ

which can be expressed as

ð16Þ

If it is defined as

ð17Þ

For and

ð18Þ

For then we have

ð19Þ
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Also, given that

ð20Þ

A careful analysis of the last equations shows some interesting properties of these expressions.

Note that an N-point transform can be calculated by dividing the original expression into two

parts, as indicated in the last two equations. The calculation of the first half of requires the

evaluation of the two transforms of N/2 points according to the last equations. The resulting

values of and are replaced in . The other half is obtained

by equation without requiring additional evaluations of the transform. Considering a

number of samples equal to with n positive integer, it can be shown that the number of

complex operations (multiplications and additions) is given by:

mðnÞ ¼ 2mðn� 1Þ þ 2n�1
n ≥ 1

These expressions indicate the number of multiplications and sums for which

and are equal to zero, since the transformation of a point does not require any operation. It

is possible to conclude, by induction, that the number of operations, sums and complex

multiplications, which is required to implement an algorithm for FFT, is given by:

And

The application of this mathematical tool are varied, for electrical engineering, electronics,

telecommunications and other fields of information sciences. All these sciences can to demon-

strate that the sinusoidal signals can represent the sending of data by electrical transmission

networks. In the following sections, a model of the doubly fed induction generator for har-

monic analysis based on the Fourier transform is presented. Initially, the mathematical model

of DFIG is presented at the fundamental frequency. Then, the model is performed at harmonic

frequencies to obtain the harmonics components generated in the electrical variables of the

generator. Finally, the results are compared and summarized in tables.

3. Wind turbines technologies

The connection of wind farms to an existing transmission or distribution network can affect the

behavior of the same depending on two main variables:

1. Installed wind power.

2. ‘Strength’ to network to which its connects (expressed as PCC/ ).
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This analysis must be done both from the point of view of static and dynamic behavior of the

system. Unlike other types of generation technologies, it is not usual for wind generation to

cause problems in terms of the harmonic, inter-harmonic and sub-harmonic distortion. This is

due both to the fact that most of the machines used are of the asynchronous type, that is, the

technology type of wind energy conversion system used in wind farms determines the har-

monic distortion intensity. For example, the fixed velocity wind turbines based in squirrel-cage

induction generator, the element that causes current distortion is the soft-starter, formed by a

thyristor bridge, which not in all operations of the turbine is in operation. On the other hand,

variable-velocity wind turbines today have in common the use of power electronic converters

to be able to vary the velocity and to maintain the power factor within the desired limits.

However, these devices produce harmonic signals in the generator and the harmonic distor-

tion magnitude depends mainly on the type of inverter or converter and its control because

these use the IGBT thyristors (isolated gates bipolar transistors). The switching frequency in

these inverters is limited to the range of 2–3 kHz. The frequency converters affect waveform

quality and can negatively affect other consumers connected to the electrical network.

3.1. WECS using DFIG with conventional back-to-back frequency converter

Considering the different types of WECS configuration, a wind turbine based on a doubly fed

induction generator (DFIG) connected directly to the electrical network via a frequency converter

is analysed. Among electronic power converters there are three types widely used in the wind

power market: back-to-back converter, multilevel converter and the matrix converter [5]. In this

section, the revision is made around the network-connected WECS-based DFIG and a back-to-back

converter attached at a point common coupling (PCC). A rotor-side converter (RSC), a network-

side converter (NSC) and a decoupling capacitor between the two converters constitute this

converter. Notice that the harmonic distortion is a phenomenon that causes problems for both the

users and the entity responsible for the provision of the electric power service [6], so it is consid-

ered necessary an appropriate understanding of the techniques currently used to mitigate this

phenomenon. In this sense, the literatures that define the harmonic sources in WECS are classified

as follow: Harmonic distortion from the network and harmonic distortion form the WECS:

1. The harmonic distortion from the electrical network: Since the WECS is connected to the

electrical network; it becomes sensitive to any harmonic distortion coming from it. Distorted

voltages in the stator generate harmonic currents in the WECS, which in turn can generate

ripples voltage, torque pulsations, overheating, and increased losses in stator windings,

under power factor, among others [7]. In some cases, these affections can have destructive

effects on the WECS [8]. The solutions found in the literature involve the use of custom

power devices as well as various control strategies implemented in the frequency converters.

