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Abstract

For reinsurance contract simulated annual losses, an inequality relating their standard

deviation and mean is found, σf ≥mf

ffiffiffiffiffiffiffiffiffiffiffi

μ ACð Þ
μ Að Þ

r

, where the coefficient in the inequality is the

square root of the ratio of numbers of zero losses years to numbers of non-zero losses
years. The largest such coefficient is also proved to be the universal upper bound. As
direct application of this inequality, bounds for other risk measures of reinsurance con-
tract, the TVaR (average of the annual losses that are larger than a given loss), the proba-
bility of attaching (greater than a given attachment loss), and the probability of exceeding
(the annual loss limit) are obtained, which in turn reveal the capability upper limit of the
simulation approach.

Keywords: reinsurance contract, simulation, standard deviation, coefficient of variation,
inequality, ratio distribution, model risk

1. Introduction

In reinsurance industry, simulated losses from catastrophe events combined with reinsurance

contract financial terms are used to calculate the contract expected annual loss, the standard

deviation of the expected annual loss, and quantiles of the losses (such as the AEP: Aggregate

Exceedance Probability, or TVaR: Tail Value at Risk, in Ref. [1]). These numbers are in turn used

for pricing or risk management of the contract. There are two kinds of model risks in this

approach: independent simulations may give different results without any model change, and

simulations vary before or after model change such as from the yearly catastrophe events sets or

parameters updates. Empirically, the distribution of the contract expected annual loss may be

more like a Beckmann, MaxStable, Gamma, Inverse Gaussian, or even a Lognormal Distribution
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than a Normal Distribution, but consider that the mean annual loss is the average of a large

number of losses, and especially for simplicity, if we assume they obey a Normal Distribution, to

quantify the model risk, we can use Hinkley formula [2] or Marsaglia formula [3] to calculate the

probability of two simulations have expected annual loss deviated from each other by more than

say 50%. Their formulas, in our model risk quantification context and the simplest scenario,

depend on only two factors: the correlation coefficient r of the distribution in the two simula-

tions, and the coefficient of variation (CV) of the distribution, that is, the ratio of the standard

deviation to the mean. Most reinsurance contracts, due to the carefully selected financial terms,

have many or the majority of simulated year’s losses zero. Thus call for a study of the CV range

or bounds of those scarcely payout contracts.

2. Results

2.1. CV range

Starting from Hölder’s inequality (https://en.wikipedia.org/wiki/Hölder's_inequality):

fgk k1 ≤ fk kp gk kq, (1)

suppose f in the formula is the contract annual loss with mean mf deducted, that is, is of the

form f� mf and p = q = 2, g is some nonnegative weights on the discrete probability space of the

simulated years Ω, for example, the set {1,2,…,100,000} for 100,000 years of simulations, each

element with a probability of 1e-5 (a typical setting in practice). Then we get:

ð

∣f �mf ∣gdμ ≤

ð

f �mf

�

�

�

�

2
dμ

� �1=2 ð

g2dμ

� �1=2

¼ σf

ð

g2dμ

� �1=2

(2)

Suppose f is nonnegative and zero outside of a subset A of Ω and g is constant a on A and

constant b on AC: f|AC = 0, f|A > 0, g|AC = b ≥ 0, g|A = a ≥ 0. Then we can deduct that:

σf ≥mf

aμ AC
� �

þ bμ AC
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2μ Að Þ þ b2μ AC
� �

q (3)

due to

∣f �mf ∣ ≥ f �mf (4)

and
ð

∣f �mf ∣gdμ ¼

ð

A

∣f �mf ∣adμþ

ð

AC
mf bdμ (5)

⩾

ð

A

fadμ�

ð

A

mf adμþmf bμ ΑC
� �

(6)
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¼ mf a�mf aμ Að Þ þmf bμ AC
� �

(7)

The maximum of the right-hand side of Eq. (3) is achieved by a
b ¼

μ ACð Þ
μ Að Þ , increasing on [0,

μ ACð Þ
μ Að Þ ]

and decreasing on
μ ACð Þ
μ Að Þ ;∞

� �

, and then we get:

σf ≥mf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ AC
� �

μ Að Þ

s

(8)

As a corollary, if we use the 2-sigma or 3-sigma rule for the confidence interval of the estimate

of the mean, for those contracts that have most years 0 losses, these interval will be very large.

