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Abstract

Second messengers Ca2+, IP3, cAMP, NO, cGMP, and cADP ribose are incorporated as 
obligatory elements into multivariable Ca2+-signaling system, which integrates incoming 
signals of hormones and neurotransmitters in white adipocytes. This cross-controlled 
system includes two robust generators (RGs) of rhythmic processes, involving phos-
pholipase C- and NO-synthase-dependent signaling networks (PLC-RG and NOS-RG). 
Multi-loop positive feedback control of both RGs provides their robustness, multistabil-
ity, signaling interplay, and extreme sensitivity to the alterations of incoming signals of 
acetylcholine, norepinephrine, insulin, cholecystokinin, atrial natriuretic peptide, brady-
kinin, and so on. Hypertrophy of cultured adipocytes and of mature cells, isolated from 
epididymal white adipose tissue (eWAT), results in the loss of rhythmicity and devel-
opment of general hormonal signaling resistance. Preadipocytes isolated from eWAT 
of obese mice cannot grow and accumulate lipids in the media devoid of fatty acids. 
However, even low concentrations of palmitoylcarnitine in the media (1 μM) may result 
in drastic suppression of mRNA expressions of the proteins of Ca2+-signaling system, 
especially of NOS-RG. Similar alterations of gene expression are observed in eWAT and 
liver at adiposity. All this may indicate on universal background pathogenic mecha-
nisms. Treatment modalities, which may help to restore deregulation of Ca2+-signaling 
system and corresponding tissues dysfunction, are discussed briefly.

Keywords: adiposity, adipocyte dysfunction, second messengers, NO, PKG, feedback 
and cross-control, loss of rhythmicity
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1. Introduction

Adipose tissue dysfunction (“adiposopathy”) is considered as one of the primary drivers of 

multifactorial pathological process, ranging from systemic insulin resistance and hypertension 

to cardiovascular diseases, liver and pancreas dysfunction, and type 2 diabetes (T2D) [1, 2]. 
Obviously, observed gradual dysfunction of various tissues at T2D is due to the deregulation of 
metabolic and signaling systems providing the fulfillment of these functions. All these processes 
of deregulation, especially of signaling systems, may have some universal features, which are 

being based on the loss of feedback control mechanisms in the systems studied. The identifica-

tion of these control mechanisms, including crosstalk of signaling pathways, may create new 

opportunities to identify real targets and develop new options of various diseases treatment.

“Adiposopathy” is characterized by: lipid metabolism deregulation, development of oxida-

tive stress and mitochondrial dysfunction, death of hypertrophied adipocytes, tissue remod-

eling, loss of fatty acids buffering, and endocrine and immune functions [2–6]. However, the 
existing data on external hormonal and autonomous feedback control of white adipose tissue 

(WAT) lipid metabolism (triglycerides—fatty acids turnover) are insufficient to answer the 
question on the mechanisms providing uncontrolled hypertrophy of adipocytes. Later, based 
on own results obtained in animal experiments and known literature data, we will try to 

represent (at first level of approximation) the structures and mechanisms of autoregulation 
of second messengers signaling systems, which might be functioning in the adipocytes and 

other types of nonexcitable cells.

2. Calcium, cAMP, and cGMP-related signaling systems, operating 

in adipocytes of healthy animals

2.1. Brief survey of existing models of adipocyte triglyceride metabolism control

It is known that, acting via lipid kinase (PI3K)/PKB-signaling pathway, insulin may stimulate 

adipogenesis and triglyceride (TAG) synthesis, by phosphorylating rate-limiting enzymes 
Acyl-CoA: glycerol-3-phosphate acyltransferases (GPAT1, 4) and phosphatidic acid phospha-

tase (Lipin) [7, 8]. On the contrary, norepinephrine (NE) promotes dephosphorylation of lipin 
[8]. Modern viewpoints on the control of TAG hydrolysis to free fatty acids (FFA) are mainly 
focused on the regulation (phosphorylation) of hormone sensitive lipase (HSL), adipocyte 
triglyceride lipase (ATGL), and perilipin by PKA and are being based on opposite influence of 
NE (β-adrenoreceptors; β-AR) and of insulin on cAMP concentration and PKA activity [9–14]. 
Supposed mechanisms of antilipolytic action of insulin include the activation of cAMP phos-

phodiesterases PDE3,4 and inhibition of PKA activity through Insulin/PI3K/PKB-pathway. In 
addition to insulin, antilipolytic action may be provided through G-protein-coupled receptors 

by NE (α2-AR), adenosine, prostaglandins, neuropeptide Y, and so on [11–14].

Phosphorylation of key lipases and perilipin by PKG1 is considered as a separate mechanism, 
involved in the activation of TAG hydrolysis [10, 13, 14]. This signaling pathway, which is 
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based on the activation of PKG1 via atrial natriuretic peptide receptor A (NPR-A/mGC/cGMP/
PKG1-pathway), does not involve nitric oxide (NO) and soluble guanylate cyclase (sGC).

This widely admitted model of TAG-FFA turnover (futile cycle) control describes the regulation 
of lipid metabolism as external hormonal adjustment, realized through PI3K/PKB, cAMP/PKA, 

and cGMP/PKG1, that is, as a model devoid of self-control and crosstalk of functioning second 
messenger signaling systems. Moreover, NO and calcium are not included into consideration as 
possible messengers, involved in the control of WAT metabolism. Though the results of the last 
decade indicate that the activation of endothelial NO-synthase (eNOS), NO bioavailability, and 

recruitment of eNOS/NO/sGC/cGMP/PKG1-signaling chain may protect against obesity, by 
influencing differentiation and mitochondrial biogenesis in brown fat cells, adipogenesis and 
lipolysis in white cells, and so on. [15–20]. Besides that, controversial results on the role of Ca2+ 

and calcium-sensing receptors in the regulation of body fat depots [21–23] point on the impor-

tant role of Ca2+ in the mechanisms of self-control of second messengers signaling systems.