2. The harmonic distortion from the WECS: The harmonics coming from the WECS is

another of the harmonic distortion scenario, which the injection of harmonic components

of voltage or current into the electrical network can cause problems such as excessive

heating of transformers and conductors [9]. The main causes of harmonics from the WECS

are: harmonics produced by nonlinear loads inherent to the generation system and har-

monics produced by the WECS itself that is to say, associated to the operation of the

components (generator, electronic power converter).

Compendium of New Techniques in Harmonic Analysis46



3.1.1. Operating principle of doubly fed induction generator

As in traditional three-phase induction generator, the doubly fed induction generators have a

magnetic field formed by the stator phases rotating at synchronous velocity which is

determined by the network frequency and the number of poles of the generator [10, 11], which

is determined as or where is the voltage frequency of network in

Hertz, p is the poles number of generator, is the synchronous velocity in and ns is the

synchronous velocity in Unlike the first generators, the frequency of the rotor currents in

the doubly fed induction generator can be controlled, thanks to the operation of the converter

located on the generator-side. The control of the rotational currents governs the velocity and

torque characteristic curve, which allows optimizing and regulating the power generated by the

DFIG [12]. In the same way that the velocity stator fields are obtained, the velocity of the rotor

fields formed by the rotor currents is defined by where is the frequency of rotor

voltage in Hertz, and is the angular velocity of rotor fields in . Then, slip s is defined as the

relative velocity of the stator fields with respect to the rotor velocity , measured in per unit:

ð21Þ

The concept ‘slip’ is very important because it describes the machine operation. Now, with the

above equation, we can establish in is the frequency of stator current. From this,

it is possible to characterize the modes of operation of the machine, which in general in wind

systems present velocity variations around 30% [13]. In order to produce a non-zero torque

necessary for generator operation, the magnetic fields caused by the stator and rotor currents

must rotate at the same velocity with respect to a point coupling common [14],

Now, themechanical velocity of the rotor is obtained and can be controlled according to previous

equations by controlling the frequency of the rotor currents affected by the rotor-side converter.

When the slip is positive, it has to be greater and therefore to be positive and the rotating

magnetic fields generated by the stator and rotor coils rotate in the same direction. In this case:

ð22Þ

where is the rotation velocity of rotor measure with respect to stator in radians geometrics.

When the slip is negative, it has to be minor to and therefore to be positive and the

rotating magnetic fields generated by the stator and rotor coils rotate in the opposite direction.

This means that the rotor is fed with the inverse stator sequence. Under these conditions:

ð23Þ

As can be seen in the equations just described, the velocity at which the rotor rotates depends

exclusively on the network and rotor frequencies, and not on the torque imposed by the

turbine, as is the case with other types of generators.

3.1.2. Steady-state model of DFIG at harmonic frequencies

The general scheme of doubly fed induction generator (DFIG) in the stationary reference-frame

uses a wound rotor with slip rings to transmit current between the stator and rotor voltage

sources is shown in Figure 4. The voltage equation that describes the equivalent circuit is given by
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ð24Þ

where and are stator and rotor harmonic voltages, and are the stator and rotor

harmonic currents, respectively, and is the magnetizing inductance given by , and

is the harmonic slip. To calculate the slip, , corresponding to the harmonic h, it is necessary to

determine if the harmonic is a positive, negative or zero sequence. All multiples of three in a

three-phase system are zero sequence, that is, corresponding to the harmonics , and since

they do not produce a rotating magnetic field, they do not contribute to the production of electric

torque. The rest of the odd harmonics produce positive or negative electric torques depending

on the sequence of the harmonic system generated by the rotating magnetic field, that is, the

harmonics with behavior and . Thus, the harmonic slip is defined by [15]:

ð25Þ

The sign and is used for positive and negative sequence, respectively. In order for a

harmonic of order h in a three-phase system to be in sequence positive, the following relation

must be fulfilled:

ð26Þ

Since h must be an odd number, n must belong to natural numbers; this implies that k must be

a multiple of 2

ð27Þ

In order for a harmonic of order h in a three-phase system to be in sequence negative, the

following relation must be fulfilled

Figure 4. Steady-state equivalent circuit of the induction machine.
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ð28Þ

Since h must be an odd number, n must belong to natural numbers; this implies that k+1 must

be a multiple of 2,

k + 1 = 2m; ∀ m ∈ N ! n = 3m ! h = 6m � 1; ∀ m ∈ N, m 6¼ 0

In summary:

a. Harmonics of positive sequence:

b. Harmonics of negative sequence:

The stator and rotor phasors currents are obtained from the above equation:

ð29Þ

Then, can be written as:

ð30Þ

where and .

