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Abstract

Oxygen is absolutely essential for the survival of our life. However, metabolic con-
sumption of oxygen inevitably yields reactive oxygen species (ROS). Imbalance of ROS 
production and antioxidant capacity causes oxidative stress that potentially damages bio-
molecules leading to cell injury and death. In fact, ROS have two-faceted functions. Under 
physiologic condition, ROS function as signaling molecules and participate in maintain-
ing redox balance. In pathology, ROS induce oxidative stress that critically involves in the 
development of several diseases including urolithiasis (UL). UL or urinary stone disease 
is a common urologic condition in all countries with progressively increasing prevalence. 
Most of UL are multifactorial with polygenic susceptibility and highly recurrent nature. 
Formation of urinary stones is driven by supersaturation of urinary lithogenic ions, and 
calcium oxalate (CaOx) is the most prevalent stone type. Oxidative stress clearly plays an 
active role in UL development. In vitro, lithogenic crystals induce ROS generation in renal 
tubular cells leading to oxidative stress, cell injury and release of inflammatory media-
tors. In nephrolithic rats, oxidative stress and CaOx deposit are gradually increased in the 
rats’ kidneys. Intervention with antioxidants efficiently reduces oxidative damage and 
crystal deposits. Human studies show that patients with UL have increased oxidative 
stress and renal tubular injury relative to the non–stone-forming individuals. Increased 
oxidative lesions and inflammation are observed in the stone-containing kidneys of the 
patients. Furthermore, renal fibrosis mediated through tubular epithelial-mesenchymal 
transition is observed in kidneys of stone patients. Increased renal fibrosis is significantly 
associated with decreased kidney function. From therapeutic point of view, nutraceutical 
regimens that are able to reduce oxidative stress may be clinically useful alternatives for 
preventing stone formation and recurrence. This chapter has an intention to provide a 
basic knowledge of ROS generation and oxidative stress and up-to-date research findings 
of oxidative stress in UL based on the published articles as well as the author’s studies.

Keywords: oxidative stress, reactive oxygen species, urolithiasis, kidney stone, 
treatment
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1. Introduction

Aerobic living organisms require oxygen for their metabolism mainly to generate adenosine tri-

phosphate (ATP) through the electron transport chain (ETC). In the aerobic metabolism, molecu-

lar oxygen (O
2
) is sequentially reduced to water (H

2
O), and reactive oxygen species (ROS) are 

generated (Figure 1) [1, 2]. Therefore, it is no doubt that oxygen is absolutely essential for aerobic 

life, but it can be very harmful under the condition that ROS are excessively generated. These 

good and evil faces of oxygen are called “oxygen paradox” [3–5]. A complete reduction of O
2
 to 

H
2
O requires stepwise addition of four electrons, and three ROS, viz., superoxide anion (•O

2
−), 

hydrogen peroxide (H
2
O

2
) and hydroxyl radical (•OH) are respectively produced (Figure 1). In 

addition to ETC, another significant endogenous source of ROS is from oxidase and oxygenase 
enzymes [6]. Oxidases use oxygen as electron acceptor [7]. They catalyze the transfer of two 

electrons from electron donor to oxygen, and H
2
O

2
 is usually a byproduct. In case of oxygenases 

(monooxygenases and dioxygenases), they catalyze an incorporation of oxygen into substrate 

[7]. Dioxygenases incorporate both atoms of oxygen into substrate, while monooxygenases 

add one oxygen atom to substrate to yield hydroxyl substrate and water. Exogenous source 

of ROS includes UV/ionizing radiation, toxins, environmental pollutants, heavy metals, drugs, 

xenobiotics, pathogens and inflammatory cytokines [8–10]. Exposure to these substances causes 

increased production of ROS that further involves in the initiation of disease development. 

Besides ROS, reactive nitrogen species (RNS), such as nitric oxide and peroxynitrite [11–13], and 

reactive chloride species (RCS), such as hypochlorous acid [14, 15], also play important physi-

ological and pathological roles in human. Fundamentally, RNS and RCS are produced by react-

ing with ROS, for example, peroxynitrite is formed from reaction of superoxide anion and nitric 

oxide. Overproduction of ROS in cells creates a tense condition called oxidative stress.

Oxidative stress is defined as an imbalance condition between amount of generated oxidants 
(mainly ROS) and antioxidant contents in the body, which further causes oxidative dam-

age and injury (Figure 2). Oxidative stress is associated with a number of human diseases 

such as neurodegenerative diseases, cardiovascular diseases and cancers, and it has been 

Figure 1. Stepwise reduction of O
2
 to H

2
O (sequential addition of four electrons). Numbers indicate the difference in 

Gibb’s free energy (Kcal/mol) for each reaction.
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experimentally proved to mediate the disease development [16–18]. The term oxidative stress 

is first described by Helmut Sies in 1985 [19]. ROS are primarily generated in an aerobic 

metabolism, and they have a powerful oxidizing capability to damage all kinds of biomol-

ecules in the cells [20]. Therefore, some say oxidative stress may be viewed as the price that 

we have to pay for the use of oxygen in our metabolism [21]. However, our body has an 

antioxidant defensive system to scavenge ROS, deter oxidative damage and remove oxidized 

lesions in order to prevent the development of oxidative stress-mediated diseases (Figure 3).  