2.2. Two Ca2+-dependent signaling systems and rhythmic processes in adipocytes of 

WAT

Like most of other nonexcitable types of cells, adipocytes possess two types of intracellular 

Ca2+ release channels, located on the membrane of endoplasmatic reticulum: inositpl-1,4,5-
triphophate (IP3) receptors (IP3R) and ryanodine receptors (RyR). Both types of receptors are 
controlled by numerous signaling molecules, including PKA PKG, Ca2+-dependent kinases, 

various isoforms of PKC, and so on [24–26]. This versatility of control defines the shaping of 
intracellular Ca2+ dynamics, which plays a primary role in the regulation of numerous cellular 

processes [24]. Ubiquitous oscillations of intracellular Ca2+ concentration, which are observed 

in most of nonexcitable cells [27–30], are often considered as the basic dynamic mechanisms 

involved in the control of cellular metabolic processes [27–29]. However, the role of Ca2+ oscil-

lations and of triggering phenomena is not understood and evaluated yet properly [27, 30]. 
However, the analysis of such dynamic processes may be very instrumental for the determi-
nation and evaluation of operating feedback mechanisms.

Both types of Ca2+ release channels possess a fundamental property, called Ca2+-induced Ca2+ 

release (CICR), which may provide Ca2+-sparks, fast oscillations, and spatial waves [24–26]. 
Gaiting of IP3R is reinforced by IP3, which facilitates binding of Ca2+ and channel opening 

[24, 25]. In other words, Ca2+ and IP3 represent crosscoupled messengers targeted to IP3R [31].

As for RyR, according to generally accepted point of view, the regulation of this receptor 

lacks this kind of symmetry. Cyclic ADP-ribose (cADPr), which is formed from NAD by 
ADP-ribosyl cyclase (ARC) or ectoenzyme CD38, is not considered as an obligatory coago-

nist of RyR [26], in spite of existing data on its modulatory role in RyR-channels gaiting 

and CIRC control [32–37]. Really, in striated muscles RyR-channels gaiting and CIRC are 
determined mainly by plasmalemmal membrane depolarization [26]. In nonexcitable cells, 
the primary role in Ca2+ homeostasis is supposed to be realized via IP3R [24, 27–30], while 

modulatory role is delegated to RyR, which may amplify Ca2+-signals produced by IP3-

dependent CICR [24–26].
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2.2.1. Ca2+/phospholipase C/IP3/IP3R/Ca2+ positive feedback signaling system

Numerous external signals, by stimulating Gq proteins and tyrosine kinase (TK) coupled 
receptors, result in the formation of IP3 by various isoforms of phospholipase C (PLC) [24, 

25, 38] with subsequent activation of IP3R-channels and rise of Ca2+in the cytoplasm via CICR 

mechanism:

  TK,  G  αq   → PLC →  IP  
3
   →  IP  

3
   R →  Ca   2+   (1)

Realization of IP3-dependent CICR represents short positive feedback loop (PFL) in the 
system:

   Ca   2+  →  IP  
3
   R →  Ca   2+   (2)

Being activated by Ca2+, Ca2+-dependent isoforms of PLC may provide functioning of long 

PFLs [31]:

   Ca   2+  → PLC →  IP  
3
   →  IP  

3
   R →  Ca   2+   (3)

Therefore, IP3R-dependent Ca2+−signaling system represents two loops’ generator (Figure 1), in 

which short PFL (shown as broken arrow 1) is embedded by long PFL (arrow 2). This duplicating 
loop may provide the robustness with respect to the alteration of systems parameters [39, 40]. 
Released by IP3R-channel intracellular Ca2+ may provoke RyR-dependent CICR, which, in turn, 

might further amplify initial signals and support generation of Ca2+ oscillations and/or wave 

propagation. Inhibition of IP3R, due to phosphorylation of IP3R by Ca2+-activated CaM-kinases 

II (CaMKII), represents stabilizing negative feedback loop (NFL) (dotted line 4 with sign T).

This Ca2+/PLC/IP3/IP3R/Ca2+-robust generator (PLC-RG) is cross-activated by adenylate 

cyclase (AC)/cAMP/PKA-signaling pathway, owing to phosphorylating of IP3R (and RyR) 

by PKA (arrows 7, 8). Inhibition of AC and activation of PDE3, produced by the phosphoryla-

tion of both enzymes by PKA [42], may provide the functioning of two stabilizing NFLs in 
this pathway (dotted line 5 and arrow 6). And finally, PI3K/PKB/NO/cGMP/PKG1-signaling 
pathway participates in negative crosstalk with both systems, by inhibiting IP3R via PKB 

(dotted line 10) and PKG1 (dotted line 12) and by activating PDE3 through PKB (arrow 9) [10, 

11]. Well-known inhibition of PDE3B by cGMP (dotted line 11) [9] contradicts this logic of 

system’s self-control and, apparently, may be realized at high concentrations of cGMP.

Cross-inhibition of eNOS, based on its phosphorylation by PKC [41], is shown at the bottom 
of Figure 1 (dotted line 14). Cross-inhibition of PLCβ activity, which may be realized with the 
involvement of PKG1 and PKA [42], is omitted for the simplicity.