3.1.3. Analysis of back-to-back converter at harmonic frequencies

One of the most used equipment in the industry for the control of doubly fed induction genera-

tors (DFIG) is the AC-AC three-phase converter. In such equipment, the voltage generated in the

DC link is provided by a three-phase rectifier, either from the network voltage, or from the

power generated in the rotor. This will depend on the velocity of rotation of the generator.

The controlled rectifiers allow a bidirectional flow of power and through appropriate

control and modulation; techniques generate virtually sinusoidal input currents. The

power factor of this type of rectifiers can be adjusted at will. It should be mentioned that

in these devices, the harmonics present in the current are the same as those present in the

voltage. Therefore, the ripple that appears on the voltage, just like in the current, is rippled

from high frequency due to the switching function. To determine the voltage that is

obtained from the inverter, first obtain the voltage in the capacitor according to the follow-

ing expression:
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ð31Þ

Solving, in steady state, with where represents the average value voltage in the

inverter, we have the following expression:

ð32Þ

To obtain the value of the inverter current, it is necessary to know the capacitor current and

according to the differential equation governing the behavior of the DC bus in the frequency

converter, it is known that this capacitor current is given by:

ð33Þ

where the switching function m Є {�1, 0, 1} is a discrete variable of the modulation SPWM,

which is defined as

ð34Þ

whose mathematical representation can be obtained by decomposition in Fourier series by

ð35Þ

where ω represents the network frequency; and is the magnitude and phase angle

of the fundamental component of the modulation signal, respectively, whereas and

represent the magnitude and phase of the harmonic component of the modulation

signal. The first term of the summation provides the fundamental component and the second

determines the harmonic components. On the other hand, the representation of the line current

is given by

ð36Þ

where P represents the power in inverter and the angle of the power factor of

which is the phase-neutral effective voltage of the electrical network. Then, the current a is

given by

ð37Þ

By analyzing only, the harmonic components, previous expression is reduced to

ð38Þ

In addition, for b and c phases, the independent products can be calculated by
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ð39Þ

Using the trigonometric identity:

Finally, the sum defined by the above equations is represented by

The same procedure is performed for the network-side converter. The DC link parameter is

shown in Table 1. Figures 5 and 6 show the voltage generated and harmonic frequency of the

rotor side converter.

Parameters Value

DC link capacitor 32.5 F

DC link voltage 180 V

Base voltage 176.5 V

Base current 33 A

Base power 22.5 kVA

Table 1. DC link parameters.

Figure 5. Voltage generated for rotor-side converter.
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Figures 7 and 8 show the voltage generated and the harmonic order of the network-side

converter. The voltage generated by the converter and shown in Figure 5 will be the

excitation source of the rotor winding. The harmonic slip of rotor-side converter is shown

in Table 2.

Figure 6. Harmonic frequencies of rotor-side converter.

Figure 7. Voltage generated for network-side converter.
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4. Model validation

To validate the proposed model a three-phase generator of 37.5 kW, 460 V, and 46.8 A is used.

The induction generator parameters are shown in Table 3. Noted that the results obtained

from the proposed model (steady-state) are compared with those obtained from the simulated

complete model (dynamic) ones the steady-state has been reached. For this case study, a

in the induction generator was used.

4.1. Case study 1: DFIG excited with conventional back-to-back converter

For this case, the generator is excited in the stator windings with a sinusoidal three-phase

balanced voltage source of 460 Vat 60 Hz shown in Figure 9. Rotor windings are excited with a

quasi-sine voltage source of 50 V at 45 Hz. The voltage waveforms of rotor winding are shown

in Figure 5. The stator and rotor current waveforms obtained from dynamic-state are shown in

Figures 10 and 11, respectively. An expansion of these currents is made once they have reached

their steady-state. The electromagnetic torque and the nominal velocity reached by the gener-

ator are shown in the Figures 12 and 13, respectively.