Both enzymatic and non-enzymatic scavenging antioxidants are the first line defense to 
combat ROS and inhibit the formation of oxidative lesions [22]. Once lesions formed, the 

second line of defensive system is to fix the lesions (mostly oxidized DNA) via repairing 
mechanisms [23–26] or to degrade them (mostly oxidized proteins) through proteasome and 

turnover mechanism [27–29]. The signaling pathway that regulates cytoprotective response 

to ROS is the Nrf2 (nuclear factor erythroid 2 [NF-E2]-related factor 2)-Keap1 (Kelch-like 

ECH-associated protein 1) pathway [30–32]. In response to ROS, transcription factor Nrf2 is 

activated and moves to the nucleus to bind to antioxidant responsive element (ARE) in the 

regulatory region of target genes to initiate transcription of antioxidative genes involved 

in the maintenance of cellular redox homeostasis (called redox biology) [33–35]. In patho-

logical conditions, ROS are overwhelmingly generated, and antioxidant defense systems are 

not sufficient to counteract resulting in oxidative injury and disease progression. Therefore, 
activation of Nrf2 pathway and intervention with antioxidants have been considered to be 

a clinically useful alternative to ameliorate oxidative stress, delay aging and reduce risk of 

oxidative stress-related diseases [36]. However, clinical evidences of antioxidant supplement 

for disease prevention are still controversial and not conclusive [37, 38]. Intake of natural 

antioxidants through diets, rather than commercial supplements, is believed to be a better 
effective way to naturally boost up antioxidative capacity in the body. In summary, ROS are 
a part of normal human metabolism. When ROS are chronically produced and antioxidant 

systems are overwhelmed, excessive ROS directly attack cellular biomolecules, cause tissue 
injury and eventually lead to pathology [22, 39, 40]. However, oxidative stress may not solely 

act as the only causative factor for disease development. It rather acts in concert or interacting 

with other cellular processes in order to initiate and promote the pathogenesis of diseases.

Figure 2. Oxidative stress is firstly conceptualized in 1995 by Helmut Sies as a disturbance in the oxidant-antioxidant 
balance in favor of oxidant, potentially leading to oxidative damage [19, 41–45].
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2. Oxidative stress

Oxygen is essential for our metabolism, but at the same time harmful ROS are produced during 

the reduction of oxygen to water (Figure 1). This two-faceted effect of oxygen is called “oxy-

gen paradox” that is firstly conceptualized through an observation of a massive deleterious  
effect of reoxygenation in myocardium [46, 47]. The well-known oxygen paradox in clinical 

setting is a reperfusion injury [48]. In hypoxic tissues, xanthine oxidase appears to be a major 

source of superoxide anion after reoxygenation, and this superoxide is further reduced to 

form other ROS and cause an oxidative injury (Figure 4) [49, 50].

Excessive production of ROS and inadequacy of antioxidants cause an imbalance of oxidant-

antioxidant system and result in oxidative stress. The term oxidative stress has gained more 

recognition and used in several research fields even in the public outside scientific community. 

Figure 3. ROS generation, antioxidant defensive system, oxidative stress and consequences. Increased ROS production 

leads to oxidative damage. Antioxidant defensive system is activated to prevent oxidative injury. The first line defense 
is enzymatic and dietary antioxidants that directly scavenge the generated ROS. The second line defense is pathways 

to repair the oxidized lesions (repairing process) or degrade the oxidatively modified biomolecules (turnover process). 
Failure of these defensive mechanisms causes accumulation of oxidative lesions and increased degree of oxidative stress 

leading to cell injury, apoptosis and eventually initiation of disease development.
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Usage of this term is sometimes overstressing or misusing. Therefore, the refined definition of 
oxidative stress is suggested in 2007 as follows: an imbalance between oxidants and antioxi-

dants in favor of the oxidants, leading to the disruption of redox signaling and control and/or 

molecular damage [44, 51].

Increase in ROS production is the most common cause of oxidative stress in human body. 

There are at least six conditions that cause overproduction of ROS (Table 1). First, consump-

tion of energy-rich diets directly increases aerobic metabolism and oxidative phosphorylation 

leading to increase in mitochondrial ROS production [52]. Mitochondrial superoxide anion is 

usually formed from an electron leakage in complexes I and III of ETC [53–55]. Second, high 

rate of oxygen use by strenuous work, competitive sport and exhaustive exercise is known 

to increase ROS generation through metabolic reactions [56–58]. Third, during reperfusion in 

surgery and organ transplantation, ROS are excessively generated, and ischemia or reperfu-

sion injury is an unavoidable consequence (Figure 4) [59]. Forth, exposure to radiation such as 

UV (non-ionizing) and X-rays (ionizing) directly initiates ROS formation and causes damages 

to cellular biomolecules [60]. Fifth, excessive activation of phagocytic cells through respiratory 

burst consumes large amount of oxygen to generate superoxide anion, hydrogen peroxide 

and hypochlorous acid (HOCl) [61]. Sixth, exposure to toxicants activates cytochrome P450 

monooxygenase (CYP450) in phase I xenobiotic biotransformation. Many reactive metabolites 

are unavoidably formed to cause oxidative damage [62].

Figure 4. Proposed mechanism of excessive ROS production during reoxygenation leading to a reperfusion injury. 

Reduction of blood flow causes decreased oxidative phosphorylation and ATP production. Subsequently, purine 

precursor used in ATP synthesis is degraded to hypoxanthine. Restoration of blood supply and oxygen triggers 

conversion of the accumulated hypoxanthine into xanthine and uric acid by xanthine oxidase. This reaction generates 

superoxide anions and other ROS that further initiate oxidative tissue injury. Modified from Refs. [49, 50].
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On the other side, decrease in antioxidant content in the body is attributed by at least three 
ways as follows: inadequate intake of dietary antioxidants, mutations in antioxidant genes 

and depletion of cellular glutathione as a consequence of detoxification of a large amount of 
xenobiotics (Table 1). Increased production of ROS beyond capability to cope by antioxidants 

leads to progressive augmentation of oxidized lesions that further promote pathogenic pro-

cess such as in aging [63], atherosclerosis [64], neurodegenerative diseases [18, 65, 66] and 

cancers [67–71].