It ought to outline that, besides combined action of IP3 and Ca2+ on IP3R, PLC-RG has second 

point of regulatory symmetry. The entry into the system through PLC is carried out by com-

bined activation of PLC by Gαq-proteins (or TKs) and Ca2+ (Figure 1).

PLC-RG represents a highly nonlinear dynamic system, which incorporates the family of two 

nested PFLs. Due to that, this system possesses the properties of multistable generator, which 
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may produce: steady state regimes with different concentrations of intracellular Ca2+ (and of 

other second messengers), triggering phenomena, Ca2+ spikes, ordinary and complex (multipe-

riodic or chaotic) oscillations, and waves propagation. Realization of described regimes depends 
on the system’s parameter values, that is, on the set of enzyme and channel activities and ago-

nist affinities. All such regimes were observed experimentally in various types of cells [43–51] 

and were reproduced in mathematical models [52–54]. Apparently, all ranges of these dynamic 
regimes were observed for the first time on isolated hepatocytes [45]. In most of the published 
experiments registered Ca2+ oscillations and waves were attributed to the functioning of PLC-RG, 
including regimes elicited by NE [45], Ach [47, 49], histamine [44], glutamate [48], and so on.

In cultured adipocytes of epididymal WAT, periodic Ca2+ signals and spikes, which depend 

on PLC-RG activity, may be evoked by fetal bovine serum [50, 51], NE [55–57], Angiotensin 

II (Ang II) [58, 60], cholecystokinin (CCK) and ANP [58], insulin [59], and bradykinin (BK) 

(Turovsky et al., submitted for publication).

2.2.2. Ca2+/eNOS/NO/sGC/cGMP/PKG/ARC/cADPr/RyR/ Ca2+ positive feedback signaling 
system

In contrast to all abovementioned agonists, ACh may elicit Ca2+ oscillations in WAT adipo-

cytes (9DIV) by involving another mechanism, which does not implicate PLC and IP3R [61]. 

Figure 1. PLC/IP3/IP3R/Ca2+-signaling system and its cross-control by AC/cAMP/PKA and PI3K/PKB/NO/cGMP/

PKG-signaling pathways. All abbreviations and explanations are given in the text. Various types of activation and 
inhibition (direct regulations or covalent modifications) are indicated as broken arrows and dotted lines (with symbol 
T), correspondingly. Positive and negative feedback loops are marked with white or black circles and have the numbers 
1–3 and 4–6, correspondingly. Crosstalk loops are marked by the squares and have the numbers 8–12 and 14. Various 
hormones and neurotransmitters (with corresponding receptors), activating G-proteins and TKs, are placed in the boxes.
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The effect of ACh is realized via m3-muscarinic receptors (m3-MR) and Gβγ subunits of cor-

responding Gq-proteins. This kind of rhythmic activity is characterized by Ca2+ and NO oscil-

lations with phase shift about 180°. Remarkably, insulin, Ang II, CCK, and BK may also evoke 
Ca2+ and NO oscillations by activating second oscillatory mechanism [59, 60].

Earlier works, performed by several groups, depicted that NO, cGMP, and cADPr may induce 
Ca2+ mobilization and oscillations in hepatocytes [64, 65], smooth muscle cells [66, 67], and 

T-cells [68], involving RyR. The model, proposed for first time to explain mobilization of intra-

cellular Ca2+ via NO/cADPr-dependent signaling pathway [33, 34], was based on known phos-

phorylation and activation of ARC by PKG1 [36, 37] and on the facilitation of RyR-channels 

gaiting by newly formed cADPr [32, 33]. This model include following signaling chain:

  eNOS → NO → sGC → cGMP → PKG1 → ARC → cADPr → RyR →  Ca   2+   (4)

Well-known activation of eNOS by Ca2+ [69–71] transforms this linear chain into long PFL, 
which creates basic loop of NOS-dependent robust generator (NOS-RG):

  Ca   2+  → eNOS → NO → sGC → cGMP  

→ PKG1 → ARC → cADPR → RyR →  Ca   2+   (5)

Speaking on the math language, formation of long PFL(5) represents necessary conditions 
for the functioning of NOS-RG. PFL(5) is very sensitive to any input in it. The application of 
ANP (input of cGMP), 8-br-cGMP, SNAP (influx of NO), NAD (substrate in the synthesis of 
cADPr) [61], or activation of Ca2+-influx (by low concentrations of arachidonic acids via store-
independent Orai channels) [63], may bring oscillations and triggering regimes in adipocytes.

ACh and all abovementioned hormones, activating TK or/and G-protein-coupled receptors, 
provide sufficient conditions for stable functioning of NOS-RG, activating eNOS via axis:

  TK, Gβγ → PI3Kγ → PKB → eNOS  (6)

Incubation of cultured adipocytes with the inhibitors of the proteins of this axis prevents the 

activation of NOS-RG by ACh, insulin, CCK, and Ang II [61–63].

Thereby, NOS-RG also has both kinds of symmetries, including: (a) activation of RyR by 
cross-coupled second messengers Ca2+ and cADPr and (b) combined activation of eNOS by 

Ca2+ and PKB (via axis (6)).

The model of self-control of NOS-RG is presented in Figure 2. Besides short and long PFLs, 
based on cADPr-dependent CICR and activation of eNOS by Ca2+ [69–71] (broken arrows 1, 2), 
this model incorporates six PFLs (arrows 3–8) and three NFLs (dotted lines 10, 12, and broken 
arrow 11). Group of PFLs (arrows 3–6), based on the phosphorylation and activation of eNOS 
[70, 71] and of PKB by CaMKIV and AMPK [72, 73], provide the amplification of basic PFLs 
and robustness of NOS-RG.