For example, if we have only 100 years have nonzero losses out of the 100,000 simulated years,

then we will get [math]::sqrt((1e5-100)/100) = 31.6069612585582:

σf ≥ 31:6069612585582mf (9)

And if we have 1000 years nonzero losses, we get the constant [math]::sqrt((1e5-1000)/

1000) = 9.9498743710662:

σf ≥ 9:9498743710662mf (10)

Checking against some concrete examples, for a contract we see 2220 nonzero losses records,

suppose all of them are in different years, then we get the ratio [math]:: sqrt((1e5-2220)/

2220) = 6.63664411016931, and we have its mean loss mf = 3848 and standard deviation

σf = 37,149 from the simulation, 37,149/3848 = 9.65410602910603 > 6.63664411016931.

Another contract have unique 41,143 nonzero losses years out of the 100,000 simulated years, with

mean lossmf = 1,874,487 and standard deviation σf = 2,357,787, σf/mf = 1.25783054243641 > [math]::

sqrt((1e5-41,143)/41,143) = 1.19605481319037.

From these examples, we see that our lower bound formula for CV is relatively close.

Typically, more than half of the contracts may have nonzero losses years count below 10,000,

for which we can see their σf ≥ 3mf, since [math]::sqrt((1e5-1e4)/1e4) = 3. More than 80% of the

contracts may have nonzero losses years count below 50,000, for which there is the simple

inequality σf ≥ mf, since sqrt((1e5-5e4)/5e4) = 1. These bounds are collected in Table 1.

This inequality Eq. (8) can explain the observation that when we sort the contracts by the mean

annual loss, the lower quarter of contracts may have more than tens of percent deviation from

different simulations, since smaller mean loss usually corresponding to fewer years of nonzero

losses and higher CV (more explanation in the following section).

To get an upper bound for CV, suppose the total simulated years is n and each year has the loss

xi ≥ 0. Then:
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CV � σf

mf
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n

Pn
i¼1 x

2
i

Pn
i¼1 xi

� �2
� 1

v

u

u

t (11)

For the expression

Pn

i¼1
x2
i

Pn

i¼1
xi

� �2, by taking the partial derivative with respect to x1, we can know

that it is decreasing in 0;

Pn

i¼2
x2
i

Pn

i¼2
xi

� �

and increasing in

Pn

i¼2
x2
i

Pn

i¼2
xi

;∞

� �

. So the maximum must be

attained at either 0 or ∞, that is, is the value of

Pn

i¼2
x2
i

Pn

i¼2
xi
or 1. Recursively, we know that the final

maximum is 1. So we get:

CV ≤

ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

(12)

For the extreme case when only one year have nonzero losses, we thus verified that the

coefficient [math]::sqrt((1e5-1)/1) = 316.226184874055 is exact, that is, we have:

σf ¼ 316:226184874055mf (13)

Nonzero losses years
CV lower bound

ffiffiffiffiffiffiffiffiffiffiffi

μ A
Cð Þ

μ Að Þ

r

1 316.226184874055

10 99.9949998749938

100 31.6069612585582

1000 9.9498743710662

2000 7

5000 4.35889894354067

10,000 3

20,000 2

30,000 1.52752523165195

40,000 1.22474487139159

50,000 1

80,000 0.5

90,000 0.333333333333333

99,000 0.100503781525921

99,900 0.0316385998584166

99,990 0.0100005000375031

99,999 0.00316229347167527

For given years of nonzero losses out of 100,000 simulated years, the lower bound as given by our formula Eq. (8).

Table 1. CV lower bound.
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The overall upper bound
ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

for CV is approachable when we let all but one of the xi
arbitrarily close to 0.

From the fact that the minimum of the expression in Eq. (11) is attained at

Pn

i¼2
x2
i

Pn

i¼2
xi
. we can see

that:

Pn
i¼1 x

2
i

Pn
i¼1 xi

� �2
≥

Pn

i¼2
x2
i

Pn

i¼2
xi

� �2

Pn

i¼2
x2
i

Pn

i¼2
xi

� �2 þ 1

(14)

More generally, if year is have possibly unequal probability pi of occurrence (such as when

using importance sampling), then:

Pn
i¼1 x

2
i pi

Pn
i¼1 xipi

� �2
≥

Pn

i¼2
x2
i
pi

Pn

i¼2
xipi

� �2

p1

Pn

i¼2
x2
i
pi

Pn

i¼2
xipi

� �2 þ 1

(15)

The minimum value of the right side is attained when x1 ¼
Pn

i¼2
x2
i
pi

Pn

i¼2
xipi

. This can be used induc-

tively to give an “elementary” proof of our lower bound results, and additionally can show

that the lower bound is attained when all the nonzero losses are equally valued which using

the Hölder’s inequality cannot arrive. Similarly we can show that the upper bound is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

max 1
p1

;

1
p2

;…;

1
pn

	 


� 1

r

.

