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Abstract

The joint models for longitudinal data and time-to-event data have recently received numer-
ous attention in clinical and epidemiologic studies. Our interest is in modeling the relation-
ship between event time outcomes and internal time-dependent covariates. In practice, the
longitudinal responses often show non-linear and fluctuated curves. Therefore, the main
aim of this chapter is to use penalized splines with a truncated polynomial basis to param-
eterize the non-linear longitudinal process. Then, the linear mixed effects model is applied to
subject-specific curves and to control the smoothing. The association between the dropout
process and longitudinal outcomes is modeled through a proportional hazard model. Two
types of baseline risk functions are considered, namely a Gompertz distribution and a
piecewise constant model. The resulting models are referred to as penalized spline joint
models; an extension of the standard linear joint models.

Keywords: survival data, longitudinal data, joint models, time-dependent covariates,
random effects

1. Introduction

The joint models for longitudinal data and time-to-event data are aimed to measure the

association between the longitudinal marker level and the hazard rate for an event. The

longitudinal data are collected repeatedly for several subjects. In this data, there are two types

of covariates, namely, time-independent covariates and time-dependent covariates. Further-

more, there are also two different categories of time-dependent covariates, namely, external

and internal covariates. In clinical studies, internal time-dependent longitudinal outcomes are

often applied to monitor disease progression and failure time.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



In modern survival analysis, Cox [1] has been considered as a very popular joint model to be

used for time-independent covariates. These models measured the effect of time-independent

covariates on the hazard rate for an event. Subsequently, the extended Cox model was devel-

oped for external time-dependent covariates. However, these latter models cannot handle

longitudinal biomarkers. Therefore, Rizopoulos [2] introduced joint models for internal time-

dependent covariates and the risk for an event based on linear mixed-effects models and

relative risk models.

The basic assumption for the standard joint models proposed by Rizopoulos [2] is that the

hazard rate at a given time of the dropout process is associated with the expected value of the

longitudinal responses at the same time. The whole history of response has an influence on

the survival function. Thus, it is crucial to obtain good estimates for the subject-specific

trajectories in order to have an accurate estimation of the survival function. In addition, an

important feature that we need to account for is that many observations in the sample often

show non-linear and fluctuated longitudinal trajectories in time. Each observation has its own

trajectory. Therefore, flexibility is needed for subject-specific longitudinal submodels in the

joint models to improve the predictions.

There are several previous works to flexibly model the subject-specific longitudinal profiles in

the joint models. Brown et al. [3] applied B-splines with multidimensional random effects. In

particular, Brown et al. [3] assumed that both subject and population trajectories have the same

number of basis functions. By doing this, the number of parameters in the longitudinal

submodel is reasonably large. If we have to deal with the roughness of the fit for this model,

the computational problems will increase especially when the dimension of the random effects

vector is large. Ding and Wang [4] proposed the use of B-splines with a single multiplicative

random effect to link the population mean function with the subject-specific profile. This

simple model can gain an easy estimation for parameters, however may not be appropriate

for many practical applications [5]. Rizopoulos [5] considered more flexible models using

natural cubic splines with the expansion of the random effects vector. The roughness of the fit

is still not mentioned in these models.

In this chapter, we present new approaches to model non-linear shapes of subjects-specific

evolutions for joint models by extending the standard joint models of Rizopoulos [2]. In

particular, we implement penalized splines using a truncated polynomial basis for the longi-

tudinal submodel. Following this, the linear mixed-effects approach is applied to model the

individual trajectories and impose smoothness over adjacent coefficients respectively. The

ECM algorithm is used for parameter estimation. In addition, corresponding standard errors

are calculated using the observed information matrix. However, as the matrices of random

effects covariates in our models are different from the matrices of random effects covariates in

the standard joint models, the JM package of Rizopoulos [6] cannot be used for our models.

Therefore, a set of R codes are written for the penalized spline joint models to implement the

proposed procedures on the simulated data and a case study respectively.

The chapter is organized as follows. Section 2 describes the penalized splines with truncated

polynomial basis for the joint models. In this section, the two models are specified as penalized

spline joint model with hazard rate at base line having Gompertz distribution (referred to as
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Model 1) and penalized spline joint model with a piecewise-constant baseline risk function

(referred to as Model 2). The joint likelihood, score functions and the ECM algorithm for

estimation are presented in Section 3. We then validate the proposed algorithm using extensive

simulation studies and then apply it for AIDS data in Section 4. Finally, Section 5 gives

concluding remarks.

2. The penalized spline joint models

In this section, we introduce the joint models using penalized spline with truncated polyno-

mial basis. The proposed parametrization is based on the standard joint models of Rizopoulos

[2] and the regression model of a longitudinal response using penalized spline.

Notations in this section are taken from Rizopoulos [2]. Let T∗

i be the true survival time and Ci

be the censoring time for the ith subject i ¼ 1;…; nð Þ. Ti denotes the observed failure time for

the ith subject i ¼ 1;…; nð Þ, which is defined as Ti ¼ min T∗

i ;Ci

� �

. If an ith subject is not censored,

this means that we have observed its survival time, we will have Ti ≤Ci. If an ith subject is

censored, this means that we lose its follow up, or the subject has died from other causes, we

will have Ti > Ci. Furthermore, we define the event indicator as δi ¼ I T∗

i ≤Ci

� �

. The observed

data for survival outcome are Ti; δið Þ, i ¼ 1,…, n.

For a longitudinal response, suppose that we have n subjects in the sample and the actual

observed longitudinal data for each subject-i at time point t is yi tð Þ. We measure the ith subject

at ni time points. Thus, the longitudinal data consists of the measurements yij ¼ yi tij
� �

; j ¼
�

1;…; nig taken at time points tij: We denote the true and unobserved value of the longitudinal

outcome at time t as mi tð Þ. We assume the relation between yi tð Þ and mi tð Þ as

yi tð Þ ¼ mi tð Þ þ εi tð Þ, (1)

where εi tð Þ � N 0; σ2
ε

� �

.