2.1. Generation of ROS

Reactive species include free radicals and other molecules that are themselves capable of con-

verting to free radicals or have a powerful oxidizing property. By definition, free radicals 
are atoms or molecules having an unpaired valence electron. These molecules are chemically 

unstable and highly reactive towards other molecules. In fact, oxygen (O
2
) in the air has two 

unpaired electrons, thus it is a biradical or diradical. Parallel spin of the unpaired electrons 

in oxygen molecule makes it chemically stable and inactive. This state of oxygen is a ground 

state or triplet oxygen (3O
2
). However, if triplet oxygen is activated by sufficient energy to 

create an antiparallel spin of unpaired electrons, a highly reactive non-radical species, called 

singlet oxygen (1O
2
), is formed. UVA exposure and phagocytosing neutrophils appear to be 

main sources of singlet oxygen formation in the human body [72]. Like other ROS, singlet 

oxygen is deleterious and capable of oxidizing lipids, proteins and nucleic acids leading to 

tissue damage and inflammation [73]. Common ROS and RNS found in the biological system 

are shown in Figure 5.

Superoxide anion is the first ROS generated in the stepwise reduction of oxygen, and it is 
a free radical precursor of hydrogen peroxide and hydroxyl radical (Figure 1). Superoxide 

anion is principally produced in mitochondrial ETC through complex I (NADH:ubiquinone 

oxidoreductase) and complex III (ubiquinol:cytochrome c oxidoreductase) [74]. The other 

clinically significant source of superoxide anion is from oxidases, particularly NADPH 
oxidase in the respiratory burst and xanthine oxidase in the reperfusion therapy [61]. 

Increased ROS production Decreased antioxidant capability

High intake of energy-rich foods Inadequate intake of dietary antioxidants

High rate of oxygen consumption Genetic mutation of antioxidant enzymes

Ischemic reperfusion Depletion of glutathione as a consequence of increased rate of 

xenobiotic detoxification (via glutathione conjugation)

Exposure to radiation

Excessive activation of phagocytic cells

Exposure to xenobiotics activates CYP450 

monooxygenase to produce reactive metabolites

Table 1. Conditions contributed to disturbance between oxidants and antioxidants leading to oxidative stress in human 

body.
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NADPH oxidase is usually found in plasma membrane and phagosomes of phagocytic 

cells. Xanthine oxidase is primarily expressed in liver and small intestine located on outer 

surface of plasma membrane and in cytoplasm. Once activated, these oxidases produce 

large amount of superoxide anion. Superoxide anion itself is not highly reactive, and it has 

a relatively short half-life. Moreover, superoxide anion is negatively charged that is unable 

to cross the lipid membrane. Thereby, attack of superoxide anion to cellular biomolecules 
is confined at the site of origin. However, superoxide anion is capable of converting into a 
more diffusible reactive species, hydrogen peroxide. In addition, superoxide anion is able to 
react with other reactive species to produce more powerful oxidants, for instance, its inter-

action with nitric oxide (NO•) generates peroxynitrite (ONOO−) [55]. Peroxynitrite is a very 

powerful non-radical oxidant that is injurious to cells and has crucial roles in pathogenesis 

of many diseases [75]. Reactive species that are derived from nitric oxide is collectively 

termed RNS (Figure 5), and a cellular stress that is caused by RNS with elevated level of 

nitrosylation marker (e.g., nitrotyrosine) is called “nitrosative stress” [75]. As it is beyond 

the scope, RNS, nitrosative stress and their contribution to disease development are not 

elaborated in this chapter.

Hydrogen peroxide (H
2
O

2
) is an uncharged non-radical species with reactive potential. 

Dismutation of superoxide anion produces hydrogen peroxide, and this reaction can be 

spontaneously occurred or catalyzed by superoxide dismutase (SOD) enzyme. SOD is first 
observed in 1969 [76]. The rate of hydrogen peroxide formation in SOD-catalyzed dismuta-

tion is much greater than the spontaneous one. In human, SOD has three distinct forms with 

a comparable reaction rate constant, i.e., SOD1 or Cu/Zn-SOD in cytosol, SOD2 or Mn-SOD in 

Figure 5. Common radical and non-radical species of ROS and RNS generated in the body.
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mitochondria and SOD3 or extracellular SOD (Cu/Zn-ecSOD). To detoxify H
2
O

2
, catalase and 

glutathione (GSH) peroxidase are employed to convert H
2
O

2
 into water. These two enzymes 

have been shown to have an equal contribution of H
2
O

2
 disposal in human red blood cells 

[77]. In addition to its direct toxic effect, H
2
O

2
 can be converted into two main ROS, including 

hypochlorous acid (HOCl) by myeloperoxidase (MPO) in phagocytes and hydroxyl radical 

(•OH) by reacting with transition metals. In the actual fact, H
2
O

2
 per se is poorly reactive 

under a condition without transition metals [78].