Figure 8. Harmonic order of network-side converter.

Harmonic 5 7 11 13 17 76 80 158 159

Sequence — + — + — + — + —

Harmonic slip 1.21 0.96 1.32 0.97 1.25 0.98 1.01 0.993 1.07

Table 2. Harmonic slip of rotor side converter.
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Parameters 50 HP/37.5 kW

Wind speed 10 m/s

Number of poles 4

Rotor speed 1705 rpm

Inertia 1.662 kg�m2

Nominal line current 46.8 Amps

Nominal line-to-line voltage 460 Vrms

Nominal torque 198 N.m

Nominal frequency 60 Hz

Stator resistance, 0.087 Ω

Stator inductance, 0.0008010 H

Rotor resistance, 0.228 Ω

Rotor inductance, 0.0008010 H

Magnetizing inductance, 0.347 H

Table 3. Parameters of a 50 HP induction generator.

Figure 9. Stator voltage.

Figure 10. Three-phase stator current in dynamic-state.
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The current waveforms of stator and rotor are obtained from steady-state model and shown in

Figures 14 and 15, respectively. In addition, an expansion of these currents is made and shown

in Figures 16 and 17.

Finally, a comparison is made of the forms obtained in both models, both in magnitude and in

phase angle, concluding that both models coincide in these aspects. The graphic result of this is

shown in Figures 18 and 19, respectively.

Figure 11. Three-phase rotor current in dynamic-state.

Figure 12. Electromagnetic torque.

Figure 13. Nominal velocity.
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Figure 14. Three-phase stator current in steady-state.

Figure 15. Three-phase rotor current in steady-state.

Figure 16. Expansion of the stator current in steady-state.
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Figure 17. Expansion of the rotor current in steady-state.

Figure 18. Results comparison of both models: steady-state and dynamic-state, respectively.

Figure 19. Results comparison of both models: steady-state and dynamic-state, respectively.
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5. Incorporation to the electrical network

The integration of wind farms into the network is not an easy problem to solve. Numerous

studies have been carried out related to the impact of wind penetration on electric power

systems, including those related to stability studies, response of electrical protections and

harmonic effects in the electrical network. In some power systems, the penetration of wind

energy is rapidly increasing and begins to influence the overall behavior of the system and its

stability. In Figure 20, it is possible to observe the equivalent diagram of the system to be

simulated, which corresponds to the simplification of an induction generator, a frequency

converter and typical distribution system. It is presented a three-phase circuit that feeds an

industrial load, consisting of a doubly fed induction generator (DFIG), controlled by a back-to-

back converter (which injects the harmonic current components).

The presence of harmonics in an electrical power distribution system can bring serious prob-

lems, both for the same equipment or system that produces them as for other equipment

connected in the same network. The generated harmonic currents interact with the system

impedance and cause the voltage distortion, increase the losses and produce effects of over-

loads connected to the electrical network. Furthermore, they reduce the power factor, given its

reactive nature. The presence of harmonic distortion will be more appreciable in some points

than in others. However, we can establish that, in general, the effects of harmonics depend on:

Figure 20. Complete equivalent diagram of WECS connected to the electrical network.
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• the elements that generate harmonics, their diversity within the system, the spectral

content they inject and their operating regime in time-domain

• the quantity, configuration and values of the elements in the electrical network, both in the

time-domain and frequency-domain;

• the sensitivity of the equipment to the presence of harmonic currents or voltages;

• the degree of interest shown by electricity companies and commercial and industrial

companies for the harmonic problems that may arise;

• the establishment of norms to set individual total harmonic distortion limits and their

compliance on the part of the sectors involved; and

• the effectiveness of standards over time, depending on the technological cases registered

in the manufacture of new equipment.

