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Abstract

Pancreatic β cells are more sensitive to cytotoxic stress than several other cells due to the 
expression of very low levels of antioxidant enzymes. Glutathione-S-transferase (GST) 
is a detoxification enzyme essential for a cellular protection against oxidative damage. 
Thus, the objective of this chapter is to verify the impact of the hypothesis of all effects 
of Glutathione S-transferase polymorphism in patients with diabetic complications. 
Diabetic nephropathy (DN) is the main secondary complication of diabetes mellitus 
(DM). Notably, the expression of GST genes has been described in different variations 
as ethnic populations. Some studies have suggested association between genetic poly-
morphism for GSTM1, GSTT1 and GSTP1 and DN, but others do not. The results are still 
inconsistent and, therefore, more studies are needed to be performed.

Keywords: GST, diabetic nephropathy, diabetes, polymorphism, glutathione 
S-transferase

1. Introduction

Diabetes mellitus (DM) is defined as a heterogeneous group of metabolic disorders character-
ized by an unusual hyperglycemia resulting from defects in insulin action and/or secretion. An 
epidemic of DM is underway as result of population growth and aging, increased urbanization,  
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prevalence of obesity and sedentary lifestyle [1]. It is estimated that currently about 415 mil-
lion individuals are diagnosed with DM worldwide and it is predicted that by 2040 these 
records will reach the range of 672 million [2].

Although the survival of these patients has increased in recent decades, it is known that the 
morbidity resulting from complications affecting the small blood vessels (microvascular) or 
large (macrovascular) arteries is very significant. These complications may occur as conse-
quence of hyperglycemia that favors inadequate cellular metabolism and excessive production 
of reactive oxygen species (ROS). The etiopathogenesis of DM is not fully elucidated, but it is 
suggested that genetic and environmental factors are involved in this metabolic disorder and, in 
this sense, oxidative stress becomes one of the important pathways for this understanding [3].

Human cells produce many antioxidants in attempt to protect cells against damage caused by 
toxins from the environment. The main endogenous antioxidant defense is provided by glu-
tathione (GSH). GSH is a linear tripeptide that arouses scientific interest because it performs 
multiple functions via glutathione S-transferase (GST). GSTs are one of the most important 
groups of phase II enzymes. It is reported that these enzymes are induced, as a protective 
mechanism (detoxification), under conditions of oxidative stress. GST polymorphisms were 
associated with increased or decreased susceptibility of various diseases, such as cancer, car-
diac diseases, about everything diabetes and yours complications [4].

Some important members of the GST family stand out for having different polymorphisms 
between these GST mu 1 (GST M1) and GST theta 1 (GST T1) and GST Pi 1 (GSTP 1). It is 
reported that these GSTs subtypes are involved in the development of DM and its complica-
tions [5], so it is important to understand the impact of these oxidative changes and the pos-
sible effects of genetic polymorphisms of GSTs in diabetic patients [6].

2. Oxidative stress

Living aerobic organisms have an intracellular environment in which important biological 
molecules are in equilibrium, and oxidative metabolism and redox homeostasis are in sync. 
In these organisms, oxidative phosphorylation is a vital step of metabolism [7].

This metabolic pathway uses the energy generated by NAD+ oxy-reduction reactions in 
NADH and produces adenosine triphosphate (ATP) molecules capable of storing energy for 
immediate consumption [8]. As consequence, free radicals are produced naturally and con-
tinuously [9]. It is important to note that the mechanism of free radical generation can also 
occur in cell membranes and cytoplasm with the participation of transition metals such as 
iron and copper [10].

