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Abstract

Nitrogen is the element with the greatest influence on plant production and on protein 
content in the case of grain crops. Nevertheless, nitrogen over-fertilization produces 
environmental problems such as water pollution and global warming, which has led to 
the declaration of vulnerable zones to nitrate pollution in the European Union and to 
the adhesion of many countries to the Kyoto protocol. In the case of wheat there is a 
demand for producing quality grain, which is primed with a bonus price. Under these 
both economical and environmental circumstances, arose the need for a rational system 
of nitrogen fertilization which enabled the optimization of nitrogen use under the specific 
edaphoclimatic of Northern Spain. In order to cope with this objective a net of nitrogen 
fertilization assays was established by means of which a series of fertilization strategies 
together with some associated diagnosis tools were evaluated. Thus, N losses occurring 
both by nitrate leaching and by N

2
O emissions to the atmosphere were quantified, as 

well as plant N extractions regarding the different nitrogen fertilizer treatments applied.

Keywords: gaseous N losses, leached N

1. Introduction

Nitrogen (N) plays a key role in the growth and development of wheat; thus, wheat’s growth 
and quality might be modified through N fertilization [48]. However, cultures use N inef-
ficiently, and, in general, 50% of the applied N is not used by plants [12, 41]. Therefore, N 
losses take place, both gaseous and leached, which cause economic and environmental costs. 
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Within the economic costs, that caused due to diminished N use efficiency stands out. Among 
the environmental costs, the contribution of some N-based gaseous compounds that play a 
role in the greenhouse effect [10], acid rain [23, 24] and the contamination and eutrophication 
of waters due to nitrate leaching further than the root zone [1, 17] are notable. In this sense, 
in Álava, Arrate et al. [6] describe a series of changes in the management of arable land in 
the years 1967–1997 (wetland drainage, application of large quantities of fertilizers, phyto-
sanitary products etc.) that progressively increased the concentration of N compounds in 
subsurface waters. Due to such reasons and by application of the European Directive 88/778/
EEC related to water for human consumption [13], the zone related to the Eastern sector of 
the quaternary aquifer of Vitoria was designated as vulnerable to nitrate pollution in the 
year 1999 [14]. This zone comprises 38% of the area where wheat is grown in Alava, 9500 ha 
approximately. In this zone, the N fertilization is as much as 140 kg N ha−1 depending on the 
previous culture and soil richness; N fertilization is not allowed at a distance closer than 3 m 
of any water course.

Nitrous oxide (N
2
O) is not a very reactive gas; it persists in the atmosphere for as much as 

150 years [47]. This gas adsorbs electromagnetic radiation in various wavelengths in the infra-
red region between 7.7 and 17 μm [35] and its greenhouse effect per mass unit is some 300 
times larger than that of CO

2
 [36]. In this sense, it is estimated that in the last 100 years, N

2
O 

has contributed approximately 5% to the warming up of the planet [42, 43]. The origin of 90% 
of the N

2
O emissions is anthropogenic, and agriculture is its main source [22]. N

2
O in soils can 

be produced both due to nitrification and denitrification (Figure 1). Nitrification is a micro-
bial aerobic process in which ammonium first oxidizes to nitrite and then to nitrate. In this 
ammonium to nitrate oxidation process, N

2
O can be released into the atmosphere [46]. On the 

other hand, denitrification is a microbial anaerobic process in which organic carbon is used 
as the energy source and the nitrate as the last electron acceptor so that it reduces to the last 
nitrogenous gaseous compounds N

2
O and N

2
. The nitrification and denitrification processes 

Figure 1. Transformations of mineral nitrogen in the soil [46].
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can occur simultaneously in the soil since the aerobic and anaerobic conditions can simultane-
ously take place at the same soil aggregate [26].

The N balance allows the knowledge of the N evolution at the soil–plant system in a settled 
period of time. It also enables the knowledge of the sources of N other than fertilization, and 
the rate of transfer between the different components of N, the main mechanisms of N loss, 
and what amount of N is not likely to be recovered [30]. Therefore, determining the balance 
of N in a culture system helps explain certain parameters that determine the dose of N needed 
by the cereal [28, 49], optimizing the nitrogenous nutrition of the plant and reducing the dan-
ger of contamination.

The goal of this work was to ascertain the quantity of N lost by leaching or by being released 
to the atmosphere and to study the factors that have an effect on such losses. Also, the N bal-
ance in the soil–plant system was to be determined.