Hydroxyl radical (•OH) is the most destructive ROS with the strongest oxidizing capacity to 

attack biomolecules in cells. The well-known reaction for the production of hydroxyl radical 
is Fenton reaction [79, 80]. Ferrous ion (Fe2+) reacts with hydrogen peroxide to give ferric 

ion (Fe3+) and hydroxyl radical. The Fenton chemistry was first delineated by H.J.H Fenton 
an over century ago, based on an observation of tartaric acid oxidation by H

2
O

2
 in the pres-

ence of Fe2+ [81, 82]. In addition to Fe2+, other transition metals such as Cu2+ can catalyze the 

Fenton reaction [22]. The other reaction that is closely related to the Fenton reaction is Haber-

Weiss reaction [83, 84]. It was firstly described (in German) by Haber and Willstätter in 1931 
[85], secondly demonstrated its kinetics by Baxendale et al. in 1946 [86] and experimentally 

verified that hydroxyl radical is produced from an interaction between hydrogen peroxide 
and superoxide anion by Weiss in 1949 [87]. This reaction indeed enlightens the toxicity 

of superoxide anion to generate a detrimental ROS, hydroxyl radical. In biological system 

with a presence of iron, generation of hydroxyl radical is mainly mediated through the iron-

catalyzed Haber-Weiss/Fenton reaction (Figure 6) [22, 83, 87]. Therefore, in conditions with 

iron overload, ROS are increasingly generated via this iron-catalyzed Haber-Weiss/Fenton 

reaction causing accumulation of oxidative damage that further promotes disease progres-

sion [88–90].

2.2. Roles of ROS in physiology and pathology

ROS are poisonous and pathogenic at the uncontrollable high concentration, but they are our 

good friend exerting many beneficial functions at the nontoxic physiological level. These two 
paradoxical functions of ROS, depended on how well our body can regulate and control their 

production, can be viewed as the Janus faces (Figure 7). ROS under normal circumstance exert 

critical actions in cells such as signal transduction, gene transcription and immune response 

[91]. Superoxide anion produced by NADPH oxidase is vitally important in killing invaded 

pathogens in phagocytic cells (macrophages, monocytes, neutrophils, eosinophils) through 

respiratory burst or oxidative burst (Figure 8). SOD converts superoxide anion into H
2
O

2
 to 

be used by myeloperoxidase (MPO) to form hypochlorous acid (HOCl). In the presence of 

iron, •OH can be produced from H
2
O

2
. These generated ROS are believed to be responsible 

for destroying the engulfed pathogens in the phagolysosome. Mutation in genes encoding for 

NADPH oxidase complexes resulting in insufficient ROS production that is a direct cause of 
chronic granulomatous disease (CGD) [92]. CGD is a rare inherited immune disorder caused 

from the inability of phagocytes to kill the ingested microbes, and its typical manifestation 

is frequently recurrent subcutaneous abscess formation together with hyperinflammation. 
There is still an argument that ROS and MPO-mediated halogenation are not the main killing 

system for the invaded microorganisms [93, 94].
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ROS, particularly H
2
O

2
, are known to activate a stress-regulated transcription factor NF-kB to 

withstand the physiological stress, and that activated NF-kB induces transcription of a num-

ber of genes requiring for survival, apoptosis resistance and inflammatory response [95–97]. 

Some ROS act as substrate for enzymes, for instance, H
2
O

2
 is a substrate for heme-peroxidases 

involved in iodination of thyroid hormone [98]. H
2
O

2
 has been considered as a key cellular 

redox sensor and signaling molecule. At physiological levels (1–10 nM), it regulates redox 

signaling to maintain physiological stress (called oxidative eustress), and at higher level, it 

activates Nrf2/Keap1/ARE signaling pathway to initiate cytoprotective response and NF-kB 

activation to promote cell survival. At the extremely high or supraphysiological concentra-

tions (>100 nM), H
2
O

2
 damages cellular biomolecules, disrupts redox signaling and causes 

oxidative distress leading to pathological development [99].

Nitric oxide, originally discovered as endothelium-derived relaxing factor, is the best-known 

free radical with signaling characteristic. It participates in several cellular and organ func-

tions such as relaxation and proliferation of vascular muscle cells, leukocyte adhesion, plate-

let aggregation and angiogenesis. Nitric oxide is synthesized from L-arginine and oxygen 

by nitric oxide synthase (eNOS in endothelial cells, nNOS in neurons and iNOS in many cell 

Figure 6. Fenton reaction and Haber-Weiss reaction for generation of hydroxyl radical. In the body with availability of 

iron ions, hydroxyl radical is principally produced via the iron-catalyzed Haber-Weiss/Fenton reaction.
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types following induction) using NADPH as electron donor. Sildenafil (VIAGRA®), a well-

known drug for treating erectile dysfunction, is developed to interfere the nitric oxide signal-

ing cascade in vascular smooth muscle cells [100]. Nitric oxide synthesized from endothelial 

Figure 7. Janus faces of ROS in the human body regarding their physiologic and pathogenic functions. The process that 
ROS function as signaling molecules to maintain the physiological function is called “redox biology” [101], and the 

maintenance of intracellular redox homeostasis requires cooperative action and network of various antioxidants such as 

glutathione, peroxiredoxin, thioredoxin and antioxidant enzymes [102].

Figure 8. Respiratory burst for killing pathogens in phagocytes. In the presence of iron ions, hydroxyl radical can be 

formed through Fenton reaction and/or iron-catalyzed Haber-Weiss/Fenton reaction.
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cells activates soluble guanylyl cyclase to convert GTP into cGMP leading to relaxation of vas-

cular smooth muscle cells and vasodilation. The drug inhibits the cGMP degrading enzyme 

(phosphodiesterase-5), and this inhibition in turn causes a persistent increase in cGMP to 

stimulate vascular relaxation.