In the body, free radicals can act in a beneficial way during the immune response, destroy-
ing invading pathogens and modulating the excessive inflammatory response, however, their 
excess may cause deleterious effects to the organism. Normally, in healthy living organisms, 
there is a balance between the production of free radicals and antioxidant systems [11].
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The imbalance between the production and the antioxidant defense capacity of the organ-
ism is called oxidative stress [12]. The cellular effects of this hostile environment depend 
on factors such as cell type, presence of surface receptors, mechanism of transduction and 
levels of antioxidants [7]. But it is known that prolonged exposure to oxidative stress can 
damage cellular components (proteins, lipids and DNA) [13], contribute to cellular aging 
[14], and play an important role in the pathogenesis of cancer, atherosclerosis, Parkinson, 
Alzheimer’s and various chronic diseases such as diabetes mellitus and its complications 
[15–20].

3. The biological role of glutathione and glutathione S-transferases 

in oxidative stress

Numerous studies have shown that in order to avoid prolonged exposure to ROS produced 
during oxidative stress, the body has a very efficient antioxidant defense system. Glutathione 
S-transferases (GSTs) and glutathione (GSH) enzymes are part of this line of defense [21].

Glutathione (GSH) is a low molecular weight thiol found in all tissues, primarily in aerobic 
organisms. Also known as L-gamma-glutamyl-L-cysteinyl-glycine, GSH is a linear tripep-
tide consisting of three amino acids: glutamic acid, cysteine   and glycine (Figure 1). Between 
the γ-glutamyl moiety and the free α-carboxylate group, there is a γ-peptide bond which, 
although unusual, prevents the hydrolysis of GSH by cellular peptidases [22].

In homeostasis conditions, GSH is the most efficient physiological reducing agent with the 
highest bioavailability (~ 10 mM) in the intracellular environment where it is synthesized, 

Figure 1. Schematic representation of the GSSG reduction cycle by GR.
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except in epithelial cells [23]. Its synthesis occurs in two phases and counts on the action of 
two enzymes: γ-glutamyl-cysteine-synthetase and glutathione-synthetase [24].

In the first phase, the γ-glutamyl-cysteine-synthetase enzyme favors the formation of the peptide 
bond between glutamic acid and cysteine, thus forming the dipeptide γ-L-glutamyl-L-cysteine 
[25]. In the second phase, the enzyme glutathione synthetase binds the newly formed dipeptide 
to glycine, giving rise to GSH which is distributed through the bloodstream and then brought to 
the tissues. In both phases, consumption of ATP and Mg+2 occurs. The regulation of the enzyme 
γ-glutamyl-cysteine-synthetase is done, by negative feedback, when the GSH itself begins to be 
formed. This regulatory mechanism ensures that, in normal conditions, the excessive production 
of GSH or the intermediate γ-L-glutamyl-L-cysteine does not occur (Figure 2) [22, 24].

An alternative route is activated in situations where conversion of γ-glutamyl-L-cysteine into 
GSH is insufficient. In this case, the enzyme γ-glutamylcyclotransferase catalyzes the con-
version of γ-glutamyl-L-cysteine to 5-oxoproline, favoring the occurrence of 5-oxoprolinuria, 
chronic metabolic acidosis and neurological disorders (Figure 2) [22].

During the reaction catalyzed by γ-glutamylcysteine synthetase, activation of butionin sulf-
oximine (BSO), an inhibitor of GSH biosynthesis, may occur. Studies suggest that this sup-
pression of GSH by BSO may be a rather efficient strategy in cancer therapy since, during this 
process, there is an increase in the sensitivity of cells to ionizing radiation and to cytostatic 
drugs, making them more susceptible to treatment. However, the disadvantage of this tech-
nique is that the toxic effect to normal cells has potency detrimental to the individual. An 
alternative to limit this toxicity would be the use of localized irradiation or the topical applica-
tion of cytostatic drugs, but other studies are being carried out [26].

Glutathione can be found in the intracellular medium in its reduced (GSH) or oxidized form 
(GSSG, dimerized form of GSH) and the GSH/GSSG ratio determines the redox state of bio-
logical systems. This is because glutathione performs a cytotoxic and genotoxic inactivation of 
xenobiotics and consequently promotes detoxification and cellular protection against oxida-
tive stress and additional damage [27].