PKG1 occupies a central position in the autoregulation of NOS-RG. Feedforward activation 
of RyR [26] and feedback activation of eNOS [74–76] and PKB [72, 77] by PKG1 (arrows 7–9) 
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raise the reliability of this system. Feedback inhibition of sGC [78] and activation of PDEV 
[79] by PKG1 are directed to lower the level of cGMP in NOS-RG (line 12 and arrow 11). The 
inhibition of external Ca2+ influx, realized via inhibition of TRP channels by PKG1 [80–82] 

(line 10), may reinforce these NFLs.

The reliability and low sensitivity to noise and parameters alterations of technical systems is 
primarily attained by multiple negative feedback control and duplication of operating ele-

ments [39, 40, 83, 84]. PFLs, in contrast to NFLs, may enhance system’s sensitivity to changes 
of internal parameters and noise by amplifying incoming signals.

Basic structures of autoregulation of PLC-RG and NOS-RG involve the families of nested 

PFLs. Such unusual structures may create new properties of analyzed system: combination 
of extreme sensitivity to the alterations of incoming signals and the reliability, provided by 

the redundancy of PFLs. Due to that, both systems may be considered as robust but sensitive 
integrators of multiple hormonal signals.

Positive cross-control of NOS-RG, fulfilled by AC/cAMP/PKA-signaling pathway, is indi-
cated by broken arrows 13–15 in Figure 2. This control is directed to internal elements of 
main PFLs (arrows 5, 6), being addressed to RyR, ARC, and PKB. Owing to that, NOS-RG 
might have high sensitivity to this kind of cross-control. Corresponding examples will be 

Figure 2. PI3K/PKB/eNOS/NO/sGC/cGMP/PKG1/ARC/cADPr/RyR/Ca2+-signaling system with its system of autoregulation 

and cross-control by AC/cAMP/PKA-signaling pathways. All abbreviations and explanations are given in the text. Various 
types of activation and inhibition are indicated as broken arrows and dotted lines (with symbol T), correspondingly. The 
family of nested positive feedback loops (arrows with white circles) has the numbers from 1 to 8. Positive feedforward 
loop is numbered as 9. Negative feedbacks (marked by black circles) have the numbers 10 through 12. Crosstalk loops, 
describing positive impact of AC/cAMP/PKA-signaling pathway, have the numbers 13 through 15. Various hormones and 
neurotransmitters (with corresponding receptors), activating G-proteins and TKs, are placed in the boxes.
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presented later. However, AC/cAMP/PKA-signaling pathway is under negative cross-control 
of NOS-RG (Figure 1). Robustness of NOS-RG and complexity of its crosstalk with AC/cAMP/
PKA-signaling pathway represent serious problems in experimental studies and mathemati-

cal modeling of such systems.

2.3. Oscillatory and triggering regimes registered in adipocytes

Table 1 summarizes our earlier results, characterizing action of several hormones and 

neurotransmitters on Ca2+-signaling systems of cultured epididymal adipocytes (9DIV) of 

white healthy mice. ACh, activating m3-muscarinic receptors (m3-MR), may elicit periodic 

Ca2+ oscillations in 70–80% of the cells. About 10–15% of the cells respond by spikes. Rest of 
the cells is silent. Applied inhibitory analysis indicates the implication of NOS-RG [61]. In 
contrast to Ach, NE by activating PLC-RG via α1A-AR evokes Ca2+ oscillations in 30–40% of 
the cells. Subsequent application of NE, after washing of cultured cells of Ach, may induce 
Ca2+ oscillations in the same percentage of cells. Fast monomodal or complex multimodal 
oscillations may be observed in dependence of cell size [57]. Two lines of numbers at the 
fifth row describe these two limits of oscillations periods, which were registered in cultures 
studied.

In comparison with ACh, ANP, and NE, peptide hormones insulin, Ang II, and BK (Table 1) 

may evoke rhythmic activity by involving first or second oscillatory mechanisms (PLC-RG 
or NOS-RG) in dependence of cellular culture used. Besides that, insulin, CCK, BK, and ANP 
may often elicit complex multiperiodic and chaotic Ca2+ oscillations.

Agonists ACh 

[61]

NE [51] Ins [59] Ang II [60] ANP

[58, 61]

CCK-4 

[58]

BK **

Receptors involved and 

concentrations of agonists used

m3

1-5 μM

α1

1-5 μM

TK

3-5 nM

AT-1

300-500 nM

NPR-A

1-5 μM

CCK-B

1-10 nM

B2R

0.3-10 μM

PLC-RG, % of cells with rhythmic 
activity

— 30–40 20–30 20–30 — 20–30 30–40

NOS-RG, % of cells with rhythmic 
activity

70–80 — 15–25 30–35 30–40 20–40 25–30

Periods of oscillations (s) * 5–60

100–300

20–75

100–300

20–30

50–150

20–50

75–200

20–50

200–300

25–30

300–500

10–30

200–500

In the table, second and third rows describe, which of two Ca2+ signaling systems is turned on by corresponding agonist. 
Numbers, presented at these rows, show average percentage of all cells in the cultures tested, which generate mono and 

multimodal oscillatory regimes, or chaotic oscillations. *Periods of minimal and maximal modes of oscillations, observed 

in the cells of different size, are presented in fourth row. In each experiment 5–10% of all cells were nonresponsive. Rest 
of the cells was characterized by Ca2+ spikes. From 10 to 15 experiments were used for each agonist applied. The number 
of monitored cells in each culture was 80–100 cells. References are indicated in the square brackets in top row. **Taken 
from: Turovsky et al., submitted to publisher.