We summarize our deduction and discussion into the following:

Theorem 1. For reinsurance contract simulated annual losses f, the standard deviation σf with respect

to the mean mf is bound below by:

σf ≥mf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ AC
� �

μ Að Þ

s

(16)

where μ(AC) and μ(A) are the measure of the numbers of zero losses years and the numbers of non-zero

losses years, respectively. The lower bound

ffiffiffiffiffiffiffiffiffiffiffi

μ ACð Þ
μ Að Þ

r

is attended:

σf ¼ mf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ AC
� �

μ Að Þ

s

, (17)

if and only if all the non-zero losses are of the same value. The standard deviation σf with respect to the

mean mf is bound above by:
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σf ≤mf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

max
1

p1
;

1

p2
;…;

1

pn

� �

� 1

s

(18)

where the pi is the probability of occurrence of year i. The upper bound is attained if and only

if the smallest occurrence probability year is the only year of non-zero losses. And when only

year i have nonzero losses:

σf ¼ mf

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1

pi

� 1

s

(19)

For not necessarily nonnegative loss contracts (such as contracts with complex layers structure

and hedging design), and for contracts that have significant concentration on the upper bound

(due to limit and annual limit), replacing f by f � m or M� f, where m and M are the minimum

and the maximum annual loss, from the theorem we get the following lower bounds:

Corollary 1. For arbitrary reinsurance contract simulated annual losses f, the standard deviation σf
with respect to the mean mf, minimum annual loss m, and maximum annual loss M, is bound below by:

σf ≥ mf �m
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffi

μ LC
� �

μ Lð Þ

s

(20)

σf ≥ M�mf

� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ UC
� �

μ Uð Þ

s

(21)

where μ(LC) and μ(L) are the measure of the numbers of minimum losses years and the numbers of not-

minimum losses years, μ(UC) and μ(U) are the measure of the numbers of maximum losses years and the

numbers of not-maximum losses years, respectively. The equality hold if and only if f is a bivalued distribution.

From Theorem 1, we can get an upper bound for the average annual loss on an arbitrary subset

of the years:

Corollary 2. 1For a nonnegative random variable f on a probability space Ω, an arbitrary subset

B ⊂Ω, the average

Ð

B
fdμ

μ Bð Þ is bound above by the standard deviation σf and the mean mf by:

Ð

Bfdμ

μ Bð Þ
≤ σf

ffiffiffiffiffiffiffiffiffiffiffiffiffi

μ BC
� �

μ Bð Þ

s

þmf : (22)

Proof:

Define two functions f1 and f2 from f such that they are the restrictions of f on the subset B and

BC: f1|BC = 0, f1|B = f|B, f2|BC = f|BC, f2|B = 0. Then we have f = f1 + f2 and f1 f2 = 0. The standard

deviation:

1The nonnegative condition can be relax to f is bound below.
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σ
2
f ¼ E f 1 þ f 2

� �2
h i

� E f 1 þ f 2
� � �2

(23)

¼ σ
2
f 1
þ σ

2
f 2
� 2mf 1

mf 2
(24)

≥m2
f 1

μ BC
� �

μ Bð Þ þm2
f 2

μ Bð Þ
μ BC
� �� 2mf 1

mf 2
(25)

¼ mf 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

μ BC
� �

μ Bð Þ

s

�mf 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

μ Bð Þ
μ BC
� �

s

0

@

1

A

2

(26)

from Theorem 1 and the fact that the domain with zero value for f1 include the set BC and the

domain with zero value for f2 include the set B. Hence:

mf 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

μ BC
� �

μ Bð Þ

s

≤mf 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi

μ Bð Þ
μ BC
� �

s

þ σf (27)

The inequality Eq. (22) is arrived by the fact that mf = mf1 + mf2 and

ffiffiffiffiffiffiffiffiffiffi

μ Bð Þ
q ffiffiffiffiffiffiffiffiffiffiffiffiffi

μ BC
� �

q

ffiffiffiffiffiffiffiffiffiffiffiffiffi

μ BC
� �

μ Bð Þ

s

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

μ Bð Þ
μ BC
� �

s

0

@

1

A ¼ μ BC
� �

þ μ Bð Þ ¼ 1 (28)

□

If we let the subset B be {x|f(x) >0}, then Eq. (22) become Eq. (16). If we let the subset B be

{x|CDFf (x) ≥ q,0 ≤ q ≤ 1}, we get the so called AEP TVaR upper bound for the given quantile

q or the return period r � 1
1�q: TVaR(q) ≤

ffiffiffiffiffiffi

q
1�q

q

σf þmf . For the usually used return period, the

TVaR upper bound (now simply σf

ffiffiffiffiffiffiffiffiffiffiffi

r� 1
p

þmf ) is in Table 2.