2.3. Oxidative stress in diseases

Oxidative stress is critically involved in the pathogenesis of almost all diseases ranging from 

infection to chronic diseases including cancers. Many infectious agents are well recognized to 

trigger the production of ROS and RNS [103]. Helicobacter pylori, a well-known bacterial agent 

implicated in the development of gastritis, peptic ulcer and gastric carcinoma, is shown to 

induce ROS generation, oxidative stress and apoptosis in human gastric epithelial cell lines [104]. 

Oxidative stress induced by influenza virus is clearly demonstrated in many studies, and antiox-

idant intervention is an alternative therapeutic strategy to combat the virus [66]. In hepatocellu-

lar carcinoma (HCC), oxidative stress induced by hepatitis B and C viruses is a well-established 

mechanism to drive malignant transformation of hepatocytes [105]. Toxicity and carcinogenic-

ity induced by heavy metals (e.g., Hg, Cd, Ni, As) are demonstrated to mediate through ROS 

formation (mainly via Fenton reaction) yielding oxidatively modified products with highly car-

cinogenic and mutagenic potential [106, 107]. Undoubtedly, pathogenesis and complication of 

diabetes [108, 109], atherosclerosis [110, 111] and Parkinson’s disease [112] is critically involved 

ROS generation and oxidative damage. ROS directly cause oxidized lesions on DNA. Increased 

formation of oxidized lesions together with failure of DNA repair introduces a bunch of genetic 

mutations. Cancer is a disease of accumulated genetic mutations, and ROS production in cancer 

cells is markedly higher than normal cells. It is well established that ROS and oxidative stress 

have both direct and indirect contributions to carcinogenesis and progression of cancers [69, 113, 

114]. The question is that how do cancer cells survive under the highly oxidative microenviron-

ment. It turns out that cancer cells cope with the oxidative stress by reprograming their metabo-

lism and empowering the antioxidative capability through Nrf2/Keap1/ARE pathway [115–119]. 

In this chapter, it is focused only on oxidative stress in urinary stone disease.

3. Urolithiasis

UL or urinary stone disease is a condition with mineral masses in the urinary system. It is 

indeed an ancient condition. The oldest urinary stone was found in the pre-historic Egyptian 

tomb by Professor G. Elliot Smith in 1901. He observed the calculus lying among the pelvic 
bones of a 16-year-old boy mummy. This bladder stone composed of several types of minerals 

including uric acid (UA), calcium oxalate (CaOx), calcium phosphate (CaP) and magnesium 

ammonium phosphate (MAP). It was dated before 4500 B.C., meaning that the first evidenced 
urinary stone occurred over 7000 years ago [120, 121]. Even though UL is a long-standing 

disease staying with us since the origin of human history, the mechanism of urinary stone 

formation is still not fully understood. Moreover, UL cannot be cured completely. Surgical 

treatment of stones removes only symptoms, not causes. The challenging issue of stone dis-

ease management is how to prevent the stone recurrence.
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According to the location of stones in the urinary tract, stone disease is classified into three 
main forms as follows: kidney or renal stone (nephrolithiasis), ureteric stone (ureterolithia-

sis) and bladder stone (vesical calculi). Kidney stone is the most prevalent one. Bladder 

stone is accounted approximately 5% of all stones. It is prevalent in children in the devel-

oping countries, and diet is the main risk factor [122]. Stone lodged in the ureters (ureteric 

stone) is found about 20% of all stones [123]. It is believed that ureteric stone has a kidney 

origin. Kidney stone moves downwards to ureter due to the flush of urine flow and the 
size of stone (normal ureter diameter: 3–4 mm). Size does matter for spontaneous passage 
of ureteric stones, as ureteric stones about 4 mm in width have a spontaneous passage rate 

over 80% [124].

Prevalence of UL is progressively increasing in all countries across the world [125–127], espe-

cially in the tropical regions [128]. The lifetime risk of stone formation in the USA is over 12 and 

6% in men and women, respectively [129]. In Japan, the lifetime prevalence is of 15.1% in men 
and 6.8% in women [130, 131]. Overall kidney stone prevalence in Europe is ranged between 

5% and 10% [132]. In Germany, data in 2001 show stone prevalence of 4.7% in men and 4.0% in 

women [133]. The highest lifetime prevalence of 20% is reported in Saudi Arabia, a country with 

desert climate [130]. In Thailand, UL is endemic in the northeastern region, and the disease rate 

examined by abdominal ultrasound in 1997 is of 16.9% [134]. Our preliminary unpublished 

data of a community survey in 2017 for detecting asymptomatic urinary stones in villagers 

who reside in the northeastern region using computed tomography scan reveal the prevalence 

of asymptomatic stones at 12%, which is relatively high. Additionally, pattern of stone onset 
greatly varies among regions, for instance, the ureteric stone is much more common in the 

southern region of Thailand compared to the other regions [135]. In sum, the data of stone 

prevalence clearly indicate that stone formation varies across countries, depending greatly on 

climate. Stone prevalence is lower in colder countries, but higher in warmer countries.

Change in lifestyle and dietary habit is believed to have major contribution to an increasing 

stone prevalence [136]. Stone disease is a disease of urine concentration. Fluid intake and fluid 
loss due to hot climate are greatly contribute to urinary stone formation. An impact of global 

warming on rising in stone prevalence was first reported in 2008 in the USA [137]. Later, 

the adverse effect of climatic change on increase in UL onset is confirmed by studies [138] 

from various countries, viz., Korea [139, 140], Iran [141] and USA [142, 143]. In our ongoing 

research of climate change and UL onset, a trend of global warming in Thailand is observed. 