Table 1. Involvement of two Ca2+-signaling systems: PLC and eNOS-dependent robust generators (PLC-RG and 

NOS-RG) in rhythmic processes evoked by hormones and neurotransmitters in cultured epididymal adipocytes (9DIV) 
of white 4–6 weeks old male mice.
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2.4. Some elements of the control of both Ca2+-signaling systems

2.4.1. Control of IP3R by PKG1

Preliminary results, obtained with fluorescent antibodies staining, indicate smooth dense distri-
bution of IP3R in adipocytes in comparison with smooth but thin distribution of RyR (Turovsky 
et al., submitted to publisher). This difference corresponds to substantial difference in mRNA 
expression of the subtypes of IP3R and RyR-receptor proteins (see below). Due to the expression 
of both types of Ca2+-channels in adipocytes, we might expect their tandem operation under the 

action of ACh. However, preincubation of cultured cell with PLC or IP3R inhibitors does not 
alter ACh effects [61]. Moreover, combined application of PLC inhibitors and IP3R antagonists 
added after ACh may only diminish the amplitude of Ca2+ oscillations by10–15% [61]. All this 
may indicate that expected tandem operation of RyR and IP3R, or supportive role of IP3R [24, 

26], is not realized due to inhibitory action of PKG1 on IP3R (Figure 1, dotted line 12) and, 
possibly, on PLCβ. Recent data, demonstrating endothelium-dependent suppression of AVP-
evoked Ca2+ oscillations in microvessel’s myocytes by ACh, support this conclusion [85]. Taken 
together, these results may indicate universal role of the control of IP3R by PKG1. To stress the 
question, we might also speculate that, in spite of low protein content of NOS-RG in adipocytes, 

high activity of this system is supported (reinforced) by unusual multiloop feedback control.

2.4.2. Robustness of NOS-RG: Impact of PFLs, based on activation of several targets by 
CaMKII and AMPK

CaMKII may be involved in the activation of RyR, eNOS, and PKB (arrows 3, 5, 6 at Figure 1). 
AMPK, being activated by Ca2+-dependent CaMKIV, may also promote further activation of 

eNOS (arrows 4 at Figure 1). To break corresponding PFLs, we applied the inhibitors of both 
enzymes. To avoid nonspecific effects, we used low concentrations of the inhibitors, equal 
to their Kd. Our preliminary studies have shown that the applications of KN-63 (inhibitor 
of CaMKII) and of Compound C (inhibitor of AMPK) altered the shape of Ca2+-oscillations 

and even suppressed rhythmic activity in part of the cells (Figure 3). Combined effect of 
both inhibitors was statistically significant (p ≤ 0.02). Rather weak effect of Compound C on 
NOS-RG might be explained by the fact that the activation of AMPK by CaMKIV (at the condi-

tions of our experiments) is insufficient to keep required gain of PFL(4) (arrow 4 at Figure 2).  
Besides CaMKIV, the activity of AMPK is controlled by AMP, sirtuins (SIRT1), liver kinase 
B1(LKB1), and several other kinases [86].

2.4.3. On the involvement of α1,2-AR and β1: 3- AR in the activation of PLC-RG and 
NOS-RG

Agonist of α1-AR phenylephrine (5–10 μM), like to NE (Table 1), evokes Ca2+ oscillations in 

25–30% of the cells, implicating PLC-RG. Sustainability of these oscillations depends on store-
operated Ca2+ entry into the cells [63].

Agonists of α2-AR guanabenz (10 μM) and L-arginine (5–10 mM) may elicit Ca2+ spikes in 

35–50% of cultured cells, involving NOS-RG [55].
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Activation of β1–3- AR by isoproterenol (3–5 μM) is characterized by slow rise of Ca2+ in 

40–50% of cells. The antagonists of IP3R and RyR suppress Ca2+ responses in 75–80% and 
15–20% of activated cells, respectively [62]. Observed difference in this suppression may char-

acterize the impact of PKA on the phosphorylation and activation of IP3R and RyR.

2.4.4. Signaling interplay and sensitivity: Synergistic action of low concentrations of ACh and NE

Low concentrations of ACh, NE, phenylephrine, and L-arginine cannot induce Ca2+ responses 

in adipocytes. However, sequential or combined application of ACh and these agonists dis-

play synergistic effects, promoting diverse oscillatory regimes (Figure 4A–C) and triggering 

oscillatory transitions from one stable steady state with low Ca2+ level to the second steady 

state with high Ca2+ concentration in the cell (Figure 4B, record 2) (Turovsky et al., in publica-

tion). This kind of synergy may be explained by combined action of various Gβγ- proteins on 
signaling axis (6): Gβγ → PI3Kγ → PKB → eNOS.

Combined action of low concentration of ACh and of isoproterenol may elicit complex oscilla-

tions (Figure 4D), triggering transition from one stable state to another (Figure 4E) and Hopf 
bifurcation, that is, transition from stable steady state to stable oscillatory regime (Figure 4F). 
The mechanism of synergistic action of ACh (m3-MR) and of isoproterenol (β1–3 - AR) may 

be based on the activation of axis (6) by ACh, reinforced by the activation of PKB (in this axis) 

and of ARC and RyR (in NOS-RG) by PKA (arrows 13–15 at Figure 2).