Numerical example shows that our TVaR upper bound is relatively close in the quantile range

[0.8,0.9], with the theoretical upper bound deviated from the simulated value by less than 20%,

no matter what the distribution of the annual loss is.

Notice that the measure of the numbers of nonzero losses years is also called the probability of

attaching in insurance, we can rearrange the terms in the formula Eq. (8) to get a lower bound

for the probability of attaching:

Corollary 3. For a reinsurance contract simulated annual losses f, the probability of attaching, ProbA

� Prob{f > 0}, with respect to the CV is bound below by:

ProbA ≥
1

CV2 þ 1
(29)

As an application of Corollary 3, we see that if CV ≤ 3, then ProbA ≥ 0.1, the 0.9 quantile of f is

larger than zero. Equivalently, if the 0.9 quantile of f (the so called AEP in insurance) is zero, we
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know CV > 3: then we will less prone to think that those zero quantiles is due to simulation

inaccuracy. The CV bounds for commonly used AEP, related to probability of attaching by the

formula
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
ProbA � 1

q

, is in Table 3.

Return period Quantile
TVaR upper bound σf

ffiffiffiffiffiffiffiffiffiffi

μ BCð Þ
μ Bð Þ

r

þmf

100,000 0.99999 316.226184874055σf + mf

10,000 0.9999 99.9949998749938σf + mf

5000 0.9998 70.7036066972541σf + mf

1000 0.999 31.6069612585582σf + mf

500 0.998 22.3383079036887σf + mf

250 0.996 15.7797338380595σf + mf

200 0.995 14.1067359796659σf + mf

100 0.99 9.9498743710662σf + mf

50 0.98 7σf + mf

30 0.966666666666667 5.3851648071345σf + mf

25 0.96 4.89897948556636σf + mf

20 0.95 4.35889894354067σf + mf

10 0.9 3σf + mf

5 0.8 2σf + mf

4 0.75 1.73205080756888σf + mf

2 0.5 1σf + mf

For given year of return period, the upper bound as given by our formula Eq. (22).

Table 2. TVaR upper bound.

CV upper bound ProbA lower bound 1
CV2þ1

Beginning quantile with nonzero loss Return period � 1
ProbA

� �

99.9949998749938 0.0001 0.9999 10,000

9.9498743710662 0.01 0.99 100

3 0.1 0.9 10

2 0.2 0.8 5

1.73205080756888 0.25 0.75 4

1 0.5 0.5 2

0.577350269189626 0.75 0.25 1.33333333333333

0.5 0.8 0.2 1.25

For given range of CV, the lower bound as given by our formula Eq. (29)

Table 3. ProbA lower bound.
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Similarly, from Corollary 2, we can easily rearrange terms to get an upper bound for the

probability of exceeding a given loss, which is called the Cantelli’s inequality in the

literature (https://en.wikipedia.org/wiki/ Chebyshev's_inequality):

Corollary 4. For a reinsurance contract simulated annual losses f, the probability of exceeding a given

loss x, ProbE � Prob{f ≥ x}, with respect to the mean loss mf and the standard deviation σf, when x ≥ mf,

is bound above by:

ProbE ≤
1

x�mfð Þ2
σ
2
f

þ 1

(30)

Specifically, if x ¼ σ
2
f

mf
þmf , then:

Prob f ≥
σ
2
f

mf
þmf

( )

≤
1

CV2 þ 1
(31)

This bound gives a limitation on simulation with a given number N of simulated years where

each year have equal probability of occurrence 1
N. If

1
CV2þ1

<
1
N, that is, CV >

ffiffiffiffiffiffiffiffiffiffiffiffiffi

N � 1
p

, then in

theory no simulated loss can reach to
σ
2
f

mf
þmf , the lowest permissible exposure to allow the

given mean mf and given standard deviation σf (to be shown in Lemma 1). In other words, if

CV >

ffiffiffiffiffiffiffiffiffiffiffiffiffi

N � 1
p

, no such simulation can match both the given mean and the given standard

deviation closely (see also inequality Eq. (12)).