2. Materials and methods

2.1. Assay establishment

A nitrogen fertilization experiment was carried out in Gauna, Álava (average annual rain-
fall of 779 mm and average annual temperature of 11.5°C) from November 2001 to February 
2004 in three consecutive seasons. The assay was conducted in the Western Sector of the qua-
ternary aquifer of Vitoria, adjacent to the area vulnerable to the contamination of nitrates of 
agricultural origin. The trial was organized in random blocks with four repetitions in which 
each elementary plot covered an area of 50 m2. The soil on which the trial was established was 
classified as Aquertic Eutrudept [40] and was planted with wheat. Some of the soil properties 
are shown in Table 1. Data regarding when sowing, the first, second, and third N broadcast-
ings, and the harvest took place are shown in Table 2. Before sowing, 90 kg ha−1 of P

2
O5 ha−1 

and 90 kg ha−1 of K
2
O ha−1 were applied as 0-14-14. Nitrogen doses of 0, 140, and 220 kg N ha−1 

Depth (cm) 0–30 30–60

Sand (%) 45.18 48.25

Silt (%) 27.14 39.21

Clay (%) 27.67 12.49

pH 7.98 8.13

Organic matter (%) 2.12 1.52

Phosphorous (P) (mg kg−1) 43.30 32.53

Potassium (K) (mg kg−1) 135.00 93.00

Carbonates (%) 11.90 22.00

Table 1. Soil properties of the experiment in Gauna (Álava).
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were applied as ammonium nitrate (33.51% N g/g) in two or three broadcasts as described in 
Table 3. A control treatment in which no N was applied was included. The treatment in which 
140 kg N ha−1 were broadcast was applied in two or three amendments (Table 3) to observe 
the splitting effect and to evaluate a low fertilization strategy in three broadcasts suggested as 
a possible N fertilization management in vulnerable zones.

2.2. Mineral nitrogen (Nmin)

The first Nmin measures, (ammonic and nitric N), took place at start of tillering and at the 
end of winter 2001. They were determined from a mixture of eight samples throughout the 
trial taken at the depths 0–30 and 30–60 cm. Subsequently, all Nmin values were determined 
from a mixture of two samples per treatment, block and depth. These samples were taken 
before sowing, at the end of winter, at Z20, and also after harvest in all years and all treat-
ments except at the end of winter of year 2003, when only samples of the control treatment 
were taken.

The soil samples were shredded manually. Stones, roots, and any other type of plant material 
were discarded. Then, the humidity of the samples was gravimetrically ascertained.

200 mL of 1 M KCl were added to 100 g of soil and the mixture was stirred for 30 min. After 
filtering, the nitrogen of nitric origin in the filtrate was analyzed by segmented flow injection 
[3, 4]. The calculation of Nmin per hectare was corrected according to the content of coarse 
elements of the soil (Table 4).

Total dose (kg N ha−1) Treatment Broadcasts (kg N ha−1)

Start of tillering (Z20)* Start of jointing (Z30) Flag leaf (Z37)

0 0 0 0 0

140 40 + 100 40 100 0

140 40 + 60 + 40 40 60 40

220 80 + 140 80 140 0

*Z20, Z30 and Z37 correspond to Zadoks’ scale [50].

Table 3. Dose and broadcasts of the N fertilization treatments.

Sowing First broadcast Second broadcast Third broadcast Harvest Tilling

2001-11-30 2002-03-04 2002-04-08 2002-05-13 2002-07-24 2002-11-17

2002-10-29 2003-01-20 2003-03-24 2003-05-12 2003-07-08

2003-11-20 2004-03-16 2004-04-15 2004-05-20 2004-07-28

Table 2. Data for sowing, first, second, and third N broadcasts, harvest and tilling.
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2.3. Leached nitrate

Two ceramic cups were inserted per block and treatment. They were buried at a depth of 
60 cm (Figure 2). As a test, in the year 2003, a hole in the soil was performed after harvest. It 
was observed that wheat roots reached a depth of 60 cm as a maximum; so the depth at which 
the ceramic cups were inserted was considered appropriate and it can be considered that the 
gathered nitrogen was not profitable for plants. Liquid samples were collected from ceramic 
cups when it had rained 20–40 mm or every fortnight. The first liquid sample after every inser-
tion was extracted but then discarded. The sampling data occurred between December 20, 
2002 and September 18, 2003 and between January 9 and September 27, both data in 2004. At 
both periods, the ceramic cups were removed at harvest and then inserted again. After every 
sampling session, a vacuum of approximately 50 kPa was performed with a manual pump. 
Afterwards, the nitrate concentration in the sampled water was analyzed through segmented 
flow injection [3, 4].