When survival function S tð Þ is assumed to have a specific parametric form associating with a

longitudinal submodel, estimations for parameters of interest are usually based on the likeli-

hood function [2]. In the maximum likelihood method, there are different treatments for

different types of covariates in the longitudinal submodel. Here, we present the two different

categories of time-dependent covariates and the estimation techniques for these covariates will

be introduced in the following sections. We let the time-dependent covariate for the ith subject

at time t be denoted by yi tð Þ. We let Y i tð Þ ¼ yi sð Þ; 0 ≤ s < t
� �

denote the covariate history of the

ith subject up to time t. According to Kalbfleisch and Prentice [7], the exogenous covariates are

the covariates satisfying the condition:

Pr s ≤Ti < sþ dsjTi ≥ s;Y i sð Þð Þ ¼ Pr s ≤Ti < sþ dsjTi ≥ s;Y i tð Þð Þ, (2)

for all s, t such that 0 < s ≤ t and ds ! 0. An equivalent definition is
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Pr Y i tð ÞjY i sð Þ;Ti ≥ sð Þ ¼ Pr Y i tð ÞjY i sð Þ;Ti ¼ sð Þ, s ≤ t: (3)

On the other hand, endogenous time-varying covariates are the ones that do not satisfy the

condition in (2.2). In particular,

Pr Y i tð ÞjY i sð Þ;Ti ≥ sð Þ 6¼ Pr Y i tð ÞjY i sð Þ;Ti ¼ sð Þ, s ≤ t:

In the penalized spline regression models [8, 9], the observed longitudinal covariate is

modeled using the truncated power functions with a general power basis of degree p. More-

over, the longitudinal response is also parameterized as a linear mixed-effects model to specify

the individual curves and impose the amount of smoothing. As a result, the coefficients of the

knots will be constrained to handle smoothing. In particular, the longitudinal submodel for the

ith subject at time point tij is

yij ¼ f tij
� �

þ gi tij
� �

þ ε tij
� �

, εi tij
� �

� N 0; σ2ε
� �

,

f tij
� �

¼ β0 þ β1tij þ…þ βpt
p
ij þ

X

K

k¼1

upk tij �Kk

� �p

þ
,

gi tij
� �

¼ vi0 þ vi1tij þ vi2t
2
ij þ…þ vipt

p
ij þ

X

K

k¼1

wipk tij �Kk

� �p

þ
:

(4)

Here, the set 1; tij;…; t
p
ij; tij �K1

� �p

þ
;…; tij �KK

� �p

þ

n o

is known as the truncated power basis of

degree p. Moreover,K1,…,KK are fitted K knots, for which K is chosen following Ruppert et al.

[9], Chapter 5), Appendix D. The function f :ð Þ is the smooth function which reflects the overall

trend of the population. The function gi :ð Þ is the smooth function which reflects the individual

curves. To constrain the coefficient of knots, the vector up1;…; upK
� �T

in the function f :ð Þ is

treated as random effects. Therefore, βT ¼ β0;…; βp

� �

is a pþ 1ð Þ � 1ð Þ row vector of fixed

effects and b
T
i ¼ up1;…; upK; vi0;…; vip;wip1;…;wipK

� �

is a pþ 2K þ 1ð Þ � 1ð Þ vector of random

effects for the ith subject. The assumptions for the random effects for the ith subject are

vi0;…; vip
� �T

� N 0;

P

ð Þ, upk � N 0; σ2u
� �

, wipk � N 0; σ2w
� �

and they are independent of one

another. We can now rewrite (2.4) as

yi tij
� �

¼ f tij
� �

þ gi tij
� �

þ εi tij
� �

¼ β0 þ β1tij þ β2t
2
ij þ…þ βpt

p
ij þ

X

K

k¼1

ðupk þ wipkÞ tij �Kk

� �p

þ

þ vi0 þ vi1tij þ vi2t
2
ij þ…þ vipt

p
ij þ εi tij

� �

:

(5)

We let uipk ¼ upk þ wipk and note that uipk � N 0; σ2u þ σ2w
� �

. In order to allow greater flexibility,

we assume that uip1;…; uipK
� �T

� N 0;Dð Þ, where D ¼ Diag D11;…;DKKð Þ. By doing this, the

dimension of the vector of random effects, b
T
i ¼ vi0;…; vip; uip1;…; uipK

� �

, decreases to

pþ K þ 1ð Þ � 1ð Þ. Consequently, the dimension of the multi-integrals in the log-likelihood
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function in (3.2) will also decrease. This presentation is crucial for reducing the computational

problems while coding. The model in (2.5) now becomes:

yi tij
� �

¼ f tij
� �

þ gi tij
� �

þ εi tij
� �

¼ β0 þ β1tij þ β2t
2
ij þ…þ βpt

p
ij þ

X

K

k¼1

uipk tij �Kk

� �p

þ

þ vi0 þ vi1tij þ vi2t
2
ij þ…þ vipt

p
ij þ εi tij

� �

:

(6)

The model in (2.6) can be rewritten in matrix notation as:

y ¼ Xβþ Zbþ ε, (7)

where

X ¼

X1

⋮

Xn

2

6

4

3

7

5
, Z ¼

X1 0 … 0

0 X2 … 0

⋮ ⋮ ⋱ ⋮

0 0 … Xn

Z1 0 … 0

0 Z2 … 0

⋮ ⋮ ⋱ ⋮

0 0 … Zn

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

,

X i ¼

1 ti1 t2i1 ⋯ t
p
i1

⋮ ⋮ ⋮ ⋮ ⋮

1 tini t2ini ⋯ t
p
ini

2

6

4

3

7

5
, Zi ¼

ti1 �K1ð Þpþ ⋯ ti1 �KKð Þpþ
⋮ ⋮ ⋮

tini �K1

� �p

þ
⋯ tini � KK

� �p

þ

2

6

4

3

7

5
,

bT ¼ v10;…; v1p;…; vn0;…; vnp; u1p1;…; u1pK;…; unp1;…; unpK
� �

,

βT ¼ β0;…; βp

� �

:

Here, y is the
P

n

i¼1

ni � 1

� 	

matrix of observed longitudinal data; X is the
P

n

i¼1

ni � pþ 1ð Þ

� 	

matrix of fixed effect covariates; Z is the
P

n

i¼1

ni � pþ K þ 1ð Þn

� 	

matrix of random effect

covariates and ε is the
P

n

i¼1

ni � 1

� 	

matrix of error.