Increased temperature is positively associated with increased UL onset. Contrary, rainfall has 

a negative association with onset of urinary stone. Our finding confirms a significant contri-

bution of global warming to UL development.

Stones are built from lithogenic crystals formed in the supersaturated urine. Type of uri-

nary stones is, therefore, classified according to primary mineral components into four main 

types, namely CaOx, CaP, MAP and UA stones. Miscellaneous stones, including cystine 

and xanthine stones, are usually caused by genetic mutations of certain genes, and they are 

found mainly in children. CaOx is the highest prevalent stone type that is found up to 80% 

of all stones, and it is frequently mixed with CaP or hydroxyapatite. MAP or struvite stone is 
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formed in the alkali urine and associated with urinary tract infection of urea-splitting micro-

organisms such as Proteus, Klebsiella, Serratia, Pseudomonas, Staphylococcus and Mycoplasma. 

Nowadays, prevalence of struvite stone is decreasing, perhaps due to a widespread use of 

antibiotics. UA stone is the second most common urinary stones found up to 40%, and its for-

mation is associated with acidic urine [144]. Precipitation of UA depends chiefly upon urine 
pH. UA has a pKa of 5.75 [145]. In urine pH over 5.8, it exists as urate and readily solubilizes 

in water, whereas in urine pH below 5.8 it predominantly presents in the form of insoluble 

UA. Our hospital-based data from four main regions of Thailand (Northeast, North, Central 

and South) revealed that CaOx, CaP, UA and MAP stones were found at 74, 5, 16 and 5%, 

respectively [146]. This is consistent with the global picture of urinary stone types as CaOx is 

the most common one followed by the UA stone.

Urinary stone has multifactorial etiology with polygenic susceptibility. It mainly affects adults. 
Monogenic stone condition, such as cystinuria (found approximately at 1% of all stones and 

7% of stones in children) and primary hyperoxaluria, is a relatively rare condition that is often 

found in children, so-called childhood UL [147, 148]. Cystinuria is an autosomal recessive trait 

caused by mutations in SLC3A1 or SLC7A9 gene resulting in an inborn error in transport of 

urinary cystine, ornithine, lysine and arginine (commonly known as COLA) that subsequently 

initiate cystine stone formation. Stone formation without any identifiable clinical causes is 
labeled “idiopathic,” which is commonly observed in the CaOx formers [149]. However, it 

has been suggested that genetic screening should be performed in the previously classified 
idiopathic calcium UL in order to certainly rule out an underlying genetic susceptibility [148].

Stone formation is more prevalent in males than females. Male-to-female ratio varies from 

3.13:1 (in Germany) to 1.15:1 (in Iran) [126, 150]. In Thailand, we found a much lower of male-

to-female ratio at 1.1–1.2:1 implying that Thai men and women have a comparable chance 

to develop urinary stones [146, 151]. For age, a peak of prevalence is found between 40 and 

50 years old for CaOx stone, but for UA stone the age peak is shifted to 60–70 years old [126, 

146, 150, 151]. Increased body mass index and diabetes are associated with increased risk of 

UL, particularly UA stone formation [152–154]. Certain anatomical abnormality of kidneys 

also increases the risk of stone formation [155]. UL is known as the most frequent compli-

cation of horseshoe kidneys, which can be found up to 60% [156]. Likewise, up to 50% of 

patients with calyceal diverticula are inflicted with stones [157].

Family history is another factor known to increase a risk of stone formation. The data from 

study in the USA show that men with positive family history have 2.57 times higher risk 

of incident stone formation than those without [158]. Familial aggregation of kidney stone 

disease is more prominent in the northeastern region of Thailand with a relative risk of 3.18 

among members of the affected families [159]. Based on our data, a positive family history 

is accounted for 32–35% implying that contribution of genetic susceptibility to drive stone 

formation is observed only in one-third of cases [146, 151]. Stone formation in the majority 

of cases (two-third) is chiefly influenced by environmental and behavioral factors, especially 
diets. Inadequate fluid intake (recommended at 2 liters per day), increased consumption of 
food rich in animal protein and lithogenic substances (such as oxalate and purines) and low 
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intake of food containing antilithogenic substances (especially citrate) markedly contribute to 

stone development [136]. However, argument is raised from a prospective study of the large 

cohorts in the USA that demonstrates that dietary oxalate (as well as spinach intake) is not a 

major risk factor for incident nephrolithiasis [160]. For protective factor, dietary calcium and 

intake of fruits and vegetables reduce a risk of stone formation [161, 162]. In sum, dietary 

factor has a large contribution to stone formation; therefore, development of UL is possibly 

preventable.

Exposure to risk factors mentioned above causes changes in concentrations of urinary sub-

stances, including lithogenic substances (called stone promoters) and antilithogenic sub-

stances (called stone inhibitors). Disproportion of urinary stone promoters and inhibitors 

predisposing to crystallization and stone formation is defined as metabolic risk factor or 
metabolic abnormality. Metabolic abnormality includes an increase in urinary stone pro-

moters, e.g., hypercalciuria, hyperoxaluria and hyperuricosuria, and a decrease in urinary 

stone inhibitors, e.g., hypocitraturia, hypokaliuria and hypomagnesiuria. Although hyper-

calciuria is found in UL patients more frequent than hyperoxaluria, evidence suggests that 

mild degree of hyperoxaluria has much more influence on CaOx stone formation than 
hypercalciuria [163]. Citrate is the most potent stone inhibitor in urine, and low urinary 

citrate excretion is a common manifestation found in UL patients. Hypocitraturia in UL is 

reported between 20% and 60% in western studies [164]. In endemic area, hypocitraturia is 

much more prevailing, plausibly due to difference in lifestyle and dietary habit [165, 166]. 