The water balance was determined in layers 0–20, 20–40, and 40–60 cm depth following 
Campbell’s [11] simplified waterfall method. In this method, it is considered that waters fills 

Figure 2. Ceramic capsule in the soil for leached liquid sampling.

Depth (cm) Soil apparent density (g cm−3) Coarse elements (% g/g) Stone free apparent density (g cm−3)

0–20 1.57 20.8 1.4

20–40 1.59 21.5 1.4

40–60 1.93 42.6 1.6

Table 4. Soil apparent density (g cm−3) and coarse elements (% g/g) at 0–20, 20–40, and 40–60 cm depths.
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up every layer of the soil before it flows to the following layer (Eqs. (1)–(3)). Every time a 
sample was taken, the humidity of each of the three layers was measured so that the variation 
of the water reservoir was measured. For every layer, the humidity was measured gravi-
metrically as well as with an IMKO TDR (time domain reflectrometry) so as to calibrate the 
later. However, no relation between both measures was observed; thus, only the gravimetrical 
measures were considered afterward.

The water balance in the 0–20 cm deep layer was calculated as specified in Eq. (1):

   D  20   = Pr –ETc ±  VR  20    (1)

where D20 is drainage (mm) below 20 cm, Pr stands for rain, ETc is the culture’s evapotranspi-
ration (mm) determined according to FAO methodology [2] and VR20 (mm) is the variation of 
the water reservoir in the 0–20 cm layer.

Drainage below 40 and 60 cm was, respectively, ascertained as described in Eqs. (2) and (3):

   D  40   =  D  20   ±  VR  40    (2)

where VR40 is the water reservoir variation in the 20–40 cm (mm) layer and D40 is drainage 
beyond 40 cm (mm).

   D  60   =  D  40   ±  VR  60    (3)

where VR60 is the water reservoir variation in the 40–60 cm (mm) layer and D60 is drainage 
beyond 60 cm (mm).

Finally, the N mass drained during the sampling period was calculated with Eq. (4).

   N  
i
   =  D  60   ·   [N]   

i
   ·  10   −2   (4)

where N
i
 is the N mass of nitric origin drained per period and treatment (kg N ha−1), D60 is 

the water loss due to deep percolation in the period between sampling days (L m−2) and [N] 
is the nitric nitrogen concentration in the leachate sampled at the end of the period i (mg L−1).

Finally, the values obtained per day in Eq. (4) for each treatment and sampling day in the 
period of time comprehended between the days the capsules were inserted and when they 
were removed were summed up so as to assess the N mass leached per hectare in that period.

A piezometer was installed next to the assay so as to detect the moments when the level of 
water was beyond 60 cm. This occurred on the days February 5 and May 7, 2003 and March 
11, and April 1 and 30, 2004.

2.4. Gaseous losses

2.4.1. N
2
O emissions

To assess the fertilizer application effect on N
2
O emissions (N

2
Oem), in the year 2002, those 

emissions were measured after the N fertilizer applications, from March 4 to May 17. During 
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this period of time, samples were taken every 2 days in treatments 0, 40 + 100, 40 + 60 + 40, 
and 80 + 140. In the year 2003, more exhaustive measures were taken so as to assess not only 
the differences in the emissions after N applications but also to study the N

2
O emissions of 

the field after harvest and laboring and to determine the effect of the temperature and humid-
ity on emissions. Therefore, that year, samples were taken every 2 days after N broadcasting 
and every fortnight from January 20, 2003 to February 4, 2004 in treatments 0, 40 + 100, and 
80 + 140. Measurement frequency intensified around laboring time.

To perform such measurements, 3 L polyvinyl chloride (PVC) hermetic chambers with a rub-
ber septum were inserted in the soil in every block at a depth of 2 cm (Figure 3). Before their 
placement, four 10 mL samples from the atmosphere of the essay were taken at a height of 
2 m. After 45 min, four 10 mL samples of the air of each chamber were taken and kept in 
Vacutainer® blood sampling tubes. Then, the N

2
O in the samples was analyzed with a gas 

chromatograph (Unicam 8925) equipped with an electron capture detector (ECD). When the 
described measurements were performed in the field, the temperatures of the air at a height 
of 2 m and that of the soil at a depth of 10 cm were also measured. In 2003, the humidity of the 
first 30 cm soil layer was also gravimetrically measured at 4 points of the essay.

With the soil humidity measure, the percentage of soil water-filled pore space was assessed 
using Eq. (5).