2.4.5. cADPr and RyR may play a supportive role in the operation of IP3R and PLC-RG

Nicotinamide (NAM), product and inhibitor of cADPr synthesis by ARC (or CD38), has some 

influence on Ca2+ oscillations evoked by NE. Added NAM (10 mM) may change the shape of 
oscillations in 20–30% of oscillating cells and suppress rhythmic activity in 15–20% of cells 
(Turovsky et al., submitted to publisher). This may indicate tandem operation of IP3R and 
RyR in some part of the cells, having rhythmicity evoked by NE.

Figure 3. Robustness of NOS-RG. Impact of CaMKII and AMPK on Ca2+- oscillations elicited by ACh in cultured 

adipocytes (9DIV). Bars represent average number of the cells, which respond to added ACh and the inhibitors of 
CaMKII (KN-63) and of AMPK (compound C). The inhibitors were added 10 min after the application of ACh. Details 
are given in the text. N = 6. Data presented as mean ± SD. *denotes statistically significant difference p ≤ 0.02. Results are 
taken from: Turovsky et al., submitted to publisher.
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3. Loss of rhythmic activity and suppression of mRNA expression 

for the proteins of Ca2+- signaling systems at obesity

3.1. Influence of cell size on rhythmic activity of adipocytes of healthy animals

Preadipocytes isolated from healthy male mice, growing on high-glucose DMEM medium, 
become differentiated to the ninth day of culture (9DIV). Mature adipocytes represent het-
erogeneous populations of cells, which is characterized by different cell size, in dependence 
of number of lipid droplets inclusion [57]. We evaluated cell size by measuring the area 
(S) occupied by the cell. Small adipocytes, having S ≈ 300–400 μm2, generated fast regular 

monomodal Ca2+- oscillations with periods from 5 to 75 s in response to ACh or NE [57]. 
Such cells accounted for 10–15% of all monitored cells in culture and had few small lipid 
droplets. More than 50% of the cells had cellular size S ≈ 500–900 μm2. Rest of cells (15–20%) 
with S ≤ 1100 μm2 had several big lipid droplets or one lipid inclusion, which might occupy 

from 70 to 90% of the cell volume. ACh and NE elicited complex multimodal Ca2+ oscilla-

tions with periods from 100 to 300 s in the cells with S ≥ 600 μm2. Similar results, character-

izing correlation of cell size with the shape and period of oscillations, have been registered 

for insulin [59]. Results presented in lower part of Table 1(fifth row) indicate that, indepen-

dently of agonist used, cultured cells may generate Ca2+ oscillations in the ranges of periods 

from 5–60 s to 400–500 s.

Figure 4. Signaling interplay and sensitivity. Synergistic action of low concentrations of ACh and NE. A–C: Interplay 
of Gβγ –subunits of G- proteins of GPCR. Ca2+- oscillations and triggering regime (4B, record 2) produced by combined 
action of low concentrations of ACh and NE, ACh and phenylephrine, ACh and L-arginine, correspondingly. Record 1 at 
B represents an example of relaxation oscillations. D–F: Interplay of Gβγ- subunits of Gq- proteins (ACh) and of β1–3 - AR 

(isoproterenol). Complex oscillations (D), triggering regimes (E) and Hopf bifurcation (F) produced by combined action of 
low concentrations of ACh and isoproterenol. Description in the text. Results from: Turovsky et al., submitted to publisher.
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Rhythmicity disappeared in hypertrophied adipocytes with S ≥ 1200 μm2, which may respond 

to the application of high doses of ACh or NE (20–30 μM) only by Ca2+ spikes or slow Ca2+ 

accumulation [57]. These observations may indicate that uncontrolled hypertrophy and cor-

responding cytoplasm shortage might predispose to loss of rhythmic processes in adipocytes 

and to the development of general hormonal resistance in WAT cells.

3.2. Impact of obesity on Ca2+ signaling systems of adipocytes

3.2.1. Model of obesity

We used 6 to 8 month course of high-fat feeding, based on the addition of pork lard  

(200–300 mg/day/animal) to standard chow of rodents, taking in experiments 7–8 month old 

mice. This model is described briefly in Appendix. Obese 6–7-month-old mice had elevated 
levels of glucose in blood in a fasted state (7–9 mM), raised arterial pressure (130–150 mm 
Hg), and macromolecular liver steatosis (Grishina et al., submitted to publisher).

3.2.2. Ca2+ signaling in hypertrophied primary adipocytes and cultured cells

Isolated primary epididymal adipocytes of medium size (S ≈ 6000–7500 μm2) had approxi-

mately 1–5% of cytoplasm (Figure 5B and C), which looks like bright oreol around of adipo-

cyte. Most of these cells, being attached to cover glass by Cell-Tak adhesive, cannot generate 
Ca2+ signal in response to added high concentrations of ACh (Figure 5D). However, most of 
hypertrophied cells, having spots of cytoplasm, still preserve the ability to respond to added 

Ca2+ (Figure 5E and F) or ionomycin (Figure 5D). This kind of nonresponsiveness to ACh 
might characterize general hormonal resistance of hypertrophied eWAT cells in obese state.

Preadipocytes isolated from fat pads of obese animals cannot grow on glucose, being adapted 

to use long-chain fatty acids (LCFA) incoming from the blood. Incubation of preadipocytes 
with 100 nM of L-palmitoylcarnitine (PC) and standard high-glucose DMEM provides 
required conditions for cell differentiation and lipid accumulation. ACh, NE, and insulin may 
evoke weak Ca2+ signals in some part of cultured cells. Oscillations and standard amplitude 
Ca2+ spikes have never been observed in this kind of cell (Turovsky et al., submitted to pub-

lisher). These radical alterations in Ca2+-signaling and hormonal sensitivity, registered in cul-

tured cells of obese animals, may depend on radical alterations of mRNA expression for the 

enzymes and channels of both Ca2+ signaling systems (PLC-RG and NOS-RG).