Postulating a proportion hazard model, the penalized spline joint models for longitudinal and

time-to-event data is defined by

hi tjMi tð Þ;wið Þ ¼ lim
dt!0

Pr t ≤T∗

i < tþ dtjT∗

i ≥ t;Mi tð Þ;wi

� �

=dt

¼ h0 tð Þ exp γTwi þ αmi tð Þ
� �

,
(8)

where h0 tð Þ is the hazard at baseline andwi is a vector of baseline covariates (such as treatment

indicator, gender of a patient, etc.). Furthermore, Mi tð Þ ¼ mi sð Þ; 0 ≤ s < tf g denotes the his-

tory of the true unobserved longitudinal process up to time point t.
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Using (2.7), the longitudinal submodel for the ith subject is given by

mi tð Þ ¼ mi tð Þ þ εi tð Þ, εi tð Þ � N 0; σ2ε
� �

yi tð Þ ¼ X
T
i tð Þβþ X

T
i tð Þvi þ Z

T
i tð Þui þ εi tð Þ

vi � N 0;

X

� �

, ui � N 0;Dð Þ,

8

>

>

>

<

>

>

>

:

(9)

where the covariance matrix of random effects bTi ¼ vi0;…; vip; uip1;…; uipK
� �

is given as

G ¼ Cov bið Þ ¼

P

0

0 D


 �

:

To complete the specification of the model in (2.8), we now need to define the form for the

baseline risk function h0 :ð Þ. Motivated by the fact that in real life, h0 :ð Þ is usually unknown.

Therefore, two options are adopted to determine the form of the function h0 :ð Þ in this chapter.

First, a standard option is to use a known parametric distribution for the risk function. For this

option, the Gompertz distribution is chosen. Second, the piecewise constant model is chosen

when h0 :ð Þ is considered completely unspecified.

Therefore, the proposed penalized spline joint models considered in this chapter are as fol-

lows:

Model 1: Penalized spline joint model with hazard rate at base line having Gompertz distribution

hi tjMi tð Þ;wið Þ ¼ λ1 exp λ2tð Þ exp γTwi þ αmi tð Þ
� �

mi tð Þ ¼ X
T
i tð Þβþ X

T
i tð Þvi þ Z

T
i tð Þui:

(

(10)

Model 2: Penalized spline joint model with a piecewise-constant baseline risk function

hiðtjMi tð Þ,wiÞ ¼
X

Q

q¼1

ξqI νq�1 < t ≤ νq
� �

exp γ
T
wi þ αmi tð Þ

� �

mi tð Þ ¼ X
T
i tð Þβþ X

T
i tð Þvi þ Z

T
i tð Þui,

8

>

>

<

>

>

:

(11)

where 0 ¼ ν0 < ν1 <… < νQ denotes a split of the time scale, with νQ being larger than the

largest observed time and ξq denotes the value of the baseline hazard in the interval νq�1; νq
� �

.

In both models, X i, Zi, β, vi and ui are given in (2.7).

3. Parameter estimation

After defining the two penalized spline joint models, we now present the joint likelihood and

score functions of the parameters in the models. The ECM algorithm is also presented in this

section.
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3.1. Likelihood and score functions

Following Rizopoulos [2], we assume that the vector of time-independent random effects bi
underlies both the longitudinal and survival processes. This means that

p Ti; δi; yijbi;θ
� �

¼ p Ti; δijbi;θð Þp yijbi;θ
� �

p yijbi;θ
� �

¼
Y

j

p yi tij
� �

jbi;θ
� �

, (12)

where θ ¼ θ
T
t ;θ

T
y ;θ

T
b

� �T
denotes the full parameter vector with θt ¼ γT ;α;θT

h0

� �T
denoting

the parameter vector for the survival outcomes. Furthermore, θy ¼ βT ; σ2ε
� �T

is the parameter

vector for longitudinal outcomes and θb ¼ vech Gð Þ is the vector-half of the variance matrix of

random effects. In addition, we assume that the hazard rate at time t conditional on the

covariate path depends on the current value of longitudinal outcomes and the censoring

mechanism is independent of the true event times and future longitudinal measurements.

Under these assumptions, the log-likelihood formulation of the penalized spline joint models

can be written as

l θð Þ ¼ l θjTi; δi; yi
� �

¼
X

i

log

ð

bi

p Ti; δijbi;θt; β
� �

p yijbi;θy

� �

p bi;θbð Þdbi,
(13)

where the conditional density for survival part has the form of

p Ti; δijbi;θt; β
� �

¼ h TijMi Tið Þ;wi;θt; β
� �δiS TijMi Tið Þ;wi;θt; β

� �

¼ h0 tð Þ exp γTwi þ αmi tð Þ
� �� δi

exp �

ð

Ti

0

h0 sð Þ exp γTwi þ αmi sð Þds
� �

2

4

3

5:
(14)

Here, S tð Þ is the survival function at time t.

Moreover, the density for the longitudinal part with the random effects is given by

p yijbi;θy

� �

p bi;θbð Þ ¼
Y

j

p yi tij
� �

jbi;θy

� �

p bi;θbð Þ

¼
1

2πσ2ε
� �

ni
2

exp �
∥yi tij

� �

� XT
i tij
� �

β� XT
i tij
� �

vi � ZT
i tij
� �

ui∥
2

2σ2ε

( )

� 2πð Þ�
qb
2 det Gð Þ�1=2 exp �bTi G

�1bi=2
� �

,

(15)

where qb denotes the dimensionality of the random effects vector.

We consider the log likelihood of the (Ti, δi, yi, bi) over the unknown θt, β and bi
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1 log l θjTi; δi; yi;bi

� �

¼ log p Ti; δijbi;θt; β
� �

þ log p yijbi; β
� �

þ log p bi;Gð Þ:

The function for maximizing the log likelihood involves the density function of survival time

and least squares with a penalty term, which is

log p Ti; δijbi;θt; β
� �

�
yi � X iβ� X ivi � Ziui
� �T

yi � X iβ� X ivi � Ziui
� �

σ2ε
� bTi G

�1bi: (16)

According to Ruppert et al. [9], the term σ2εb
T
i G

�1bi is called a roughness penalty and the

variance components matrix defined as F ¼ σ2εG
�1. Using a Lagrange multiplier argument, the

variance components matrix is the condition to constrain the coefficients of the knots ui. These

will restrict the influence of the variables t� Kkð Þpþ and will lead to smoother spline functions.

Using (3.2), the score vector for the penalized spline joint models can be expressed as:

S θð Þ ¼
X

i

∂

∂θ
T
log

ð

p Ti; δijbi;θt; β
� �

p yijbi;θy

� �

p bi;θbð Þdbi

¼
X

i

ð

∂

∂θ
T
log p Ti; δijbi;θt; β

� �

pðyijbi;θyÞpðbi;θbÞ
� �

:p bijTi; δi; yi;θ
� �

dbi:

(17)

The requirement for numerical integration with respect to the random effects is one of the main

difficulties in the joint models [2]. The maximum likelihood estimation (MLE) is typically

obtained using standard maximization algorithms such as expectation maximization algo-

rithm or Newton-Raphson algorithm.