  WFPS = H  ρ  SFS   /  (1–  ρ  SFS   / 2.65)   (5)

where WFPS stands for the water-filled pore space (% ml/ml), H, the water percentage in dry 
soil for the 0–30 cm soil layer (% g/g), and ρSFS: stone free soil apparent density (g cm−3).

Soil apparent density is the quotient between the weight of the soil solid particles and the in 
situ total volume of the soil. The in situ volume of the soil was assessed through the excava-
tion method [9] with the adaptation of using polyurethane resin (Wolf, [45]) as the average 
value obtained at four holes dug in the essay at depths 0–20, 20–40, and 40–60 cm. Due to the 

Figure 3. Chamber in the soil.
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fact that the soil was quite stony, the apparent density required a correction which was exe-
cuted considering the percentage of gross elements (those that did not pass through a 2 mm 
sieve) (Table 4) and their density, which is acknowledged as 2.65 g cm−3 [37].

2.4.2. N
2
O production and total denitrification at the arable layer

From January 23 to September 18, 2003, the N
2
O production rate (N

2
Oprod) was measured 

in the arable layer at the same treatments and times described for N
2
Oem. To achieve this, 

two 30 cm long and 2.65 cm diameter wide cylindrical samples were taken at the plots of the 
studied treatments. These two samples were transferred to a hermetic 2 L pot with a rubber 
septum (Figure 4). Then, the pots of the different plots were inserted in a hole next to the stud-
ied plot and were covered with the soil of the same hole and kept to incubate for 24 hours. In 
such a manner, the actual soil temperature and its changes could be mimicked. After 24 hours, 
10 mL samples of the atmosphere of each pot were stocked in Vacutainer® tubes for their 
ulterior N

2
O determination by gas chromatography (Unicam 8925). The same process was fol-

lowed for other pots to which 100 mL of acetylene (C
2
H

2
) (Air Liquide, SA) were injected mak-

ing the atmosphere of the pot rich in acetylene by 5% (Figure 4). C
2
H

2
 blocks N

2
O reduction to 

N
2
 in the denitrification process and the ammonium oxidation in the nitrification process [33]. 

Therefore, the N
2
O produced in the incubation with an atmosphere of 5% C

2
H

2
 comprises the 

joint production rate of N
2
O + N

2
 due to denitrification (Ndeni) [8] (Knowles, [25]).

The cumulated N loss was calculated by the integration of the diary rates of N
2
Oem, N

2
Oprod, 

and Ndeni over time.

2.5. Plant N extraction

To determine the N extraction of wheat in the aerial part at harvest, a 0.25 m2 area in each plot 
was randomly chosen and the plants in that area were cut to the ground. Grain and straw were 
separated and dried in an oven at 70°C for 48 h at least to determine biomass. Then, the  samples 

Figure 4. Incubation pot before it was buried and bag and syringe with acetylene.
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were ground and sieved through 0.5 and 1 mm sieves respectively. The total N was determined 
both for straw and grain by Kjeldahl procedure [5] with a Kjeltec Auto sampler System 1035 
(Tecator). The N absorption by the aerial part of the plant (Nab) was determined as the sum of 
the products of the N concentration at grain and straw times their respective biomasses.

The yielded grain quantity datum, needed for the previous calculation was determined 
by harvesting the central 1.5 m wide aisle of each plot. Yield was referred to a humidity of 
120 g kg−1.

2.6. N balance

The N balances are based on the application of the mass conservation principle to the cultures. 
Thus, the variation of N stocked in a system equals the difference among the inputs and out-
puts to the system [31]. Often, the N balance is inferred considering the inputs and outputs in 
relation to the main source, the soil Nmin. This is considered available to plants in spite of the 
fact that it can also be consumed by microorganisms, dissipate as gas, or leach through the soil 
[34]. The balance was assessed as described in Eq. (6) [29]:

  NminS + Min + F = Nab + Nabr + Nlix +  N  
2
   Oem + NminAH + Nc  (6)

where, NminS: Nmin quantity in soil before seeding (kg N ha−1), Min: soil N fraction in the 
soil due to the conversion of organic nitrogen to ammonium (kg N ha−1) (It is calculated from 
the adjustment of the balance for the control treatment, i.e., 0 (kg N ha−1)), F: fertilizer N 
applied (kg N ha−1), Nab: N absorbed by the aerial part of the plant (kg N ha−1), Nabr: N 
absorbed by the roots of the plant (kg N ha−1) (It was estimated that this was 25% of Nab [38]), 
Nl: leached N (kg N ha−1), N

2
Oem: N emitted as N

2
O (kg N ha−1), NminAH: Nmin in soil after 

harvest (kg N ha−1), Nc: Not accounted for.