3.2.3. Impact of LCFA on mRNA expression of cultured cells

Our preliminary results, obtained with the application of real-time PCR analysis (see 

Appendix), revealed significant depression of mRNA expression in cultured adipocytes of 
obese animals in comparison with the cells, which have been isolated from healthy animals. 
Results presented in Figure 6 (gray columns) demonstrate that cultures grown on the medium 

containing 100 nM of PC have 3–5 fold lowering of the expression of: Ca2+-dependent genes (of 

NFAT, NFkB); genes of proteins involved in energy and lipid metabolism (citrate synthase (CS) 

and HSL); marker genes of SIRT1, AMPK, PI3Kγ, and of eukaryotic translation initiation fac-

tor 2 alpha kinase 3 (PERK). As for NOS-RG and PLC-RG, the expression of mRNA of eNOS 
(NOS3), CD38, and RyR3 had fallen 10 times or more. The gene of IP3R isoform 3 (IP3R3) was 
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most resistant to toxic action of very low dose of PC. The expression of inducible NOS (NOS2) 
mRNA was measured at the level of detection (Grishina et al., submitted to publisher).

Incubation of preadipocytes (isolated from obese animals) with 1 μM of PC revealed dra-

matic suppression of mRNA expression for all genes analyzed in cultured cells (9DIV). The 
expression of marker genes of NOS3 and RyR3 was not observed (marked in Figure 6 as *). 
These results support widely distributed viewpoint on LCFA toxicity and indicate an impor-

tant role of LCFA in the development of “adiposopathy”. Observed radical alterations in 
mRNA expression, especially for the proteins involved in the functioning of NOS-RG and 

PLC-RG, may mean that earlier discussed mechanisms of autoregulation and cross-control of 

both Ca2+ signaling systems are being lost under chronic toxic action of low concentrations of 

LCFA. This state of both systems may be characterized as absolutely deregulated state.

3.2.4. Expression of mRNA in eWAT of obese animals

In comparison with fat pads of age-matched healthy animals, eWAT of obese male mice is 
characterized by considerable down-regulation of the expression for all genes examined 

Figure 5. The shape and Ca2+ responses of primary hypertrophied adipocytes of obese mice. (A) confocal image of 3D 
reconstruction of primary hypertrophied adipocyte of obese mice (front view of one cell). The projection describes 
general uneven distribution of the cytoplasm in the cell loaded by Fluo-4. Fluorescent space corresponds to the part of 
cell occupied by the cytoplasm (up to 1–3% of total cell volume), while the bulk of the cell is engaged by fat droplet. (B, 
C) bright fluorescent areas around hypertrophied cells visualize the cytoplasm by fura-2 dye and are numbered as 1. 
Intracellular Ca2+ responses (Fura-2, ratio) from these areas, which were elicit by external Ca2+, are presented at panels E and 
F, correspondingly. Panel D describes rare type of Ca2+ response evoked by ACh. Panel D also demonstrates ACh resistance 
of hypertrophied cell. Though, the response to ionomycin is preserved. From Sergeev et al., submitted for publisher.
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(Figure 7). These alterations have some qualitative similarities with the results observed in 
cultured cells, especially with respect to the changes of expression of marker genes for the 

proteins of NOS-RG. Fat pads of obese animals have more than 8–12 times lowered expres-

sion of PKG1, PKG2, and eNOS genes. The expression of genes for RyR2 and RyR3 was under 
the level of detection. Observed significant down-regulation of IP3R1 and IP3R2 genes may 
mean that both Ca2+ signaling systems are in deregulated states. Considering NOS-RG as the 
system, which integrates hormonal signals involved in the control of NO bioavailability, we 

may conclude that the application of insulin, NE, ANP, and so on might be ineffective to rise 
NO level and PKG1 activity in “sick” fat depots of obese animals.

3.2.5. Benefit and disadvantages of physical activity in the treatment of obesity

Taking into account the benefit of physical activity in the treatment of obesity, we have 
applied a very low-intensity treadmill running program (6 weeks, 10 min/day) to treat dia-

betic overweight mice (56.2+/− 5.7 g. wt) in combination with animals treatment with NaCl 
(control group) or complex preparation, addressed for the treatment of liver diseases and 

hepatic encephalopathy [88]. However, in a control group, 8 of 20 diabetic mice treated with 
NaCl have died within first week of adaptation period due to exercise intolerance. Survivors 
were characterized by marked improvement in blood glucose and lipid profiles and in liver 
mRNA expression of all genes examined (of PLC-RG and NOS-RG). In comparison with con-

trol group, all animals treated with complex preparation tolerated exercise program well and 

showed further improvement in blood lipid profiles and mRNA expression [89]. Taking all 
this into account, we might speculate that application of various exercise programs to treat 

obese patients should be combined with the use of some performance-enhancing drugs, or 

drugs addressed to support liver and cardiovascular system, and so on.