3.2. The ECM algorithm

The EM algorithm has been widely used in the joint models, such as for the standard joint

model of Rizopoulos [2] and for the generalized linear mixed joint model [10]. The ECM

algorithm is a natural extension of EM algorithm for which the maximization process on the

M-step is conditional on some functions of the parameters under estimation. It also can reduce

computer time. The ECM algorithm will be used to obtain the maximum likelihood estimates

of the penalized spline joint models following McLachlan and Krishnan [11] in this chapter.

In these models, the random effects bi are considered as missing data. Hence, it is difficult to

estimate directly the parameter vector θ that maximizes the observed data log likelihood l θð Þ

in (3.2). Alternatively, we can estimate the parameter vector θ that maximizes the expected

value of the complete data log-likelihood which is E log p Ti; δi; yi; bi;θ
� �

jTi; δi; yi;θ
itð Þ

n o

,

where θ itð Þ is the parameter vector given at the ith iteration.

The following are the steps of this algorithm.
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Step 1: Initialization

We first initialize the parameters. We assume that there arem parameters in the models and the

starting value of the parameter vector is θ 0ð Þ ¼ θ
0ð Þ
1 ;…;θ 0ð Þ

m

� �

. Based on these initial values, we

calculate the log-likelihood using (3.2).

Step 2: The E-step for the penalized joint models

We fill in the missing data and replace the log-likelihood function of the observed data with the

expected function of the complete data log-likelihood as follows:

Q θjθ itð Þ
� �

¼
X

i

ð

log p Ti; δi; yi
; bi;θ

� �� �

:p bijTi; δi; yi
;θ

itð Þ
� �

dbi

¼
X

i

ð

log p Ti; δijbi;θð Þ þ log pðy
i
jbi;θÞ þ log pðbi;θÞ

� �

:p bijTi; δi; yi
;θ

itð Þ
� �

dbi:

(18)

Step 3: The conditional M-step for the penalized joint models.

This step will be implemented in four stages as follows:

3.1 Given the current value of the parameter vector at the ith iteration θ
itð Þ ¼ θ

itð Þ
1 ;θ

itð Þ
2 ;…;θ itð Þ

m

� �

,

we calculate the log likelihood at l θ
itð Þ

� �

¼
P

i log
Ð

bi
p Ti; δi; yi; bi;θ

itð Þ
� �

dbi.

3.2 Propose the new value for the first parameter θ
propð Þ
1 which maximizes Q θjθ itð Þ

� �

. Then, we

calculate the log likelihood at l θ
propð Þ

� �

where θ propð Þ ¼ θ
propð Þ
1 ;θ

itð Þ
2 ;…;θ itð Þ

m

� �

.

3.3 Set θ
itð Þ
1 ¼ θ

propð Þ if l θ
propð Þ

� �

≥ l θ
itð Þ

� �

, otherwise set θ
itð Þ
1 ¼ θ

itð Þ.

3.4 Similarly, based on the value of the parameter vector θ
itð Þ
1 , we update the new value for the

second parameter and continue updating for the last parameter, θ itð Þ
m and set θ itþ1ð Þ ¼ θ

itð Þ
m .

Step 4: Iterate among steps 2–3 until the algorithm numerically converges.

To update the new values for parameters in the conditional M-step, we have the closed-form

estimates for the measurement of error variance σ2 and the covariance matrix of the random

effects respectively by maximizing the expected function Q θjθ itð Þ
� �

. Unfortunately, we cannot

obtain closed-form expressions for the remaining of the parameters. We thus employ the one-

step Newton-Raphson approach to get the updates for β itþ1ð Þ, γ itþ1ð Þ, α itþ1ð Þ and θ
itþ1ð Þ
h0

respec-

tively as detailed in Appendix B.

Following Louis [12], standard errors for the parameter estimates can be calculated by using

the estimated observed information matrix

Penalized Spline Joint Models for Longitudinal and Time-To-Event Data
http://dx.doi.org/10.5772/intechopen.75975

113



bvar bθ
� �

¼ I bθ
� �n o�1

,

where

I bθ
� �

¼ �
Xn

i¼1

∂Si θð Þ

∂θ

�����
θ¼θ̂

:

4. Empirical results

This section presents two simulation studies for Model 1, whereas Model 2 will be applied for

a case study only. In Section 4.1, we simulate data fromModel 1 with three internal knots in the

longitudinal submodel and Gompertz distribution for the baseline risk function. In Section 4.2,

we simulate data from Model 1 having Gompertz distribution for the baseline risk function

and non-linear logarithm subject-specific trajectories. The ECM algorithm, written in R code, is

applied to estimate the true values of parameters in both cases.

4.1. Simulation study 1

4.1.1. Data description

Recall the penalized spline joint Model 1 of (2.10) with three internal knots in longitudinal

submodel and Gompertz distribution for the baseline risk function in the form of

hi tð Þ ¼ h0 tð Þ exp γxi þ α mi tð Þð Þð Þ ¼ λ1 exp λ2tð Þ exp γxi þ αmi tð Þf g, (19)

where h0 tð Þ is the hazard function at baseline having Gompertz distribution, xi is baseline

covariate and mi tð Þ denotes the true and unobserved value of the longitudinal at time t. The

form of mi tð Þ is given by

mi tð Þ ¼ β0 þ β1tþ ui1 t�K1ð Þþ þ ui2 t�K2ð Þþ þ ui3 t�K3ð Þþ þ vi0, (20)

where bi ¼ u11; u12; u13; vi0ð ÞT is the vector of random effects and is assumed to have a normal

distribution with mean zero and the diagonal covariance matrix D ¼ Diag D11;D22;D33;D44ð Þ.

K1,K2,K3 denote the three internal knots put into the model. The observed longitudinal value

at time point t for the ith subject is of the form

yi tð Þ ¼ mi tð Þ þ εi tð Þ, (21)

where the error variable εi tð Þ is assumed to come from a normal distribution with mean zero

and variance σ2.

From this model, the vector of all parameters θ of the models in (4.1) and (4.2) is

θ ¼ θ
T
t ;θ

T
y ;θ

T
b

� �T

, where θt ¼ γ;α;λ1;λ2ð ÞT denotes the parameter vector for the survival
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outcomes. Furthermore, θy ¼ β0; β1; σ
2
ε

� �T
is the parameter vector for longitudinal outcomes

and θb ¼ D is the variance matrix of random effects.