In the study of the effects of harmonics in the distribution systems, it is important to know the

propagation paths of the harmonic currents, whose important effect in the system consists in

the distortion of the voltage in the different nodes, transferring the harmonic presence to other

subsystems. The presence of harmonic voltages results in currents with those harmonic fre-

quencies, which cause additional losses. The induction generator operating with non-sinuso-

idal voltages cause additional losses due to harmonics. The harmonic losses that occur are

losses in stator copper, losses in the core, mechanical losses and losses in the rotor. The largest

losses occur on rotor bars (for squirrel cage generator). In addition, harmonic losses are

independent of the generator load, but may be much greater than losses due to a pure sine

wave, depending on the harmonic content of the applied voltage waveform. These factors raise

the temperature of all generator components reducing the efficiency and the useful life. This

elevation in temperature may result in excessive heating and may not meet the demands of the

load coupled to its axis, or resulting in the destruction of the generator. Harmonic currents

cause increased losses in copper for to the skin effect due to their high frequencies, cause

insulation stresses, Eddy current losses in the conductive parts and possible resonance at a

harmonic frequency between the inductive reactance of the transformer and the capacitance of

the line or capacitors for power factor improvement.

The effect of the losses, then, is an increase in the heating of the transformer, which may be

significant. Due to behavior of triple harmonic currents in three-phase systems, the three

currents of line are in phase, and when they reach the center of a wye connection, they will

return through the neutral or ground. This fact, although the three-phase system is perfectly

balanced, can cause the heating of cables and connectors when its ampacity is exceeded.

5.1. Power-quality problems of WECS connected to the electrical network

The term ‘power quality’ refers to voltage and frequency stability, and the absence of various

forms of electrical noise (e.g., flicker or harmonic distortion) in the electrical network. Gener-

ally, electric companies (and their customers) prefer an AC with a sinusoidal waveform, free of

interruptions or disturbances. The consequences of large-scale supply incidents are well
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documented. A recent study in the United States has shown that digital industrial and com-

mercial firms are losing $ 45.7 billion per year because of power network disruptions. In all

commercial sectors, it is estimated that between 104,000 and 164,000 million dollars are lost

due to interruptions and another 15,000–24,000 million dollars because of other power quality

problems in the network. Many problems in the supply originate in the electric network that

with its thousands of miles of transmission is subject to climatic conditions such as hurricanes,

storms with snow, ice and floods, along with equipment failures, traffic accidents and major

operations of connection.

The power quality study and ways to control it is a topic of interest for electricity suppliers,

large industrial companies, businesses and even residential users. The study has intensified as

teams have become increasingly sensitive to even minimal changes in voltage, current and

frequency in the supply. The Institute of Electrical and Electronics Engineers (IEEE) has devel-

oped a standard that includes definitions of energy disturbances. The standard (Standard

1159–1995 of the IEEE, IEEE Recommended Practice for Monitoring Electric Power Quality)

describes many problems of the power quality. Regarding the wind sector, there are regula-

tions that regulate the limits for this type of problems, as indicated by the IEC 61400-21

standard. The IEC–61400-21 standard provides recommendations for preparing the measure-

ments and assessment of power-quality characteristics of wind turbines. The measurement

procedures described in the IEC61400-21 standard are valid to test the power-quality charac-

teristic parameters for the full operational range of a wind turbine, connected to a MV or HV

network with fixed frequency within �1 Hz, sufficient active and reactive power regulation

capabilities and sufficient load to absorb the wind power production.

5.1.1. Start and stop of the wind turbine

Most of the electronic wind turbine power controllers are programmed so that the turbine runs

in no-load at low wind speeds (if it were connected to the network at low wind speeds, in fact

it would work as an engine). Once the wind becomes strong enough to rotate the rotor and

generator at its rated speed, it is important that the turbine generator be connected to the

power network at the appropriate time. If this is not the case, only the mechanical strength of

the multiplier and the generator will be present to prevent the rotor from accelerating, and

eventually it will be packed (there are various safety devices, including fail-safe brakes, in the

case that the of correct start fail).

5.1.2. Soft-started with thyristors

If a high-power wind turbine is connected to the electrical network by means of a normal

switch, a partial dimming would be observed (due to the current required to magnetize the

generator), followed by a power peak, due to the generator current overloading. Another

unpleasant side effect when using ‘hard’ switches would be to apply extra wear to the multi-

plier, since the generator connection would act as if the mechanical brake of the turbine were

suddenly activated. To avoid this situation, modern wind turbines have a soft-start; they are

connected and disconnected from the electrical network gradually by means of thyristors, a

type of semiconductor continuous switch that can be controlled electronically. Thyristors lose
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about 1–2% of the energy that passes through them. Thus, modern wind turbines are usually

equipped with a switch called ‘drift’, that is, a mechanical switch that is activated after the

turbine has made the soft start. In this way, the amount of energy lost is minimized.