Lemma 1. For a reinsurance contract simulated annual losses f that are bound up by M and with a

given mean loss mf and a given standard deviation σf, we must have:

M ≥

σ
2
f

mf
þmf (32)

On the other hand, with the given max loss M and mean loss mf, the standard deviation σf must satisfy:

σf ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M�mf

� �

mf

q

(33)

The maximum standard deviation given mf and M is attained only by a bivalued distribution of values

either 0 or M, with probability q � 1� mf

M and p � mf

M , respectively, whose CV is then
ffiffiffiffiffiffiffiffiffiffiffiffiffi

M
mf

� 1
q

¼
ffiffiffiffiffiffiffiffiffiffi

1
p � 1

q

. Similarly, the minimal exposure given mf and σf is attained only by a bivalued

distribution of values either 0 or
σ
2
f

mf
þmf , with probability q � σ

2
f

σ
2
f
þm2

f

and p � m2
f

σ
2
f
þm2

f

, respectively, whose

CV is then
σf

mf
¼

ffiffiffiffiffiffiffiffiffiffi

1
p � 1

q

:

Proof: Let g ¼ f
M, then g is a random variable with values in interval [0,1]. So:
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g2 ≤ g (34)

and
ð

Ω

g2dμ ≤

ð

Ω

gdμ (35)

ð

Ω

g2dμ�
ð

Ω

gdμ

� �2

≤

ð

Ω

gdμ�
ð

Ω

gdμ

� �2

(36)

σ2g ≤mg 1�mg

� �

(37)

σ2f

M2
≤
mf

M
1�mf

M

	 


(38)

This proves both of our inequalities. Without loss of generality, suppose any nonempty subset

of Ω have nonzero measure, the equality hold in Eq. (34) and its subsequent inequalities if and

only if g = 0 or g = 1. □

Because of the probability of
mf

M of taking value M, we cannot solve the limitation on CV by

increasing M. The only solution is then by increasing N or using unequal probabilities (please

refer to Eq. (18)), otherwise we may have to choose to only match the mean loss, and reduce

the simulated standard deviation.

By examining the proof of Corollary 2 and Theorem 1 Eq. (17), forcing the inequality in Eq. (25)

to be an equality, we can prove that:

Corollary 5. For a nonnegative random variable f on a probability spaceΩ, an arbitrary subset B ⊂Ω,

assuming σf > 0,μ Bð Þ > 0,μ BC
� �

> 0, mf > 0, the average

Ð

B
fdμ

μ Bð Þ attain its upper bound with respect

to the standard deviation σf and the mean mf:

Ð

Bfdμ

μ Bð Þ ¼ σf

ffiffiffiffiffiffiffiffiffiffiffiffiffi

μ BC
� �

μ Bð Þ

s

þmf (39)

if and only if f is a nonzero constant function on the subset B and a constant function on the

subset BC.

So the maximum TVaR distribution is bivalued, this corollary provides a guide for implementing

relatively high CV distribution simulation: for CV close to
ffiffiffiffiffiffiffiffiffiffiffiffiffi

N � 1
p

which do not simulate well, a

conservative and simple selection is using bivalued distribution. Similar conclusion about

bivalued distribution can be made for the maximum AEP distribution which are bound by

TVaR’s bound and attain the same upper bound given in Eq. (39). Both conclusions give clue for

a risk measure of the maximally likely or best compromise quantile by comparing simulated

TVaR or AEP with the theoretical bound for the best match but that is the topic of a different

research.
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2.2. Simulation deviation

Typical correlation coefficient r from yearly model update range from 0.27 to 0.96, the CV

range is 0.003–316 as we calculated in Table 1. With these parameters we used Mathematica

Manipulate function to explore the probability of the ratio of two simulated annual-mean-loss

be within the range of 0.5–1.5, assuming the annual-mean-loss obeys the Normal Distribution.

We find that the probability is small when r is close to 0, and is decreasing when CV is

increasing, but is stabilized after CV ≥ 7. For an example r = 0.822434, for almost half of the

contracts, the simulated annual-mean-loss being within 50% to each other has probability of

0.459, that is, with probability of 0.551 we will see two simulation have simulated annual-

mean-loss increased or decreased by more than 50% (Figures 1 and 2). These factors should be

considered for model risk management or individual contract evaluation.

Figure 1. Probability that two simulated mean are within 50% of each other. The horizontal axis is the CV and the vertical

axis is the probability. (a) Using Hinkley formula. Formulas used in (a) is complex and very different which may cast

doubt for their validity. Our plot is a numerical assurance for their correctness.