To simulate the observed survival time Ti of the joint model in (4.1), we applied the methods

adapted by Bender et al. [13], Austin [14] and Crowther and Lambert [15] to generate the true

survival time. We further assumed that the censoring mechanism is exponentially distributed

with parameter λ. The observed survival time was the minimum of the censoring time and the

true survival time. We generated the survival time Ti for n ¼ 500 subjects with the parameters:

β0 ¼ 5, β1 ¼ 2, λ1 ¼ 0:1, λ2 ¼ 0:5, γ ¼ 0:5,α ¼ 0:05, δ ¼ 2 and D ¼ Diag 2; 2; 2; 4ð Þ. Then

we generated the longitudinal responses mi tð Þ using (4.2). The simulated model is therefore

hi tð Þ ¼ 0:1 exp 0:5tð Þ exp 0:5xi þ 0:05mi tð Þf g

mi tð Þ ¼ 5þ 2tþ ui1 t� 1ð Þþ þ ui2 t� 2ð Þþ þ ui3 t� 3ð Þþ þ vi0:

(

(22)

The sample of simulated data is presented in Appendix A. The curve of Kaplan-Meier estimate

for the survival function of simulated data (left panel) and the longitudinal trajectories for the

whole simulated sample (right panel) are presented in Figure 1. The dashed lines in the left

panel correspond to 95% pointwise confidence intervals. It is clear from the plot of Kaplan-

Meier estimator that the survival probability starts from 1 and decreases gradually until at the

5th month of the study. After this, it is nearly zero after 6 months or so. The right panel is the

longitudinal trajectories for the first 100 subjects reflecting the form as in (4.2).

4.1.2. Parameter estimation

The ECM algorithm, as described in Section 3.2, is now implemented to estimate all parameters

in (4.4). The initial values of the parameters were set at β0 ¼ 1, β1 ¼ 1, λ1 ¼ 0:05,λ2 ¼ 0:1,

γ ¼ 0:1, α ¼ 0:01, σ ¼ 1, D11 ¼ 3, D22 ¼ 3, D33 ¼ 3, D44 ¼ 3, respectively. However, these

initial values can also be set randomly. The traces of each of these parameters are presented in

Figures 2 and 3, respectively. The traces of estimates show the way how the algorithm updates

Figure 1. Kaplan-Meier estimate of the survival function of the simulated data of (4.4) (left panel). Longitudinal trajecto-

ries of the first 100 subjects from the simulated sample of (4.4) (right panel).
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new values of the parameters. In addition, they also demonstrate the convergence of the

algorithm after 10–20 iterations. In particular, the parameters β0, β1, λ2, α, σ, D22 and D33

converge linearly to the true values while the parameters λ1, γ, D11, and D44 oscillate before

converging to the true values.

Figure 2. The traces of parameters β0, β1, λ1, λ2, γ, α for 100 iterations.

Figure 3. The traces of parameters σ, D11, D22, D33, D44 for 100 iterations.
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We now run the simulation for 30 independent samples with different sample sizes (n ¼ 200,

300 and 500). Then, we calculate the means, standard deviations (SD) and mean square error

(MSE) of parameters as presented in Table 1. The point estimates of each parameter are reason-

ably close to the true values when the sample sizes are 300 and 500. This is also supported by the

values of SD and MSE which decrease gradually when the sample size increases. In addition to

this, we also compare the parameter estimates with different censoring rates (20% and 40%) for a

sample size of 500 in 5, Appendix E. The result shows that when the sample size is large the

censoring rate has little influence on the estimates.

4.2. Simulation study 2

4.2.1. Data description

We now perform a simulation study on proportional hazard model having Gompertz distri-

bution at baseline and non-linear subject-specific trajectory. In particular, the model is in the

form of

hi tð Þ ¼ h0 tð Þ exp γxi þ α mi tð Þð Þð Þ ¼ λ1 exp λ2tð Þ exp γxi þ αmi tð Þf g, (23)

where h0 tð Þ is the hazard function at baseline having Gompertz distribution, xi is baseline

covariate and mi tð Þ denotes the true and unobserved value of the longitudinal at time t. The

observed longitudinal value at time point t for the ith subject has the non-linear form

yi tð Þ ¼ mi tð Þ þ εi tð Þ

¼ 5 log 1þ tð Þ þ bi1tþ bi0 þ εi tð Þ,
(24)

Parameter True value n ¼ 200 n ¼ 300 n ¼ 500

Estimate SD MSE Estimate SD MSE Estimate SD MSE

β0 5 4.21 0.72 0.76 4.68 0.50 0.32 5.10 0.30 0.27

β1 2 1.69 0.75 0.57 1.86 0.75 0.28 2.10 0.57 0.18

λ1 0.1 0.12 0.13 0.00 0.12 0.12 0.00 0.11 0.10 0.00

λ2 0.5 0.50 0.15 0.02 0.57 0.14 0.01 0.48 0.14 0.02

γ 0.5 0.50 0.17 0.03 0.49 0.12 0.04 0.51 0.09 0.01

α 0.05 0.03 0.04 0.00 0.04 0.05 0.00 0.04 0.04 0.00

σ 2 2.06 0.13 0.01 2.02 0.06 0.00 2.02 0.06 0.00

D11 2 2.87 0.92 0.62 2.59 0.73 0.53 2.27 0.80 0.22

D22 2 2.03 0.42 0.16 2.21 0.46 0.23 2.10 0.43 0.05

D33 2 2.10 0.37 0.17 0.34 0.50 0.34 2.22 0.59 0.10

D44 4 5.24 1.82 0.76 4.32 0.74 0.60 4.24 0.63 0.18

Table 1. Summary statistics for parameter estimation of the simulated data of the model in (4.4) for different sample sizes.
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where εi tð Þ � N 0; σ2
� �

. In the model of (4.6), the mean longitudinal response of the population

is assumed to have a non-linear logarithm curve. Different subjects are assumed to have

different intercepts and slopes. In particular, we assume that bi ¼ bi0; bi1ð ÞT having a bivariate

normal distribution with mean μ ¼ 3; 2ð Þ and covariance matrix D ¼ Diag 1; 1ð Þ. The true

values of the other parameters we put in the model were λ1 ¼ 0:01, λ2 ¼ 0:1,γ ¼ 0:5,

α ¼ 0:2, σ ¼ 2, respectively. In addition, the censoring mechanism is assumed exponentially

distributed with a parameter of λ ¼ 0:25.