Our data demonstrate that hypocitraturia (80–100%) and hypokaliuria are the most common 

metabolic risk factors found in Thai stone patients. In addition, we show that individu-

als with hypocitraturia have about 10 times higher risk for kidney stone development than 

those without [167, 168].

Mechanism of kidney stone formation has been proposed, although it is not entirely under-

stood (Figure 9). Building blocks of stones are lithogenic crystals, such as CaOx, CaP and 

UA crystals, formed in the urine. Chemically, CaOx crystals have three forms, i.e., calcium 

oxalate monohydrate (COM), calcium oxalate dihydrate (COD) and calcium oxalate trihy-

drate (COT), but the most deleterious form with highest lithogenic potential is COM. A pro-

cess of crystallization from solution has two phases. The first phase is birth of new crystals 
(called nucleation), and the second phase is growth of crystals to get larger size (called crystal 

growth). Supersaturation of urine, caused by increase in concentration of lithogenic ions and/

or decrease in urine volume and stone inhibitors, triggers nucleation in renal tubules. The 

crystals grow and aggregate to reach sufficient sizes and retain in the kidney. Surplus crystals 
are toxic and injurious to renal tubular cells resulting in renal tubular injury. Injured tubule is 

a suitable site for crystal attachment and retention. Nidus (site of stone origin) is then formed, 
grown and finally become stone. There are pathological changes occurred during the litho-

genic process. Excessive crystals induce ROS production in the exposed renal tubular cells 

leading to oxidative stress and renal tubular damage. Crystals also induce production and 

release of inflammatory mediators to activate inflammatory response that further enhances 
tubular injury. Both oxidative stress and inflammation cause release of various proteins and 
sloughing of cell debris into urine creating a vicious cycle to enhance crystal formation, aggre-

gation, retention and finally stone formation (Figure 9).
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Although it is known that urinary crystals are building blocks for building urinary stone, it 

is not precisely known how the microscopic crystals transform to be a macroscopic stone. 

Crystal aggregation is one of the critical steps in lithogenic process. Urinary crystals have to 

adhere to each other to form a bigger mass. If urinary crystals do not adhere or bind to each 

other, stone cannot be formed—similar to granulated sugar that each minute granule stays 

separately without clumping. Studies show that stacking of urinary crystals to form stone 

requires biological glue to adhere crystals together, and that glue is called stone matrix [169]. 

Stone matrix contributes about 5% of the stone mass composing of cellular biomolecules, 

cell debris and whole cells. We investigated lipid and protein constituents in stone and urine 

samples of nephrolithiasis patients. We found that glycolipids and phospholipids released 

into urine are actively incorporated into stone matrix [170]. Majority of proteins in stone 

matrix and nephrolithiasis urine are inflammatory and fibrotic proteins [171]. We also dem-

onstrate that S100A8 is an abundant inflammatory protein found in urine and stone matrix 
of the patients, and it could be a marker to indicate an extent of intrarenal inflammation in 
nephrolithiasis patients.

4. Oxidative stress in urolithiasis

ROS are experimentally proved to have a critical role in the pathogenesis of kidney stone [172]. 

Oxidative stress and inflammation are clearly demonstrated to mediate lithogenic process  
[173, 174]. Exposure of renal tubular cells to oxalate, COM, CaP and UA crystals causes increases 

in ROS production and oxidative stress leading to cell injury [175, 176] as well as release of mono-

cyte chemoattractant protein-1 (MCP-1) [177–179] and interleukin-6 (IL-6) [180]. Our human 

data show an elevated urinary excretion of oxidative DNA lesion, 8-hydroxydeoxyguanosine  

Figure 9. Key mechanistic steps in the process of kidney stone formation (see text for detail).

Oxidative Stress in Urolithiasis
http://dx.doi.org/10.5772/intechopen.75366

143



Figure 10. Putative cellular mechanism of crystal-induced inflammation leading to interstitial fibrosis in nephrolithiasis 
patients. Solid lines indicate demonstrated pathways and dash lines represent hypothesized pathways.

(8-OHdG), along with rise in renal tubular injury in patients with nephrolithiasis [181]. We 

also show an increased expression of 8-OHdG lesion in stone-containing renal tissues [182]. 

MCP-1 and IL-6 mRNA expression in stone-containing kidney tissues are increased, and their 

increment is related to declined creatinine clearance [183]. Our findings indicate that patients 
with nephrolithiasis persistently have increased oxidative stress and intrarenal inflammation, 
and these pathological changes contribute to renal impairment. An inevitable consequence of 

chronic inflammation is fibrosis. We show an evidence of renal fibrosis in the kidneys of neph-

rolithiasis patients, and the renal fibrogenesis at least in part mediates through transform-

ing growth factor-beta 1 (TGF-ß1)-induced epithelial-mesenchymal transition (EMT) [184]. In 