Figure 2. Probability that two simulated mean are within 50% of each other. The horizontal axis is the CV and the vertical

axis is the probability. (b) Using Marsaglia formula. Formulas used in (b) is complex and very different which may cast

doubt for their validity. Our plot is a numerical assurance for their correctness.
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The Mathematica code for the plot in Figures 1 and 2 is in Appendix A. The two plots are

identical even though their formulas are quite different and we do not know whether they can

be analytically proved to be equivalent: our plots are numerical validation of both of their

formulas.

3. Discussion

The lower bound for CV of reinsurance contract annual loss is established. The largest of those

bound are also proved to be the upper bound for all CV. Applying this range information to

ratio distribution, we can get theoretical value of the probability that different simulations will

have simulated mean annual loss with deviation from each other less than a given percentage,

under the Normal Distribution assumption of the mean annual loss. We think this assumption

can be removed by using more suitable distributions, with numerical methods, but may still

give the probability not too different. Typical example case numerical study confirmed this,

and showed that the “Normal approximation” gives probability only a few percent (2–5%) less

than using more suitable distributions that do not have explicit formula for the probability.

As the starting point and the application of the CV range, the ratio distribution and the model

risk quantification results we get may be only rudimentarily correct due to other factors, such

as the distribution modeling, the dependence modeling, and additional parameters depen-

dence than just the CV and r, but our CV inequality itself is mathematically sound.

The less general upper bound
ffiffiffiffiffiffiffiffiffiffiffi

n� 1
p

where all probabilities are equal is obtained by

Katsnelson and Kotz in the literature [4, 5].

Using the same Hölder’s inequality and calculus technique which may not have a simple

elementary inequality approach counterpart, we can prove a more complex formula:

Theorem 2. For reinsurance contract simulated annual losses f, the standard deviation σf with respect

to the mean mf is bound below by:

σf ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mf �m
� �2

μ mð Þ þ M�mf

� �2
μ Mð Þ þ mf �m

� �

μ mð Þ � M�mf

� �

μ Mð Þ
 �2

1� μ mð Þ � μ Mð Þ

s

(40)

when μ(m) + μ(M) < 1, where σf is the standard deviation, mf is the mean, m is the minimum annual

loss, M is the maximum annual loss, μ(m) denote the measure of the numbers of minimum losses years,

μ(M) denote the measure of the numbers of maximum losses years.

Proof:

In the inequality Eq. (2), we divide Ω into three subset and let the nonnegative function g be

constant in each of the three sets:
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gj f¼mf g ¼ a, g m<f<Mf g ¼ b; g
�

�

�

�

f¼Mf g
¼ c (41)

Then:

ð

g2dμ ¼ a2μ mð Þ þ b2 1� μ mð Þ � μ Mð Þ
� �

þ c2μ Mð Þ (42)

ð

∣f �mf ∣gdμ ¼

ð

f¼mf g

∣f �mf ∣adμþ

ð

m<f<Mf g

∣f �mf ∣bdμþ

ð

f¼Mf g

∣f �mf ∣cdμ (43)

≥ mf �m
� �

aμ mð Þ þ

ð

m<f<Mf g

fbdμ�

ð

m<f<Mf g

mf bdμþ M�mf

� �

cμ Mð Þ (44)

¼ mf �m
� �

aμ mð Þ þmf b�mbμ mð Þ �Mbμ Mð Þ �mf b 1� μ mð Þ � μ Mð Þ
� �

þ M�mf

� �

cμ Mð Þ (45)

¼ mf �m
� �

aþ bð Þμ mð Þ þ M�mf

� �

c� bð Þμ Mð Þ (46)

due to ∣f �mf ∣ ≥ f �mf .

We get:

σf ≥
mf �m
� �

aþ bð Þμ mð Þ þ M�mf

� �

c� bð Þμ Mð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
� �

μ mð Þ þ c2 � b2
� �

μ Mð Þ þ b2
q (47)

¼
mf �m
� �

a
b

� �

μ mð Þ þ M�mf

� �

c
b

� �

μ Mð Þ þ mf �m
� �

μ mð Þ � M�mf

� �

μ Mð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
b

� �2
μ mð Þ þ c

b

� �2
μ Mð Þ þ 1� μ mð Þ � μ Mð Þ

q (48)

suppose b > 0.

Using the negative form of the inequality f �mf

�

�

�

� ≥mf � f, we also get a dual form inequality:

σf ≥
mf �m
� �

a� bð Þμ mð Þ þ M�mf

� �

cþ bð Þμ Mð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � b2
� �

μ mð Þ þ c2 � b2
� �

μ Mð Þ þ b2
q (49)

¼
mf �m
� �

a
b

� �

μ mð Þ þ M�mf

� �

c
b

� �

μ Mð Þ � mf �m
� �

μ mð Þ þ M�mf

� �

μ Mð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a
b

� �2
μ mð Þ þ c

b

� �2
μ Mð Þ þ 1� μ mð Þ � μ Mð Þ

q (50)

suppose b > 0.