Based on the model in (4.5) and the simulation study 1, we simulated survival times Ti for

500 subjects with 35% censoring rate. In particular, the ending time for the study was

5 months and all subjects alive by the end of the study (i.e. time 5) were assumed to be

censored. This design was also reflected of many clinical studies in real life. In this

sample, there were 329 uncensored subjects and 1387 observations for 500 subjects. For

each subject, 1–5 longitudinal measurements were recorded. On average, there were three

longitudinal measurements per subject. In Figure 4, the Kaplan-Meier estimate for sur-

vival curve is presented for the simulated data of (4.5) with 95% pointwise confidence

intervals in the left panel. Moreover, the subject-specific longitudinal profiles for six

randomly selected subjects is drawn in the right panel. It can be seen that some of the

subjects in this dataset showed non-linear evolutions in their longitudinal values. Each

subject has its own trajectory.

4.2.2. Parameter estimation

Wewill be using Model 1 in (4.1) and in (4.2) to handle the non-linear longitudinal trajectory in

the simulated data in (4.5). In this model, we put three internal knots at 25, 50 and 75%,

respectively, of the follow up time. Then, the ECM algorithm, as explained in Section 3, is

implemented once again to estimate all parameters in the model.

Figure 4. Kaplan-Meier estimate of the survival function of the simulated data of (4.5) (left panel). Longitudinal trajecto-

ries for the six randomly selected subjects of (4.6) (right panel).
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The results for parameter estimation are presented in Table 2. The means, standard deviations

and 95% confidence intervals of parameter estimates are calculated for 30 independent sam-

ples. The point estimates for λ1, λ2, γ, α, σ2 are reasonably close to the true values. Simi-

larly, the 95% CIs include the true values of λ1,λ2,γ,α, σ
2.

Based on the estimated values of parameters, we generate back the estimated survival time

by approximating values of random effects from linear mixed-effects function. The detail of

the generation is explained in Appendix C. Then, we use the Kaplan-Meier estimate to

compare between the survival function of the simulated dataset (the black solid line) and

the estimated survival function (the dashed line) which are presented in the left panel of

Figure 5.

Moreover, we also draw the smooth and predicted longitudinal profiles for 12 patients chosen

randomly in the right panel of Figure 5. The dot points are the true observed longitudinal

values from simulated data. The solid lines are the smooth longitudinal profiles of the true

observed longitudinal values using the loess smoother and the dashed lines are the predicted

profiles of 12 randomly selected individuals. It is clear that the Kaplan-Meier estimates from

simulated data overlaps the Kaplan-Meier estimates based on the predicted value in the left

panel of Figure 4. The penalized spline regression model in (2.10) was a good fit for subject-

specific curves in the right panel of Figure 5.

In summary, simulation studies have shown the stability of the algorithm and the goodness of

fit of the penalized spline models. From the simulation study 1, it is shown that the updating

process through the ECM algorithm converges quickly to the true values of the parameters. In

addition, the simulation study 2 shows that the model can well predict the survival function

and individual trajectories respectively.

Parameter True value Estimate SD 95% CI

β0 — 3.399 0.673 [3.158;3.640]

β1 — 4.330 0.142 [4.280;4.380]

λ1 0.01 0.013 0.021 [0.007;0.021]

λ2 0.1 0.083 0.184 [0.017;0.148]

γ 0.5 0.640 0.386 [0.486;0.778]

α 0.2 0.186 0.142 [0.136;0.237]

σ 2 1.993 0.061 [1.971;2.015]

D11 — 0.977 0.190 [0.909;1.044]

D22 — 1.365 0.183 [1.300;1.430]

D33 — 1.976 0.154 [1.921;2.031]

D44 — 1.393 0.196 [1.322;1.463]

Table 2. Summary statistics for parameter estimation of the simulated data of the model in (4.5) and (4.6).
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4.3. The AIDS data set

In the AIDS dataset, there were 467 patients with advanced human immunodeficiency virus

infection during antiretroviral treatmentwho had failed orwere intolerant to zidovudine therapy.

Patients in the study were randomly assigned to receive either didanosine drug (ddI) or zalcitabine

drug (ddC). CD4 cells are a type ofwhite blood cells made in the spleen, lymph nodes and thymus

gland and are part of the infection-fighting system. CD4 cell counts were recorded at the time of

study entry as well as at 2, 6, 12 and 18 months thereafter. The detail regarding the design of this

study can be found in Abrams et al. [16]. By the end of the study, there were 188 patients died,

resulting in about 59.7% censoring. There were 1405 longitudinal responses recorded.

Previously, Rizopoulos [2] used his standard joint model for the AIDS data which consider the

variability between subjects mostly depend on the intercept. However, the model could not

predict observed longitudinal data accurately. When the time unit is changed from month to

year in the data, the variability between subjects depends not only on the intercept but also on

the obstime variable. In addition, the longitudinal trajectories plot also shows many non-linear

curves as depicted in the right panel of Figure 6.

Given the non-linearity, it is appropriate to apply our models, Model 1 andModel 2, for the AIDS

data. In particular, we use the two joint models in (2.10) and (2.11) with the four internal knots are

placed at 20, 40, 60, 80%, respectively of the observed failure times for hazard rate at baseline.

Then, the ECM algorithm is implemented to estimate all parameters in the two models. A sum-

mary of statistics for parameter estimation using Model 1 and Model 2 is presented in Table 3.

Following Rizopoulos [2], in Model 1 and Model 2, the univariate Wald tests are applied for

the fixed effects β ¼ β0; β1
� �T

in the longitudinal submodel, the regression coefficient γ and the

association parameter α respectively. The results from Table 3 show that the point estimates of

β0, β1, γ, α are all statistically significant for both models at a significance level of 5%.

Figure 5. Kaplan-Meier estimate of the survival function from simulated failure times (the solid line) with 95% confidence

intervals (dot lines), fromModel 1 (4.5) (the dashed line) (left panel). Observed longitudinal trajectories (the solid line) and

predicted longitudinal trajectories (the dashed line) for the twelve randomly selected subjects (right panel).
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We conduct the Kaplan-Meier estimate of the survival function from the observed survival

time (the light solid line) and the dot lines correspond to 95% pointwise confidence intervals in

Figure 6 (left panel). The predicted survival function from Model 1 is the dashed line and the

predicted survival function from Model 2 is the bold solid line. The plots show that Model 2

works very well in this case as shown in Figure 7. Moreover, Model 2 is also preferred in

Figure 6. Kaplan-Meier estimate of the survival function of the AIDS data (left panel). Longitudinal trajectories for CD4

cell count of the first 100 patients for two groups (right panel).