Thus, a positive Nc means that: (i) the inputs have been overestimated due to an error in its 
calculation or/and experimental error, (ii) the outputs have been underestimated for the same 
reasons as in (i), (iii) there are other N outputs that have not been considered, and (iv) a com-
bination of all or some of the situations described here occurs.

N
2
Oem was considered in the balance instead of N

2
Oprod or Ndeni since these last two refer 

to gases produced in the arable layer and thus may not exit the system.

2.7. N use efficiency

For the assessment of N use efficiencies, the following parameters were defined (Huggins and 
Pan, 1993):

Efficiency in the use of the fertilizer (NUE): difference between Nab of the fertilized treatment 
and the non-fertilized, divided by the quantity of fertilizer applied.

Harvest index (HI): quotient between the N in the grain and the N extracted by the aerial part 
of the culture (dimensionless).
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2.8. Statistics

PROC GLM [39] procedure was used to carry out the variance analysis and then determine 
the differences between averages with the Duncan procedure.

3. Results and discussion

3.1. Mineral N

Through the Nmin analysis, it was observed that about the 80–95% of the Nmineral (Nmin) 

analyzed in the floor of the assay was of nitric origin (Table 5). The non-fertilized treatment 
had the least nitric N percentages at every moment and depth in comparison to the per-
centages in the fertilized treatments. The nitric N percentage was constant or increased with 
depth, (i.e., from 0–30 to 30–60 cm) except in the moments after harvest in years 2003 and 
2004, when the percentage of nitric N was somewhat inferior in the 30–60 cm layer due to the 
deep and recent extraction of the culture until harvest, close to the moment “after harvest” 
referred to in this work.

3.2. Leached nitrate

In Tables 6 and 7, the nitric N leached in the periods comprehended between the beginning of the 
sampling period until harvest and between the beginning of the sampling period until it finished 
are, respectively, shown. Statistically significant differences were only observed between treat-
ment 80 + 140 and the rest of treatments at the period of time comprehended between the begin-
ning of the campaign and harvest in year 2003 and all the sampling period in year 2004. Although 
Webster et al. [44] reported some 19 kg ha−1 of N leached for the non-fertilized treatment, a similar 
figure to that reported in this work in year 2004 (Table 7), the 32 kg N ha−1 obtained for treat-
ment 80 + 140 is minor to the 50 kg N ha−1 quantities reported by the same authors for treatments 
with similar dosages, presumably due to variables such as different kinds of soils, etc. By the 
deduction of nitric N leached at the non-fertilized treatment, the nitric N quantities leached in 
years 2003 and 2004 were assessed in the other treatments. Until harvest, those quantities ranged 
between the 4 and the 6% of the applied N and, when all the sampling periods were considered, 
they comprehended N quantities that ranged between the 8 and the 14% of the N fertilized.

Concurring with the results obtained for treatment 80 + 140, in a study performed in Denmark, 
Kjellerup and Kofoed [24] observed that N fertilizer dosages around 200 kg N ha−1 signifi-
cantly raised the leached nitrate in drained waters for they exceeded the adsorbing capacity 
of the crop; the assessed losses were approximately 40 kg N ha−1. In the neighbor community 
of Navarra, Arregui [7] also described the augmenting N leaching trend for dosages larger 
than 110 or 120 kg N ha−1.

Approximately 50% of the leached N-NO
3
− in all the samples in 2004, leached in the period 

comprehended between the moments after harvest and the end of sampling in September for 
all treatments (Table 7).
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In Tables 6 and 7, the average nitric N in the total quantity of drained water is also shown. 
It was calculated as the product of the drained total N (kg ha−1) throughout all the drainage 
period and the drained water (mm) in the same period.

Thus, it can be observed that the maximum average N-NO
3

− concentration in the sampling 
period was 7 ppm N in the year 2003 and 14 ppm in the year 2004 for treatment 80 + 140, 
which was the treatment that regards average N-NO

3

−, statistically differentiated from the 
rest in years 2003 and 2004 except for treatment 40 + 60 + 40 in year 2004 when all the sam-
pling period was considered. The average concentrations in treatments 40 + 60 + 40 and 
80 + 140 in year 2004 when all the periods were considered were larger than the allowed 
11.3 mg L−1 N-NO

3

− limit.