Define:

t ¼
a

b
, A ¼ mf �m

� �

μ mð Þ, B ¼ M�mf

� � c

b

	 


μ Mð Þ þ mf �m
� �

μ mð Þ � M�mf

� �

μ Mð Þ (51)

C ¼ μ mð Þ, D ¼
c

b

	 
2

μ Mð Þ þ 1� μ mð Þ � μ Mð Þ (52)

An Inequality for Reinsurance Contract Annual Loss Standard Deviation and Its Application
http://dx.doi.org/10.5772/intechopen.76265

85



F tð Þ ¼ Atþ B
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ct2 þD
p (53)

Then

A ≥ 0, C ≥ 0, D > 0 (54)

The derivative

F0 tð Þ ¼ AD� BCt

Dþ Ct2
� �3

2

(55)

If B ≤ 0, then F0 tð Þ > 0, F(t) take the maximum A
ffiffiffi

C
p at ∞. If B > 0, then F(t) increase on (0, ADBC) and

decrease on (ADBC , ∞), attain the maximum
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2

C þ B2

D

q

at AD
BC .

Apply the same argument to

B
ffiffiffiffi

D
p ¼ M�mf

� �

c
b

� �

μ Mð Þ þ mf �m
� �

μ mð Þ � M�mf

� �

μ Mð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c
b

� �2
μ Mð Þ þ 1� μ mð Þ � μ Mð Þ

q (56)

with (M � mf)μ(M) > 0 since μ(m) + μ(M) < 1, we have if (mf � m)μ(m) � (M� mf)μ(M) > 0, then

B
ffiffiffi

D
p attain the maximum

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M�mf

� �2
μ Mð Þ þ mf�mð Þμ mð Þ� M�mfð Þμ Mð Þ½ �2

1�μ mð Þ�μ Mð Þ

r

at
M�mfð Þ 1�μ mð Þ�μ Mð Þð Þ

mf�mð Þμ mð Þ� M�mfð Þμ Mð Þ.

If (mf � m)μ(m) � (M � mf)μ(M) = 0, then B
ffiffiffi

D
p is monotonically increasing with respect to c

b and

attain the maximum M�mf

� � ffiffiffiffiffiffiffiffiffiffiffiffi

μ Mð Þ
p

at ∞.

If (mf � m)μ(m) � (M � mf)μ(M) < 0, then use the inequality Eq. (50), we can follow the same

steps to arrive at the same form of maximum formula. We thus proved the maximal

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2

C
þ B2

D

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mf �m
� �2

μ mð Þ þ M�mf

� �2
μ Mð Þ þ mf �m

� �

μ mð Þ � M�mf

� �

μ Mð Þ
 �2

1� μ mð Þ � μ Mð Þ

s

(57)

with the specific choice of c
b and a

b. □

We can also prove by calculus that:

Theorem 3. In the terminology of Theorem 2, if m = 0,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mf �m
� �2

μ mð Þ þ M�mf

� �2
μ Mð Þ þ mf �m

� �

μ mð Þ � M�mf

� �

μ Mð Þ
 �2

1� μ mð Þ � μ Mð Þ

s

≥mf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ mð Þ
1� μ mð Þ

s

(58)
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Proof:

Define

F tð Þ ¼ mf �m
� �2

μ mð Þ þ M�mf

� �2
tþ

mf �m
� �

μ mð Þ � M�mf

� �

t
 �2

1� μ mð Þ � t
�m2

f

μ mð Þ

1� μ mð Þ
(59)

for t ≥ 0.

Then F(t) is continuous at 0 and

F 0ð Þ ¼ mf �m
� �2

μ mð Þ þ
mf �m
� �

μ mð Þ
 �2

1� μ mð Þ
�m2

f

μ mð Þ

1� μ mð Þ
(60)

¼
mf �m
� �2

�m2
f

1� μ mð Þ
μ mð Þ ¼ 0 (61)

The derivative of F(t) is

F0 tð Þ ¼
mf �Mþ M�mð Þμ mð Þ
� �2

�1þ tþ μ mð Þ
� �2

(62)

which is always nonnegative, so F(t) ≥ 0 for any t ≥ 0. □

Theorem 3 can be combined with the following form of the Hölder’s inequality:

ð

m<f<Mf g

jf �mf j1dμ

0

B

@

1

C

A

2

≤

ð

m<f<Mf g

f �mf

�

�

�

�

2
dμ

ð

m<f<Mf g

12dμ (63)

to give an alternative proof of Theorem 2 and then Eq. (16) (or directly for Eq. (20) by using the

set {f > m}).