5.1.3. Weak electrical network

If a turbine is connected to a weak electrical network (i.e., it is very far in a remote corner of an

electrical network with a low-power transport capacity), there may be some problems of partial

obscuration and/or power overvoltage. In these cases, it may be necessary to reinforce the electri-

cal network to transport the AC from the wind turbine. The local power company is experienced

in dealing with these voltage problems, as they are the exact reflection of what happens when a

large user (e.g., a factory with large electric motors) is connected to the electrical network.

5.1.4. Islanding

‘Islanding’ is a situation that can occur if a section of the electrical network is disconnected from

the main electrical network, as would happen by accidental or intentional tripping of a large

circuit breaker in the network (e.g., due to stoppages in the network electrical supply or short-

circuits in the network). If the wind turbines continue to operate in the part of the network that

has been isolated, it is very likely that the two separate networks are not in phase after a short

interval of time. The restoration of the connection to the main power network can cause huge

overcurrent’s in the wind turbine network and generator. This would also cause a great release of

energy in the mechanical transmission (i.e., in the axes, the multiplier and the rotor), as would a

‘hard connection’ from the generator of the turbine to the electrical network. Thus, the electronic

controller will have to constantly monitor the voltage and frequency of the AC of the network. In

the event that the voltage or frequency of the local network are within certain limits for a fraction

of a second, the turbine will automatically disconnect from the network, and immediately

afterwards it will stop (normally activating the aerodynamic brakes).

The distributed generation (generation of electricity through of solar panels, wind farms, etc.),

is increasingly having a greater presence in the world, in the case of the sector of self-

consumption and injection of surplus energy into the network. This factor causes that the

energy systems supplier has more advanced control means to verify the variations of loads

that cause important fluctuations in the parameters of the voltage, injection of harmonics,

change in the power factor, greater technical losses, among others. Therefore, it is advisable to

make a power-quality study in an industry, commerce or home. This analysis must be done

with high-resolution RMS equipment in order to detect and accurately measure the different

parameters mentioned.

5.2. Case study 2. DFIG excited with three-phase back-to-back converter SPWM to

improve the power quality

For this case, the generator is excited in the stator windings with a sinusoidal three-phase

balanced voltage source of 460 V at 60 Hz shown in Figure 9 and rotor winding is excited with

a quasi-sine voltage source of 50 V at 45 Hz to which the SPWM switching technique was
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applied. The stator and rotor current waveforms obtained from dynamic-state are shown in

Figures 21 and 22, respectively. An expansion of these currents is made once they have reached

their steady-state.

The current waveforms of stator and rotor are obtained from steady-state model and shown in

Figures 23 and 24, respectively. In addition, an expansion of these currents is made and shown

in Figures 25 and 26.

Finally, a comparison is made of the forms obtained in both models, both in magnitude and in

phase angle, concluding that both models coincide in these aspects. The graphic result of this is

shown in Figures 27 and 28, respectively.

Figure 21. Three-phase stator current in dynamic-state.

Figure 22. Three-phase rotor current in dynamic-state.
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5.3. Analysis of simulation results

The doubly fed induction generator (DFIG) interconnected to the electric network is simu-

lated based on a steady-state model. This proposed model consists of the integration of

induction generator, frequency converter and the electric network. Each of those sections is

then analysed.

Figure 23. Three-phase stator current in steady state.

Figure 24. Three-phase rotor current in steady state.
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5.3.1. Rotor-side non-sinusoidal voltage source

Once the harmonic slip for each harmonic signal is determined, the frequencies generated in

the rotor-side non-sinusoidal voltage source are obtained as shown in Table 2. Figure 29

shows the frequency spectrum of rotor side non-sinusoidal voltage source. There are har-

monics of the order where the signs and express the positive and negative sequences

(�5, 7, �11…); these components generate rotating magnetic fields with the identical or

opposite direction of the fundamental field. The rotor voltage during commutation is equal to

half of the sum of two-phase voltages that are under commutation with the rotor-line voltage

being zero in this period.