Moment Depth (mm) Treatment

0 40 + 100 40 + 60 + 40 80 + 140

N-NO
3
−/Nmin (%)

2002

Before harvest 0–30 82

30–60 96

End of winter 0–30 78

30–60 85

After harvest 0–30 75 89 94 81

30–60 83 89 94 84

2003

Before harvest 0–30 82 86 79 88

30–60 90 89 89 85

End of winter 0–30 67

30–60 43

After harvest 0–30 92 90 86 92

30–60 89 89 84 87

2004

Before harvest 0–30 79 84 86 83

30–60 79 83 83 88

End of winter 0–30 77 87 83 89

30–60 79 83 82 91

After harvest 0–30 88 88 94 93

30–60 80 90 85 84

Table 5. Nitric origin N percentage in relation to Nmin in the soil at different depths, moments, and treatments.
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3.2.1. Gaseous losses

Through the integration in time of the daily emission and production rates, losses due to N
2
O 

emitted to atmosphere and N
2
O + N

2
 due to denitrification in 2002 and 2003 were assessed 

(Table 8). In spite of the fact that N fertilization has a key role in N
2
O emissions (Bouwman, 

1996), no statistical differences were observed between fertilizing treatments for the emission 
or the N

2
O cumulated production, as described by Menéndez [32] in an essay carried out in 

Mediterranean climatic conditions. However, when the N
2
Oem quantity corresponding to the 

non-fertilized treatment is deducted from the other treatments, the N
2
O emitted quantities 

range from 1.8 to 2.9% of the N broadcast as a fertilizer, superior numbers to those cited by the 
IPCC [20] when estimating the winter house effect caused by agriculture [21].

In 2003, in spite of the fact that applied N dosage had no effect on the N
2
O emissions to the 

atmosphere or on its production in the arable layer, it did affect the N
2
O+ N

2
 production due 

to total denitrification—it was larger for the treatment with the largest N dose, i.e., 80 + 140. 
As mentioned before, N

2
O+ N

2
 peaks due to denitrification were only observed until April 2; 

thus, these largest losses due to denitrification are imputable to the denitrification peaks after 
fertilization. Due to the same reason, the cumulated values of N

2
O+ N

2
 rates due to denitrifica-

tion until harvest and after it are similar.

Treatment Period

2004 until harvest* 2004 all the sampling period**

N-NO
3
− 

(kg ha−1 )

Drainage 

(mm)

[N-NO
3
−] 

average (mg L−1)

N-NO
3
− 

(kg ha−1)

Drainage 

(mm)

[N-NO
3
−] average 

(mg L−1)

0 19 a 371 5 a 38 b 487 8 b

40 + 100 20 a 5 a 41 b 8 b

40 + 60 + 40 31 a 8 a 62 ab 13 ab

80 + 140 32 a 9 a 70 a 14 a

Statistically different values (α ≤ 0.05) are identified with different letters.*from January 9, 2004 to July 1, 2004.
**from January 9, 2004 to September 27, 2004.

Table 7. N-NO
3

− leached from January until harvest in all the sampling period of year 2004.

Treatment N-NO
3
− (kg ha−1 ) Drainage (mm) [N-NO

3
−] average (mg L−1)

0 14 b 350 4 b

40 + 100 14 b 4 ab

40 + 60 + 40 12 b 3 b

80 + 140 23 a 7:00 AM

Statistically different values (α ≤ 0.05) are identified with different letters.

Table 6. N-NO
3

− leached from January to harvest in year 2003.
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Although Hussain et al. [19] report in their review, that the emission of greenhouse gases is fre-
quently favored by tilling, such a fact was not observed in this work for N

2
O, Ndeni, or Nprod.

3.3. Nitrogen balance

Nitrogen balances for the different campaigns are shown in Tables 9–11. The yield and thus 
the extraction of the non-fertilized treatment in year 2002 was larger than in the latter two 
campaigns, due to the fact that in the first year, the field preceding the essay was thoroughly 

Treatment 2002* 2003 until harvest** 2003 in all the sampling period***

N
2
Oem N

2
Oem Ndeni Nprod N

2
Oem

0 2 a 5 a 4 b 7 a 10 a

40 + 100 2 a 4 a 5 b 10 a 9 a

40 + 60 + 40 6 a

80 + 140 5 a 8 a 9a 11 a 14 a

In the year 2003, N
2
Oem accumulation, from the N

2
O production rates (N

2
Oprod) and N

2
O + N

2
 due to denitrification 

(Ndeni) from the beginning of the sampling period until harvest and until the end of the sampling period is shown; 
statistically different values are marked with different letters.*From March 5 until May 17, 2002.
**From January 21 to July 4, 2003.
***From 2003, January 21 to 2004, February 4.