The cellular detoxification process is divided into three distinct but related phases. In phases 
I and II, the xenobiotic is transformed into a more soluble and less toxic product and, in 
phase III, are transported for cellular excretion. It is noteworthy that the efficiency of phase II 
depends on the action of enzymes called glutathione S-transferases (GSTs) [22].

The GSTs belong to a superfamily of multigenic enzymes that catalyze the nucleophilic attack 
of the reduced form of Glutathione (GSH) to compounds that present a carbon, a nitrogen or 
an electrophilic sulfur atom [21]. Under natural conditions, GSTs are generally found in the bio-
logical environment as homo or heterodimers. Each dimer contains two active sites with inde-
pendent activities. Each site has at least two binding regions: one specific for glutathione (GSH) 
and the other, with less specificity, for the electrophiles (alkyl halides, epoxides, quinones, imi-
noquinones, aldehydes, ketones, lactones and esters, halides of aryl and aromatic nitro) [22, 28].

Mammalian GSTs are divided into families according to their location: cytosolic, mitochon-
drial and microsomal. The cytosolic and mitochondrial GST enzymes are soluble, unlike the 
microsomal GSTs that are associated with the membrane [29]. This latter family is generally 

Glutathione in Health and Disease50



involved in the metabolism of eicosanoids and glutathione (GSH), thus being referred to as 
MAPEG (membrane-associated proteins in eicosanoid and glutathione metabolism) [22]. It 
is important to note that other families of GSTs, absent in mammals, are also described in the 
literature. Cytosolic and mitochondrial GSTs are expressed in different isoforms and there-
fore divided into classes according to the amino acid and/or nucleotide sequence, immuno-
logical properties, enzymatic kinetic parameters and/or tertiary and quaternary structure 
[22, 29, 30].

Based on the similarity of the amino acid sequence, GSTS found in the cytosol are called 
α (GSTA), μ (GSTM), θ (GSTT), π (GSTP), σ (GSTS), omega (GSTO), and zeta (GSTZ) 
[28, 31]. The mitochondrial GST is known as kappa (GSTK) [31]. Mammalian cytosolic 
GSTs are all dimeric and contain 199–244 amino acid residues in their primary structures. 
Mitochondrial GSTs are also dimeric proteins and their subunits typically have 226 amino 
acid residues. Each of these enzymes differs in their functionality [22, 33]. It is suggested 
that in humans, the expression of these enzymes is uniform and independent of the cell 
type. GSTs have long been described as originating from mitochondria; however, recent 
studies indicate the presence of mitochondrial GSTs in peroxisomes. These findings rein-
force their participation in the detoxification processes of by-products of β-oxidation of 
fatty acids [22].

During the detoxification process, the GSTs catalyze the conjugation of xenobiotics with 
endogenous substrates, mainly GSH. This conjugate is recognized by specific transporters and 
is carried to the intercellular medium where it undergoes action of γ-glutamyl transpeptidase 
(γGT) which removes the glutamic acid residue [32]. In sequencing, the dipeptidases remove 
the glycine residue, leaving only the cysteine residue associated with the xenobiotic. The 

Figure 2. Scheme representing the biosynthesis and mechanism of regulation of glutathione (GSH). BSO, butionin 
sulfoximine; Mg+2, magnesium; ATP, adenosine triphosphate.
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amino group of the cysteine residue is then acetylated by the intracellular N-acetyltransferase 
enzymes and thereby forms the mercapturic acid which, depending on its characteristics, is 
rapidly led to circulation, bile, urine or metabolized until it is eliminated (Figure 3) [22].