Figure 26. Zoom of Figure 25.

Figure 25. Zoom of Figure 23.

Figure 27. Results comparison of both models: steady-state and dynamic state, respectively.
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Figure 28. Results comparison of both models: steady-state and dynamic state, respectively.

Figure 29. Frequency spectrum of rotor side non-sinusoidal voltage source.
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5.3.2. Electrical network analysis

The network voltage could only be influenced by non-ideal voltage modulation, if the power

of the modulated source is in the same class as the network. However, the harmonic current

flow over the network generating always-harmonic voltage, which shows undesired effects in

the network, independent from the power of the harmonic current source. This means, that

harmonic currents are always of high interest for the resulting power quality of the electrical

network. For this case, a harmonic voltage and harmonic current of the network is considered.

Figures 30 and 31 present the network current and the network voltage, respectively.

5.3.3. Stator and rotor current analysis

The stator current waveform is shown in Figure 23 where it is observed that it contains

considerable harmonic components. The interaction between the rotor flux harmonics and the

fundamental flux in the air-gap induces currents in the stator which are not integer multiple of

the supply frequency. These are commonly called inter-harmonic with stator current fluctua-

tion. The harmonic in the rotor are induced in the stator due to the dominant rotor harmonics

(harmonic numbers are fifth and seventh).

The behavior of the rotor current in steady-state is shown in Figure 25. The ripples on the rotor

current and its large rate of variation result in pulsed voltage waveforms. The rotor harmonic

current establishes rotating magnetic fields in the air-gap, inducing currents of corresponding

frequencies to the stator winding. It is known that the 6 h + 1 harmonics of the rotor current set

Figure 30. Electrical network current.

Figure 31. Electrical network voltage.
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up positive sequence magnetomotive force (MMF) waves, rotating in the same direction as the

fundamental rotor MMF, whereas the harmonics establish negative sequence MMFs. Since

the fundamental rotor MMF rotates in the same direction as the rotor for s > 0 (motoring mode)

and in the opposite for (regenerative mode), the angular velocity of the rotating MMFs

relative to the rotor is always . Adding the rotor velocity, yields the velocity of

the rotating MMF waves relative to the stator and, therefore, the frequency of the induced

harmonic currents is obtained with: h = 0,1,2,3…. Similarly, the rotor side-band

frequencies due to the rotor-side converter harmonics also set up MMF waves, rotating at [(1 �

6h)s � 6m] fes, with respect to the rotor. The frequency of the induced harmonic currents to the

stator is then: |1 � 6hs � 6m|fes, h, m = 0,1,2,3…. Since the slip s is non-integer, the harmonic

content of stator current consists mainly of sub- and inter-harmonics, which create undesirable

effects on the supply system. For instance, low-frequency sub-harmonics appear as unidirec-

tional components superimposed on the phase currents, while sub- and inter-harmonics

neighbouring to the supply frequency may create a beat effect on the stator current magnitude.

The rotor harmonic current due to the switching of the transistor appear at frequencies fer_h =

(6h � 1)|s|fes, h = 0,1,2,3…, that is, at the 5th, 7th, 11th, 13th … of the fundamental rotor frequ-

ency |s|fes h = 0 for the fundamental.

The DC current distortion introduced by the network-side converter (at the frequencies ) is

also reflected on the rotor currents, however, resulting in the appearance of additional har-

monics. More specifically, each rotor-side converter-related harmonic frequency of the DC

current is superposed on the harmonics of the rotor current, resulting in the appearance of

two ‘side-bands’ at frequencies . Hence, the full harmonic content of the rotor current

is given by: fes_h = |(6h � 1)s � 6m|fes, h,m, = 0,1,2,3….

It explains only the harmonic frequencies at 20 Hz (fundamental rotor frequency), 100, 140,

220, 260, 340 and 380 Hz, corresponding to h = 1, 5, 7, 11, 13, 17 and 19. For instance, the

spectral lines at 280 and 320 Hz result from the interaction of the 20 Hz fundamental rotor

frequency with the basic inverter DC harmonic at 300 Hz . Table 4

resumes the harmonic currents in the induction generator for this research. Note that the

waveform of current presented in Figures 23 and 25 has been attained from the current shown

in Table 4.