Table 8. Cumulated N
2
O emissions (N

2
Oem) in all the sampling period in year 2002.

Dosage (kg N ha−1) 0 140 140 220

Splitting 0 40 + 100 40 + 60 + 40 80 + 140

Nmin initial (NminS) 40±3 40±3 40 ±3 40 ±3

N mineralized (MIN) 120±11 120 ±11 120 ±11 120 ±11

N fertilized (F) 0 140 140 220

NTOTAL INPUTS 160±11 300 ±11 300 ±11 380 ±11

N absorbed by the aerial part (Nab) 113±6 177 ±15 185 ±15 188 ±24

N absorbed by the roots (Nabr) 28 ±2 42 ±3 44 ±3 44 ±5

N gas (N
2
O em) 2 ±0 2 ±0 6 ±3 5 ±2

Nmin after harvest (NminAH) 17 ±5 33 ±1 45 ±14 17 ±3

NTOTAL OUTPUTS 160 ±8 254 ±15 280 ±21 254 ±25

N not computed 0 ±14 46±19 19 ±24 126 ±27

Fertilizer use efficiency (NUE) 0.49 ±0.12 0.60 ±0.14 0.35 ±0.12

N harvest index 0.84 ±0.08 0.90±0.04 0.81 ±0.05 0.87 ±0.06

Table 9. N balance (kg N ha−1) during the 2002 campaign; average values ± standard errors are reported.
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 fertilized while in the following two campaigns, wheat was again preceded by wheat and it was 
not fertilized. The extraction by the aerial part at the other treatments ranged between 134 and 
188 kg N ha−1. Mineralization rate was between 93 and 123 kg N ha−1 at the three campaigns.

It can be observed that the non-accounted N augmented with the N fertilizer dose, as it hap-
pened with the leached N quantities and the N emitted as N

2
O. In general, such an effect was 

also observed for balances performed in Navarra and Castilla-La Mancha [34]. As Estavillo 
et al. [15] reported, these facts suggest an N mineralization rate different to that of the non-
fertilized treatment and dependent on the broadcast N fertilizer dose. In this sense, Kuzyakova 
and Stahr [27] observed there was an effect on the mineralization pattern after the fertilizer 
application and Webster et al. [44] imputed the increasing Nc to short periods of immobiliza-
tion that increased with the increasing quantity of available Nmin. Another possibility is that 
the increase of Nc might be due to some other kind of undetermined losses in the study such as 
those derived from ammonia leaching, which is presumed not to be very large since the ammo-
nia quantity regarding nitrate is around 10% of the Nmin (Table 5). The losses corresponding 
to ammonia volatilization were not accounted for, but in posterior studies in the zone, they 
have proved to be dismissible (personal communication).

NUE (nitrogen use efficiency) ranged between 0.35 and 0.60 in the year 2002 and between 0.62 
and 0.82 in the years 2003 and 2004 (Tables 9–11). This occurred due to the major extraction of the 
non-fertilized treatment at the first campaign as compared to the following two, since in the first 
campaign, the essay was preceded by a fertilized crop, while in the following two campaigns, the 

Dosage (kg N ha−1) 0 140 140 220

Splitting 0 40 + 100 40 + 60 + 40 80 + 140

Nmin initial (NminS) 25 ± 5 24 ± 1 25 ± 3 40 ± 10

N mineralized (MIN) 123 ± 12 123 ± 12 123 ± 12 123 ± 11

N fertilized (F) 0 140 140 220

N TOTAL INPUTS 147 ± 13 287 ± 12 288 ± 13 383 ± 15

N absorbed by the aerial part (Nab) 53 ± 6 139 ± 21 145 ± 25 180 ± 22

N absorbed by the roots (Nabr) 13 ± 1 35 ± 5 36 ± 6 45 ± 5

N leached (Nlix) 14 ± 3 14 ± 2 12 ± 2 23 ± 3

N gas (N
2
O em) 5 ± 4 4 ± 1 8 ± 3

Nmin after harvest (NminAH) 50 ± 4 37 ± 4 30 ± 3 40 ± 1

N TOTAL OUTPUTS 160 ± 135 ± 8 229 ± 21 224 ± 25 296 ± 22

N not computed 12 ± 16 58 ± 24 65 ± 28 86 ± 27

Fertilizer use efficiency (NUE) 0.76 ± 0.22 0.82 ± 0.21 0.72 ± 0.11

N harvest index (HI) 0.76 ± 0.77 0.77 ± 0.03 0.71 ± 0.08 0.65 ± 0.04

The average values ± standard error are indicated.