Once free, glutamate and glycine are reabsorbed by the cell and used in the regeneration of 
GSH through the catalytic cycle. In this stage of regeneration, three groups of enzymes are 
important: glutathione oxidase (GO) and glutathione peroxidase (GSH-Px), which catalyze 
the oxidation of GSH to GSSG, and the enzyme glutathione reductase (GR) that is responsible 
for the regeneration of GSH, from GSSG, in the presence of NADPH [33].

Figure 3. Schematic representation of main glutathiones S-Transferases correlated with oxidative stress in different 
biological conditions. A, normal intracellular environment; B, oxidative stress in an individual without polymorphism; 
C, oxidative stress in an individual with oxidative stress.
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It is important to highlight that this mechanism of detoxification via glutathione represents 
a fundamental biochemical evolution for the survival and guarantee of the perpetuation of 
many species and, although a co-transport mechanism without conjugate envelopment with 
glutathione has been proposed, there is no evidence experimental models that validate this 
model [22].

4. Oxidative alterations and the pathophysiology of diabetes and its 

complications

Many studies suggest that patients with diabetes present alterations in the levels of reactive 
oxygen species (ROS), a type of free radical whose electron is centered in the oxygen atoms 
[34]. This fact is justified by the toxic character of the persistent excess of glucose in the organ-
ism that ends up promoting glycation of proteins, hyperosmolarity and increase in the levels 
of sorbitol inside the cells [35].

Glucose is a vital source of energy for cells, and their serum levels are controlled by various 
organs such as intestine, liver, pancreas, skeletal muscle, adipose tissue and kidneys [36]. This 
regulation is facilitated by the action of hormones (glucagon and insulin), central and periph-
eral nervous system, as well as metabolic requirements of the body [37].

DM is defined as a heterogeneous group of metabolic disorders characterized by unusual 
hyperglycemia resulting from defects in insulin production and/or action [1]. In this situa-
tion, to revert the toxicity of excess glucose, this component undergoes auto-oxidation and, as 
consequence, ROS are generated (Figure 4) [37].

During auto-oxidation, excess glucose binds (protein glycation) [37] to lysine and valine resi-
dues in tissue and plasma proteins. This interaction results in the formation of Schiff’s base, a 
labile or unstable compound that spontaneously transforms into ketoamine (glycated hemo-
globin) through the Amadori rearrangement [35].

These oxidation and rearrangement processes, followed by further dehydration and frag-
mentation of Amadori product, promote the formation of advanced glycation end products 
(AGEs) (Figure 4) and generate other compounds with chemically active carbonyl groups. 
These compounds favor the oxidative stress that affects β cells of the pancreas, responsible for 
synthesizing and secreting insulin [8, 38].

Accumulated AGEs bind to membrane receptors on endothelial cells and promote the onset 
of tissue damage and the activation of the proinflammatory pathway that involves the NFκB 
transcription factor responsible for regulating the expression of other inflammatory cytokines 
(Figure 4) [37].

Moreover, the chronicity of this hostile environment causes the deactivation of the nitric oxide 
vasodilator (NO) formed by the endothelial cells [38]. This compromises the relaxation of vas-
cular smooth muscle cells and has a degenerative effect on the vessels causing tissue death [34]  

and favoring the development of microvascular complications of diabetes, such as diabetic 
nephropathy (DN) (Figure 4).
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ROS, generated by hyperglycemia, also interfere with other biochemical pathways [39]. The 
Krebs cycle, which, due to oxidative stress, favors the increase of the number of proton donors 
in the mitochondria, the main source of free radicals [37, 40]. This generates an even greater 
accumulation of free radicals, mainly superoxide (O2

−) and hydroxyl compounds (OH−) [41]. 
This mitochondrial production is the primary cause of long-term complications of diabetes.

The cascade signaling also suffers from oxidative stress in that it affects the activation of protein 
kinase C (PKC) [37], a serine/threonine kinase pathway that forms part of the mitogenic protein 
kinase (MAPK) [42] and plays an important role in several intracellular processes such as signal 
transduction, response to specific hormonal, neuronal and growth factor stimuli [28, 40].