Figure 6. Down regulation of marker genes expression in cultured adipocytes of obese male mice grown in presence of 

L-palmitoylcarnitine. On the plot are resented: Ca2+-dependent genes NFAT and NFkB, genes of PERK and proteins of 
NOS-RG, IP3R (IP3R1,2 - subtypes 1, 2), CamKIIβ, AMPKα, and of energy and lipid metabolism (citrate synthase (CS), 
GPAT1, HSL), β- actin and of inducible NOS (NOS2). Gene of GAPDH is used as reference gene. Mean expression in 
control adipocytes from healthy animals was set as 100%. Error bars indicate SD. Gray and black columns correspond 
to cultured adipocytes grown in presence of 100 nM and 1 μM of L-palmitoylcarnitine, correspondingly.* indicate the 
absence of mRNA expression for eNOS (NOS3) and of subtype 3 of RyR (RyR3). Horizontal line marked at the level 1 
indicates baseline gene expression. N = 4, number of cultures in each group.
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4. Conclusions

The main aim of our chapter was to reconstruct core elements of the Ca2+ signaling sys-

tem of adipocytes and to demonstrate that this complex multivariable system cannot be 

divided on separate parts, independently controlled by various hormones and/or neu-

rotransmitters. Having multiple feedbacks and cross-controls (Figures 1 and 2), this sys-

tem makes interdependent the concentrations of all second messengers and the activities 

of various kinases. For example, considering lipogenic and antilipolytic action of insulin 
[7, 8], we have to take into account its lipolytic action. Insulin increases NO bioavailability 
and PKG1 activity by activating NOS-RG. The same effect may be produced by CCK, BK, 
Ang II (see Table 1). Reliability of NOS-RG, receptors’ signaling interplay, and amplifica-

tion of signals create important properties of Ca2+ signaling system, providing integration 

of hormonal signals at their low concentrations (Figure 4). This is especially important 
with respect to ACh.

Parasympathetic control of WAT is still under the question [90]. However, in our experi-
ments ACh evokes marked Ca2+ and NO responses in cultured cells, implicating NOS-RG 

[61]. Some sensitivity to ACh is preserved in primary hypertrophied adipocytes ([57] and 

Figure 5D). Due to that, possible role of ACh in the control of WAT metabolism requires 
further investigations.

Figure 7. Down regulation of marker genes expression in eWAT of obese male mice. Presented Ca2+-dependent genes 

NFAT and NFkB, genes of PERK and proteins of NOS-RG, IP3R (IP3R- subtypes 1, 2), glutathione reductase (GR), 
uncoupling protein 1 (UCP1), tumor necrosis factor α (TNFα), acetyl coenzyme a carboxylase (ACC), CamKIIβ, AMPK, 
and of energy and lipid metabolism (citrate synthase (CS), GPAT1, HSL), β-actin and NOS2. Gene of GAPDH is used 
as reference gene. Mean expression in control adipocytes from healthy 8 month old animals was set as 100%. Error bars 
indicate SD. N = 5, number of animals in each group.* indicate the absence of mRNA expression for both subtypes of 
RyR (RyR2, 3).
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Gradual loss of rhythmic activity and the appearance of hormonal resistance, which are 

observed in hypertrophied cultured cells and in primary adipocytes isolated from obese ani-

mals, may be considered as markers of cell viability in the progress of pathologic process. 
Similar alterations in rhythmicity and resistance to ACh and NE have been registered in aorta 
rings isolated from obese and diabetic rats [87, 89].

Loss of rhythmicity in adipocytes is based on the alterations in enzyme activities and loss of 

feedback control of PLC-RG and NOS-RG, due to marked alterations in mRNA expression 

of corresponding genes (Figures 6 and 7). Our preliminary results indicate that qualitatively 
similar alterations in gene expression are observed in the liver of obese and diabetic mice [90].

All this may indicate universal mechanisms resulting in deregulation of metabolic and signal-

ing systems in various organs and tissues.
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A. Appendix

Gene expression analysis

Gene expression in cultured adipocytes and in eWAT was performed using real-time 
PCR (Applied Biosystems 7300) with TagMan Universal Master Mix II, no UNG (Applied 
Biosystems). Total RNA was isolated with TRIzol (Invitrogen). RNA was quantified by 
Qubit® RNA BR Assay Kit (Molecular Probes, Eugene, OR) and cDNA was synthesized from 
5 μg of total RNA using a reverse transcription system with random primers (Sileks, Russia). 
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH was used as reference gene. All results 
were normalized to GAPDH mRNA expression. Fold difference in each gene expression was 
calculated as 2−ΔΔCt. ΔΔCt were calculated relative to corresponding gene of control adipocytes 
grown on glucose, or of control healthy age-matched white male mice.

Animal model of obesity and type 2 diabetes

Animal model of obesity and type 2 diabetes (T2D), described for rats previously [87], was 

used in present experiments. This model is heterogeneous, like those presented by Duval 
et al. [5]. We used 6–8 month course of high-fat feeding, based on the addition of pork lard  
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(200–300 mg/day/animal) to standard chow of rodents, taking in experiments 7–8-week-old 
mice. Obese 6–7-month-old fat-responsive mice had elevated level of glucose in blood in fasten 
state (7–9 mM), raised arterial pressure (AP = 130–150 mm Hg) and macromolecular liver steato-

sis (Grishina et al., submitted for publisher). The animals with advanced T2D (9–10 month) have 
been characterized by: AP = 140–170 mm Hg, fasting glucose level of 12.1 ± 1.8 mM (SD), insulin 
of 2.9 ± 1.3 ng/ml (SD) and venous blood ammonia higher than 100–140 μM, liver fibrosis or even 
cirrhosis. Dysfunctional preadipocytes, isolated from “sick” epididymal fat depots of diabetic 
mice, were characterized by inability to proliferate (Turovsky et al., submitted for publisher).
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