5.4. Case study 3. High-power DFIG excited with back-to-back converter

Finally, a last case study of the doubly fed induction generator is presented. To validate the

proposed model, a three-phase generator of 372.8 kW, 2300 V and 93.8 A at 60 Hz is used. The

rotor windings are excited with a quasi-sine voltage source of 500 V at 45 Hz. The induction

generator parameters are shown in Table 4.

For this case study, a in the induction generator was used. The stator and rotor

current waveforms obtained from dynamic-state are shown in Figures 32 and 33, respectively.

The electromagnetic torque and the nominal velocity reached by the generator are shown in

the Figures 34 and 35, respectively. The current waveforms of stator and rotor are obtained
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Case

study

Stator current Rotor current

Sequence ( , , 0) Magnitude

(%)

Angle

(�)

Frequency

(Hz)

Sequence

( , , 0)

Magnitude

(%)

Angle

(Degrees)

Frequency

(Hz)

Case I 100 �64.3 60 100 160.2 19.8

31.2 176.2 180 16 205.1 100

19.7 172.4 300 14 197.7 140

14.3 186.4 420 12 128.1 220

3.6 52.9 72.6 11 201.7 260

2.1 �3.5 151.2 2.3 188.7 340

1.1 �6.8 210.7 2 192.8 380

0.74 7.2 330.1 1.7 195 460

0.56 186.1 408.2 1 175 500

0.23 192.1 533.8 0.9 178.2 580

0.21 200 596.6 0.8 195 620

0.08 202 722.2 9.6 209.8 1540

0.07 203.7 750 8.2 209.5 1640

0.02 206.2 910.6 4.9 236.4 3140

0.01 212.8 973.4 4.2 237.9 3160

Table 4. Summary of the harmonic current for the case study.

Figure 32. Three-phase stator current in dynamic-state.
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from steady-state model and shown in Figures 36 and 37, respectively. Also, an expansion of

these currents is made and shown in Figures 38 and 39.

Figure 33. Three-phase rotor current in dynamic-state.

Figure 35. Nominal velocity.

Figure 34. Electromagnetic torque.
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Figure 36. Three-phase stator current in steady-state.

Figure 37. Three-phase rotor current in steady-state.

Figure 38. Results comparison of both models: steady-state and dynamic state, respectively.
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Noted that the results obtained from the proposed model (steady-state) are compared with

those obtained from the simulated complete model (dynamic) ones the steady-state has been

reached (Table 5).

6. Conclusion

Based on the results of this research, we propose a wind turbine model based on a double-fed

induction generator for harmonics propagation studies. This model consists of three stages:

analysis of the induction generator, analysis of the frequency converter and analysis of the

electric network. It should be mentioned that the models were developed in steady-state and

dynamic-state. Finally, the three stages are integrated for the development of a single model for

Figure 39. Results comparison of both models: steady-state and dynamic state, respectively.

Parameters 500 HP/372.8 kW

Wind speed 10 m/s

Number of poles 4

Rotor speed 1773 rpm

Inertia 11.06 kg�m2

Nominal line current 93.6 Amps

Nominal line-to-line voltage 2300 Vrms

Nominal torque 1980 N.m

Nominal frequency 60 Hz

Stator resistance, 0.262 Ω

Stator inductance, 0.0032 H

Rotor resistance, 0.187 Ω

Rotor inductance, 0.0032 H

Magnetizing inductance, 0.1432 H

Table 5. Parameters of a 500 HP induction generator.
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the harmonic analysis of the double-fed induction generator interconnected to the electrical
network. The results indicate harmonic and non-harmonic currents can exist in both generator
windings depending on the slip and the fundamental frequency in both voltage sources.
The results of the steady-state simulation were compared with the results in dynamic-state
model obtaining great similarity in the waveforms of the currents in the stator and rotor, in
both magnitude and phase angle resulting in a proper model for harmonic and non-harmonic
analysis of the doubly fed induction generator (DFIG) which can be used for ‘harmonic’
analysis in electrical power systems.
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