Furthermore, hyperglycemia increases the NADH/NAD+ ratio and decreases the NADPH/
NADP+ ratio (Figure 4). The substrates of this alteration are directed to the polyol pathway, 
which, at normal glucose concentrations, is not active [38]. In excess, in the polyol pathway, 
glucose is reduced to sorbitol, an osmotically active compound [37]. These disorders result in 
changes in redox homeostasis and in a variety of known effects for pathogenesis and progres-
sion of diabetes.

The accumulation of sorbitol in the ocular tissue, for example, contributes to the develop-
ment of diabetic cataracts (Figure 4). In nerve tissue, high concentrations of this component 

Figure 4. Main complications of Diabetes mellitus. NADH, nicotinamide and adenine dinucleotide; ROS, oxygen-reactive 
species; AGE, advanced glycation end product; DN, diabetic neuropathy.
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decrease the uptake of myoinositol and inhibit ATPase Na+/K+ from the membrane, thus 
affecting nerve function (Figure 4). The accumulation of sorbitol associated with reduced 
hypoxia and blood flow in the nervous tissue favors the development of diabetic neuropa-
thy [37]. This hyperglycemia may also alter gene and protein expression, endothelial cell 
permeability, and depletion of antioxidant molecules, including Glutathione S-transferases 
(GSTs), which play an important role in the cellular detoxification process [37, 41, 43–45].

5. Impact of genetic polymorphism on GSTs for patients with 

microvascular diabetic complications

Diabetic nephropathy (DN) is the main secondary complication of diabetes. Associated with 
an increased risk for cardiovascular disease and high mortality rates, DN is the leading kid-
ney disease worldwide. Approximately 40% of diabetic patients are affected by this microvas-
cular complication [46].

The mechanisms related to the development of DN are unclear and probably involve a num-
ber of dynamic events occurring early and with the progression of diabetes. It is known that 
the clinical characterization of this pathology is preceded by an established morphological 
renal lesion that results in imbalance of normal renal homeostasis [47]. These lesions are trig-
gered by functional and metabolic changes. A common metabolic manifestation in the body 
of a diabetic individual is the picture of oxidative stress [31].

There are several factors that are involved in generating oxidative stress during diabetes. 
There is strong evidence that hyperglycemia results in the activation of PKC in diabetic glom-
eruli and, as a consequence, mesangial expansion, glomerular basement membrane thicken-
ing, endothelial cell dysfunction leading to diabetic renal disease, inflammation, apoptosis 
[48–50]. Diabetic renal disease, on the other hand, intensifies the formation and activation of 
ROS, worsening renal disease [51].

Considering that, in situations of oxidative stress, GSTs play an important role in cellular 
detoxification, studies of polymorphisms in the genes encoding these enzymes have been 
gaining prominence and arousing curiosity about a possible association with the susceptibil-
ity of this complication [52–54]. In this context, the deletions of GSTM1 and GSTT1 together 
with the GSTP1 Ile105Val polymorphism are among the most studied isoforms in the GSTs 
group [55, 56].

It is described that individuals with GSTM1 deletion polymorphisms are unable to produce 
the GSTM1 protein. On the other hand, the conversion of adenine to guanine at position 313 at 
codon 105 in the GSTP1 gene causes the amino acid isoleucine (Ile) to be replaced with valine 
(val), which results in a lower activity of this isoform [56].

In the last decade, some investigations have made DM associations and their complications 
with the genetic polymorphism in GSTs. Notably, the expression of the GST gene has been 
described in different variations among ethnic populations. Studies with Egyptian children 
and adolescents, for example, show that the null genotype of GSTT1 conferred a 4.2-fold 
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increased risk for the occurrence of DM, and in this case, associations with some biochemical 
variables and laboratory data were also observed (lipid profile and HbA1c). In this study, no 
investigation was performed when susceptibility to DN; however, the results are clear and 
show that gene polymorphisms encoding GSTs are associated with the development of type 
1 DM and disease-related risk factors [31].