Table 10. N balance (kg N ha−1) during campaign 2003.
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non-fertilized treatment received no N fertilization. NUE values that range between 0.3 and 0.6 
are frequent at the experiments carried out by the ITGA in Navarra [23].

It was observed that the NUE decreased as the fertilizer dose increased, as observed by other 
authors (Huggins and Pan, [18]). Fischer et al. [16] stated that depending on the quantity and the 
distribution of N, HI (harvest index) in wheat ranged from 0.64 to 0.85. Similarly, HI compre-
hended values between 0.65 and 0.87 in our experiment, the most frequent value of HI was about 
0.70–0.80 (Tables 9–11).

4. Conclusions

1. The average Nmin values in the soils in years 2002, 2003, and 2004 ranged between 12 and 
53 kg N ha−1.

2. Nitrate leaching after harvest in the year 2004 accounted for 50% of the total N leached at 
every treatment. Thus, it was concluded that a significant mineralization took place after 
harvest that, together with the absence of crop in summer, causes a Nmin accumulation in 
summer and its ulterior leaching with the rain in autumn.

3. With treatment 80 + 140, more nitrate was leached than with treatments 0 and 40 + 100; 
losses up to 70 kg N ha−1 were assessed in all the sampling periods in 2004. In this very 
treatment and treatment 40 + 60 + 40, the 11.3 mg L−1 N-NO

3
− limit was exceeded, calculated 

as the average concentration in drained water in the sampling period. By the subtraction 
of the nitric N quantity leached for the non-fertilized treatment, it was assessed that the 

Dosage (kg N ha−1) 0 140 140 220

Splitting 0 40 + 100 40 + 60 + 40 80 + 140

Nmin initial (NminS) 28 ± 2 35 ±2 36 ±7 36 ± 3

N mineralized (MIN) 93 ± 16 93 ± 16 93 ± 16 93 ± 16

N fertilized (F) 0 140 140 220

N TOTAL INPUTS 121 ± 16 268 ± 16 269 ± 17 349 ± 16

N absorbed by the aerial part (Nab) 56 ± 14 134 ± 7 145 ± 10 165 ± 5

N absorbed by the roots (Nabr) 14 ± 3 33 ± 2 36 ± 2 41 ± 1

N leached (Nlix) 19 ± 2 20 ± 2 31 ± 2 32 ± 2

Nmin after harvest (Nmin AH) 32 ± 1 33 ± 1 42 ± 8 53 ± 2

N TOTAL OUTPUTS 121 ± 15 220 ± 8 254 ± 13 291 ± 7

N not computed 0 ± 22 48 ± 18 15 ± 22 58 ± 18

Fertilizer use efficiency (NUE) 0.69 ± 0.18 0.79 ± 0.2 0.62 ± 0.1

Harvest index 0.77 ± 0.26 0.73 ± 0.03 0.87 ±0.04 0.74 ± 0.07

Table 11. N balance (kg N ha−1) during campaign 2004; average values ± standard error.
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nitric N quantities leached until years 2003 and 2004 ranged between 4 and 6% of the N 
broadcast. If the sampling period after harvest in year 2004 was also considered, the losses 
ranged between 8 and 14% of the N broadcast.

4. N-N
2
O quantities emitted to the atmosphere in all the sampling period in 2003 ranged 

from 10 kg N ha−1 in the non-fertilized treatment to 14 kg N ha−1 for treatment 80 + 140. By 
the subtraction of the N

2
O emitted by the non-fertilized treatment from that emitted by 

the rest of the treatments, it was assessed that the emitted N
2
O quantities ranged between 

1.8 and 2.8% of the N broadcast as fertilizer in the sampling periods in years 2002 and 
2003.

5. No effect was observed due to tilling either on the emitted N
2
O or on Ndeni or on Nprod.

6. Regarding the N balance, it was concluded that the N inputs to the soil–plant system were 
beyond the outputs. In fact, the N acquainted for as not computed N in the N balance, in-
creased with the raising dosage of fertilizer, as the leached N quantities and the N

2
O emit-

ted quantities did. This fact suggests an N immobilization rate in the fertilized treatments 
superior to that at the non-fertilized treatments and dependent on the fertilized N dosage.

7. The efficiency in the fertilizer use varied from 0.35 to 0.82 and it was less in year 2002 than 
in the next 2 years. This was due to a major N extraction at the non-fertilized treatment 
in the first campaign as compared to the following 2 years, for at the first campaign, the 
assay was preceded by a fertilized crop, while in the following 2 years, the non-ferti-
lized treatment was not fertilized. The most frequent value for harvest index was around 
0.70–0.80.
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