So there is a complex but better lower bounds Eq. (40), and empirical study shows that when

μ(m) > 0.86, both bounds are close to the true σf to within 86% with the simple form Eq. (8)

3–4% lower than the complex form Eq. (40). Even though the complex form Eq. (40) is generally

valid for any discrete random variable, it may not be as easily applicable as the simple form

Eq. (8) when we need a fast first approximation, and hence of less practical interest.

With numerical simulation, we can get σf and CV directly, so these formulas seems not to be

useful for the numerical results. But since each simulation may arrive at a different value,

known a priori their approximate value will be a check for any possible simulation process

problem. Our inequalities also reveal that the CV is intrinsically related to important value

distribution characteristics of the annual loss random variable. This essentialness of CV is

also confirmed by other studies, such as the correlation and cluster analysis of these random

variables.
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4. Conclusions

Lower bound for reinsurance contract annual loss standard deviation involving zero losses

years counts are obtained, which imply a general upper bound for annual loss TVaR or AEP

with no mention of zero losses years. Alternative forms of these bounds give inequalities for

probability of attaching and exceeding. These bounds can explain the difficulties or instabil-

ities observed in numerical simulations, show the major reason of the limitation of the simula-

tion is high CV and give clue to alternative solutions.
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Appendix-A

hinkley[x_?NumericQ,c_,p_]:=1/Sqrt[2 Pi]/c (x + 1) (1 � p)/(xˆ2–2 p x + 1)ˆ1.5 Exp[�1/2/cˆ2

(x � 1)ˆ2/(xˆ2–2 p x + 1)](CDF[NormalDistribution[0,1],1/c Sqrt[(1 � p)/(1 + p)] (x + 1)/Sqrt

[xˆ2–2 p x + 1]] � CDF[NormalDistribution[0,1],�1/c Sqrt[(1 � p)/(1 + p)] (x + 1)/Sqrt[xˆ2–2 p

x + 1]]) + 1/Pi Sqrt[1 � pˆ2]/(xˆ2–2 p x + 1) Exp[�1/cˆ2/(1 + p)];

H[x_,c_,p_]:=Integrate[hinkley[y,c,p],{y,�Infinity,x}];

LogLinearPlot[Evaluate[H[1.5,x,0.822434] � H[0.5,x,0.822434]],{x,0.1,10},PlotRange� > All,

GridLines� > Full,GridLinesStyle� > Directive[Gray,Dashed],Mesh� > Automatic,

ImageSize� > Full,Frame� > on];

Clear[q,marsaglia,M,MA]

Off[NIntegrate::inumr]

q[t_,p_,c_]:=q[t,p,c] = With[{},1.0/c (1.0 + (1.0 � p) t/Sqrt[1.0 � pˆ2])/Sqrt[1.0 + tˆ2]]
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marsaglia[t_,p_,c_]:=marsaglia[t,p,c] = With[{},Exp[�1.0/(1.0 + p)/cˆ2]/Pi/(1.0 + tˆ2)(1.0 + q[t,p,c]

Exp[q[t,p,c]ˆ2/2.0] Evaluate[Integrate[Exp[�yˆ2/2.0],{y,0.0,q[t,p,c]}]])]

M[v_,p_,c_]:=M[v,p,c] = With[{},CDF[NormalDistribution[0,1],1/c (1 � p)/Sqrt[1 � pˆ2]] + CDF[

NormalDistribution[0,1],1/c] � 2 CDF[NormalDistribution[0,1],1/c (1 � p)/Sqrt[1 � pˆ2]] CDF[.

NormalDistribution[0,1],1/c] + Evaluate[NIntegrate[marsaglia[u,p,c],{u,0.0,v}]]]

MA[v_,p_,c_]:=MA[v,p,c] = With[{},M[(v � p)/Sqrt[1.0 � pˆ2],p,c]];

DistributeDefinitions [q,marsaglia,M,MA];

LogLinearPlot[Evaluate[MA[1.5,0.822434,x]�MA[0.5,0.822434,x]],{x,0.1,10},PlotRange�>All,

GridLines� > Full,GridLinesStyle� > Directive[Gray,Dashed],Mesh� > Automatic,

ImageSize� > Full,Frame� > on]
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