More specific studies addressing end-stage renal failure developed as a complication of DM 
show that this secondary complication is more common in the Asian population than in the 
UK population. In addition, the data are consistent and indicate that all patients of Asian ori-
gin who developed end-stage renal failure had non-insulin-dependent diabetes [57].

A meta-analysis performed by Saadat (2017) [58] brought together 18 studies with a total of 
5483 subjects (healthy and diabetic). Overall analysis did not indicate a significant associa-
tion between GSTP1 and type 2 DM polymorphisms. Subgroup analyzes stratified by ethnic-
ity, year of publication, and sample size also did not reveal a significant association between 
study polymorphism and DM2 risk.

In contrast, another meta-analysis by Orlewski and Orlewska (2015) [29] reports strong evidence of 
association between the genes glutathione-S-transferase (GST) and diabetic nephropathy (DN) 
polymorphisms. The results of this study reveal that significantly increased risks were found 
for the occurrence of DN in individuals with GSTM1 genotype null. However, this same study 
does not observe correlation between the DN and the GSTT1 genotype null or the presence of 
val alleles. Despite this, the genotype combination results indicate interaction between GSTT1 
null and GSTM1 null, suggesting a possible summation in the deficiencies of these enzymes.

These findings differ from those found in a previous study by Fujita et al. (2000), where no 
associations between DN and genotype GSTM1 null were observed. This study was performed 
with two groups of Japanese patients with or without diabetic nephropathy. Statistical analy-
ses show that the frequency of the null genotype GSTM1 was not significantly higher in the 
group of patients with nephropathy than in the group of patients without nephropathy, sug-
gesting that the null GSTM1 genotype does not contribute to the development of DN in this 
population [59].

More recent studies with the Romanian population suggest that the polymorphism of the 
GSTP1 Ile105Val gene was associated with the risk of developing type 2 DM, but not with the 
risk of developing DN. For polymorphisms in the GSTM1 and GSTT1 genes, the results did 
not indicate an increased risk of developing DM or DN [30].

Studies with the Brazilian population do not indicate an association of GSTM1 deletion poly-
morphism with type 2 DM susceptibility. However, the GSTM1 null and GSTT1 null poly-
morphisms reveal an influence on some observed clinical parameters (blood glucose and 
blood pressure). This suggests that both polymorphisms may contribute to the clinical course 
of patients with type 2 DM [60].

On the other hand, other studies with the population of Central Brazil [61] suggest that indi-
viduals with null GSTT1 polymorphism present an increased risk of approximately 2.9-fold 
for DN development. For the same population, no association of GSTM1 null and DN was 
found. In this same study, the analysis of the influence of the deletion of GSTT1 and GSTM1 
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on clinical and biochemical changes did not indicate a significant association, and this sug-
gests that the GSTT1 null polymorphism may be associated with the risk of developing the 
disease, but not with the biochemical alterations analyzed.

6. Conclusion

Considering all the information described above, it is concluded that DM is among the main 
health concerns in the world. Hyperglycemia is the main characteristic of this pathology, 
and this unusual situation favors the imbalance between the reactive oxygen species and the 
antioxidant defense line produced by the individual. This condition is called oxidative stress 
and Glutathione and GSTs enzymes are fundamental for the reestablishment of redox homeo-
stasis. The progression of diabetes and, consequently, prolonged exposure to this condition, 
favor the development of secondary complications of DM. DN is the main secondary compli-
cation that arises as result of DM.

Expression of polymorphic GST genes within several ethnic populations is remarkable. Some 
studies have suggested an association between genetic polymorphism of GSTs M1, T1 and P1 
susceptibility to DM and its microvascular complications, and others do not. As the results are 
still scarce and inconsistent, more studies need to be done.
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