Model 1 Model 2

Parameter Estimate Std. error z-value p-value Parameter Estimate Std. error z-value p-value

β0 7.87 0.06 127.07 <0.001 β0 7.81 0.07 114.34 <0.001

β1 �1.69 0.11 �14.77 <0.001 β1 �1.62 0.12 �12.99 <0.001

γ 0.22 0.11 2.06 0.039 γ 0.31 0.10 3.03 0.002

α �0.20 0.01 �15.84 <0.001 α �0.24 0.01 �18.15 <0.001

λ1 1.68 0.07 λ1 1.04 0.11

λ2 0.33 0.00 λ2 1.79 0.23

σ 2.36 0.36 λ3 1.38 0.38

D11 2.18 0.14 λ4 1.67 0.42

D22 1.04 0.07 λ5 2.48 0.66

D33 0.85 0.06 σ 2.62 0.45

D44 11.87 0.78 D11 1.02 0.07

D22 0.97 0.06

D33 0.99 0.07

D44 11.40 0.75

Table 3. Summary statistics for parameter estimation of the AIDS data of Model 1 and Model 2 respectively.
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practice because h0 :ð Þ usually is considered as unspecified in order to avoid the impact of

misspecifying the distribution of survival times.

Based on the model of longitudinal regression in (4.2), we also draw the smooth and predicted

longitudinal profiles for nine patients from the AIDS dataset as depicted in Figure 7 (right

panel). The dot points are the true observed longitudinal values. The solid lines are the smooth

longitudinal profiles using the loess smoother and the dashed lines are the predicted profiles of

nine randomly selected individuals. Most of the predicted profiles are quite close to the

observed ones.

5. Discussion

In this chapter, two joint models using a penalized spline with a truncated polynomial basis have

been proposed tomodel a non-linear longitudinal outcome and a time-to-event data. The use of a

truncated polynomial basis gives us an intuitive and obvious way to model non-linear longitu-

dinal outcome. By adding some penalties for the coefficients of the knots and using linear mixed-

effects models, the smoothing is controlled and the individual curves are specified.

We have conducted a sensitivity analysis on the assumption of normality for either random

effects or errors. The t-distribution with the degree of freedom 5 is applied for each of them.

The results show that the estimates of parameters are sensitive when both of terms are not

normally distributed.

The main findings we may derive from this chapter are, at least, threefold: (1) the ECM

algorithm provides a reasonable quick convergence algorithm for the proposed models; (2)

the fitted joint models are able to measure the association between the internal time-dependent

Figure 7. Kaplan-Meier estimates of the survival function from observed failure times, from model 1 and from model 2

(left panel). Observed longitudinal trajectories (the solid line) and predicted longitudinal trajectories (the dashed line) for

the 12 randomly selected patients (right panel).
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covariates and the risk for an event and (3) the two models provide a good prediction for both

the longitudinal and survival functions, as presented in empirical results.

The limitations of this study are, at least, threefold: (1) the number of internal knots is limited

to three due to computational costs; (2) the polynomial power functions can form an ill-

conditioned basis for the models and (3) the estimation results are sensitive when both random

effects and error are not normally distributed.

Based on the limitations, our future work will focus on using new methods for approximating

the integrals to reduce the computational problems or relaxing the normality assumption.

Furthermore, we will apply a different basis for joint models, that is the penalized B-spline. In

terms of parameter estimation, we are considering a different approach to estimate the param-

eters in the models using a Bayesian approach, via Markov chain Monte Carlo (MCMC)

algorithms.

A. Appendix A

One sample of simulated data of the penalized spline joint model in (4.4) is presented in Table 4

for the first three patients. The subjects are measured bimonthly and the entry time is 0 for all

Id Obstime Time x y Death Z1 Z2 Z3 Z4

1 0.0 4.97 0 1.41 1 0.0 0.0 0.0 1

1 0.5 4.97 0 6.45 1 0.0 0.0 0.0 1

1 1.0 4.97 0 4.10 1 0.0 0.0 0.0 1

1 1.5 4.97 0 1.50 1 0.5 0.0 0.0 1

1 2.0 4.97 0 4.07 1 1.0 0.0 0.0 1

1 2.5 4.97 0 6.16 1 1.5 0.5 0.0 1

1 3.0 4.97 0 3.60 1 2.0 1.0 0.0 1

1 3.5 4.97 0 8.32 1 2.5 1.5 0.5 1

1 4.0 4.97 0 6.32 1 3.0 2.0 1.0 1

2 0.0 2.79 0 6.81 1 0.0 0.0 0.0 1

2 0.5 2.79 0 7.77 1 0.0 0.0 0.0 1

2 1.0 2.79 0 9.75 1 0.0 0.0 0.0 1

2 1.5 2.79 0 11.04 1 0.5 0.0 0.0 1

2 2.0 2.79 0 7.20 1 1.0 0.0 0.0 1

3 0.0 1.90 0 �1.84 0 0.0 0.0 0.0 1

3 0.5 1.90 0 1.12 0 0.0 0.0 0.0 1

3 1.0 1.90 0 0.78 0 0.0 0.0 0.0 1

Table 4. A snapshot of simulated data for penalized spline joint model in (4.4).
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subjects. Obstime variable includes the time points at which these measurements are recorded.

Time variable includes the observed survival times when subject meets an event. x is a time-

constant binary random variable with parameter p ¼ 0:5. Column y contains the longitudinal

responses. Death variable is the event status indicator. This variable receives value 1 when the

true survival time is less than or equal to the censoring time and 0 otherwise. We define the four

random effects variables which are Z1 ¼ obstime�K1ð Þþ, Z2 ¼ obstime�K2ð Þþ, Z3 ¼ obstimeð

�K3Þþ and Z4 ¼ 1. For the longitudinal process, there are 1902 of observations for 500 subjects.

For each subject, 1-7 longitudinal measurements are recorded. On average, there are four longi-

tudinal measurements per subject. For the event process, there are 297 subjects who meet for an

event which is equivalent to 59.4% of the whole sample.

B. Appendix B

The integrals with respect to the random effects in (3.7) do not have closed-form solutions.

Therefore, in this chapter, we implement the Gaussian-Hermite quadrature rule as in

Rizopoulos [5] to approximate the integrals. In our simulation study and R coding, we use

the Gaussian-Hermite quadrature rule with 10 quadrature points.

The updating formulas of the parameters in Step 3 have different forms for each parameter

following Rizopoulos [2]. We have the closed-form estimates for the measurement error vari-

ance σ2ε in the longitudinal model and the covariance matrix of the random effects as follows:

bG
itþ1ð Þ

¼
1

n

X

i

ð
bTi bip bijTi; δi; yi;θ

itð Þ
� �

dbi ¼
1

N

X

i

v~b
itð Þ
i þ ~b

itð Þ
i

~b
itð Þ

i T, (25)

where ~bi ¼ E bijTi; δi; yi;θ
� �

¼
Ð
bip bijTi; δi; yi;θ

� �
dbi and ~vbi ¼ var bijTi; δi; yi;θ

� �
¼

Ð
bi�ð

~b iÞp bijTi; δi; yi;θ
� �

dbi. The updating formula for σ2ε is

bσ2
ε itþ1ð Þ ¼

1

n

X

i

ð
WTWp bijTi; δi; yi;θ

itð Þ
� �

dbi, (26)

where W ¼ yi � X iβ� X iui � Zivi.

Unfortunately, we cannot obtain closed-form expressions for the fixed effects β and the param-

eters of the survival submodel γ, α, and θh0 . We thus employ the one-step Newton-Raphson

approach to obtain the updated β itþ1ð Þ, γ itþ1ð Þ,α itþ1ð Þ and θ
itþ1ð Þ
h0

. In particular, we have

S θð Þ ¼
∂Q θjθ itð Þ

� �

∂θ

bθ
itþ1ð Þ

¼ bθ
itð Þ
�

∂S bθ itð Þ
� �

∂θ

2

4

3

5
�1

S bθ
itð Þ

� �
,

(27)
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where S θð Þ is the score vector corresponding to parameter θ and the score vector has the form of

S θð Þ ¼
∂Q θjθ itð Þ

� �

∂θ

¼
X

i

ð

∂

∂θ
T
log p Ti; δijbi;θ

itð Þ
� �

pðyijbi;θ
itð ÞÞpðbi;θ

itð ÞÞ
n o

:p bijTi; δi; yi;θ
itð Þ

� �

dbi:

C. Appendix C

There are four cases for simulating survival time Ti of the model (4.1) as follows.

When the survival time t < K1, we calculate the cumulative hazard function Hi tð Þ ¼
Ð

t

0

hi sð Þds.

Based on the relation between the survival function Si tð Þ, cumulative hazard function Hi tð Þ

and cumulative distribution Fi tð Þ, we have

Si tð Þ ¼ exp �Hi tð Þð Þ ¼ 1� Fi tð Þ: (28)

Following (5.4), we set

u ¼ 1� Fi Tið Þ, (29)

where u is a randomvariable with u � Uni 0; 1½ �. The survival time t is the solution of the equation

U ¼ exp �Hi tð Þð Þ ¼ exp �

ð

t

0

hi sð Þds

0

@

1

A:

The condition t < K1 is equal to

� log Uð Þ <

ð

K1

0

h sð Þds:

When K1 ≤ t < K2, we calculate the cumulative hazard function Hi tð Þ ¼

ð

K1

0

hi sð Þdsþ

ð

t

K1

hi sð Þds.

The survival time t is the solution of the equation

U ¼ exp �

ð

K1

0

hi sð Þdsþ

ð

t

K1

hi sð Þds

8

>

<

>

:

9

>

=

>

;

2

6

4

3

7

5
,

where U is a value of u � Uni 0; 1½ �. The condition K1 ≤ t < K2 is equal to
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� log Uð Þ <

ð

K1

0

hi sð Þdsþ

ð

K2

K1

hi sð Þds:

When K2 ≤ t < K3, we calculate the cumulative hazard function Hi tð Þ ¼

ð

K1

0

hi sð Þdsþ

ð

K2

K1

hi sð Þdsþ

Ð

t

K2

hi sð Þds . The survival time t is the solution of the equation

U ¼ exp �

ð

K1

0

hi sð Þdsþ

ð

K2

K1

hi sð Þdsþ

ð

t

K2

hi sð Þds

8

>

<

>

:

9

>

=

>

;

2

6

4

3

7

5
,

where U is a value of u � Uni 0; 1½ �. The condition K2 ≤ t < K3 is equal to

� log Uð Þ <

ð

K1

0

hi sð Þdsþ

ð

K2

K1

hi sð Þdsþ

ð

K3

K2

hi sð Þds:

When K3 ≤ t, the cumulative hazard function has the form Hi tð Þ ¼

ð

K1

0

hi sð Þdsþ

ð

K2

K1

hi sð Þdsþ

Ð

K3

K2

hi sð Þdsþ
Ð

t

K3

hi sð Þds. Survival time t is the solution of the equation

U ¼ exp �

ð

K1

0

hi sð Þdsþ

ð

K2

K1

hi sð Þdsþ

ð

K3

K2

hi sð Þdsþ

ð

t

K3

hi sð Þds

8

>

<

>

:

9

>

=

>

;

2

6

4

3

7

5
:

D. Appendix D

In particular, Ruppert et al. [9] introduced a default choices for knot location and number of

knots. The idea is to choose sufficient knots to resolve the essential structure in the underlying

regression function. But for more complicated penalized spline models, there are computa-

tional advantages to keeping the number of knots relatively low. A reasonable default is to

choose the knots to ensure that there are a fixed number of unique observations, say 4–5,

between each knot. For large data sets, this can lead to an excessive numbers of knots;

therefore, a maximum number of allowable knots (say, 20–40 total) are recommended.
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According to Ruppert et al. [9], the choice for knot position is

Kk ¼
kþ1
Kþ2

� �

th sample quantile of the unique xi for k ¼ 1,…, K.

The simple choice of K is

K ¼ min 1
4 � number of uniquexi; 35
� �

.

E. Appendix E

See Table 5.
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Parameter True value Censored (20%) Censored (40%)

Estimate SD MSE Estimate SD MSE

β0 5 4.85 0.30 0.25 5.10 0.30 0.27

β1 2 1.86 0.45 0.20 2.10 0.57 0.18

λ1 0.1 0.13 0.12 0.00 0.11 0.10 0.00

λ2 0.5 0.52 0.07 0.00 0.49 0.14 0.02

γ 0.5 0.48 0.10 0.00 0.51 0.09 0.00

α 0.05 0.05 0.02 0.00 0.04 0.04 0.00

σ 2 2.02 0.05 0.00 2.02 0.06 0.00

D11 2 2.21 0.67 0.17 2.27 0.80 0.22

D22 2 2.16 0.27 0.09 2.10 0.43 0.05

D33 2 2.26 0.27 0.01 2.22 0.60 0.10

D44 4 4.20 0.53 0.20 4.24 0.63 0.18

Table 5. Summary statistics for parameter estimation of the simulated data of the model in (22) for different censoring

rates.
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