Figure 10, we propose the putative cellular mechanism of crystal-induced inflammation lead-

ing to interstitial fibrosis in nephrolithiasis patients. Lithogenic crystals are readily formed in 
the supersaturated urine. In healthy individuals, crystals are flushed out by the urine flow 
without any harm. In contrast, crystals grow, aggregate and adhere to renal tubular cells in 

stone-forming patients. Crystals are internalized to be dissolved in lysosomes, and the rem-

nants are exocytosed into renal interstitium. Alternatively, lithogenic ions such as calcium, 

phosphate and oxalate ions may diffuse through tubular lining towards the renal interstitium 
to form interstitial crystals. Crystals as well as oxalate ions induce oxidative damage to renal 

tubular cells via increased ROS generation. MCP-1, osteopontin (OPN), IL-6 and TGF-ß1 are 
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upregulated in the crystals/oxalate-exposed renal tubular cells. MCP-1 and OPN exert chemo-

tactic activity to recruit monocytes and macrophages into the renal interstitium and initiate 

inflammatory response. The infiltrated immune cells phagocytose the interstitial crystals and 
release a variety of cytokines, chemokines and growth factors, leading to further recruitment 

of leukocytes and inflammatory amplification. Excessive and chronic inflammatory reaction 
causes renal damage and activates wound healing process. IL-6 might stimulate the prolifera-

tion of renal tubular cells and interstitial fibroblasts in order to replace the severely injured 
and dead renal cells. TGF-ß1 produced by tubular cells in stone-forming kidneys activates 

the transformation of interstitial fibroblasts into α-smooth muscle actin (αSMA)-expressing/

extracellular matrix (ECM)-producing myofibroblasts and induces the transdifferentiation of 
renal tubular cells via EMT leading to overproduction of myofibroblasts and ECM. TGF-ß1 is 
also capable of inducing endothelial-mesenchymal transition to generate myofibroblasts from 
endothelial cells. TGF-ß1 is in turn overproduced by monocytes/macrophages, fibroblasts and 
myofibroblasts. Chronic inflammation is further amplified. Excessive repairing process causes 
excessive deposition of ECM proteins leading to scar formation. Thereby, lithogenic crystals 

that actively and chronically form in the nephron of nephrolithiasis patients cause a sustained 

inflammatory injury and excessive repair, which eventually lead to renal fibrosis. Urinary 
obstruction by large stone mass also initiates the renal fibrogenic cascade through TGF-ß1.

The goal of UL therapy is to remove stones and prevent stone recurrence. Removal of stones 

requires surgical approaches while prevention of stone relapse requires medical manage-

ment. The current drug of choice for stone therapy is potassium citrate [185, 186]. The drug 

delivers citraturic and urine alkalinizing effects to elevate urinary citrate and increase urine 
pH. According to the stone management guideline, treatment with potassium citrate requires at 

least 6 months to effectively reduce the likelihood of recurrent stone formation [187]. Since citrate 

is a key therapeutic ingredient for inhibiting stone formation, citrus fruits (such as orange, lemon, 

lime and grapefruit) and non-citrus fruit (such as melon) with high content of citrate have been 

considered as alternatives for stone treatment [188]. Intervention with antioxidants is shown to 

effectively inhibit CaOx crystal deposits in experimental nephrolithic rats [189, 190]. Regarding 

this, herbs and medicinal plants with high antioxidant property that have been traditionally 

used for treating stone disease in various countries are suggested to be alternative nutraceuticals 

or complementary therapeutic options for stone disease [191]. Banana stem (Musa sapienta L.), 

which is an Ayurveda remedy to treat kidney stones, had been shown to significantly reduce 
urinary stone risk in hyperoxaluric rats [192]. We have been investigated the clinical efficacy 
of lime juice and banana stem beverage as alternatives for UL treatment. We show that our 

inhouse limeade-based regimen, designated lime powder regimen (LPR), efficiently delivers 
citraturic, alkalinizing and antioxidative actions in nephrolithiasis patients [193]. Our preclinical 

and phase 1 clinical trial reveals that LPR inhibits COM crystal growth and attenuates oxidative 
stress in vitro and is capable of increasing urine citrate, pH and antioxidant capacity in healthy 

individuals [194]. Importantly, LPR is well tolerated and safe for daily intake.

Based on our research experience over 10 years three major etiological factors are identi-

fied in UL patients including (1) an inadequate intake of water, (2) low urinary excretion of 
citrate and (3) increased oxidative stress. We have developed an innovative beverage-based 

regimen for preventing urinary stone formation, named HydroZitLa (patent pending). Our 

inhouse HydroZitLa beverage contains therapeutic dose of citrate and naturally antioxidants  
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derived from banana stem, Clitoria ternatea L. and Caesalpinia sappan. In vitro, HydroZitLa effi-

ciently inhibits COM crystal aggregation and exerts antioxidative action to reduce oxidative 

damage in COM-treated HK-2 cells as well as H
2
O

2
-treated bladder cancer cells. In vivo experi-

ment reveals an antilithigenic efficacy of HydroZitLa in inhibiting CaOx deposits in kidneys 
of ethylene glycol-induced nephrolithic rats. The antilithogenic effect of HydroZitLa is com-

parable to that of potassium citrate drug (Uralyt-U). Our findings indicate a promising clinical 
potential of LPR and HydroZitLa as alternative nutraceuticals for UL treatment.

5. Conclusion

ROS are both friend and enemy. At physiological level, they are required for metabolic reactions 

and play a vital role in redox biology. At the uncontrollable high level, they are very destruc-

tive. High rate of oxygen consumption (through ETC and oxidases/oxygenases) and presence 

of transition metals are the main factors to generate ROS in an excessive amount. Cells combat 

ROS through activation of the cytoprotective Keap1-Nrf2-ARE signaling pathway. Chronically 

excessive production of ROS causes oxidative stress that disrupts redox signaling and control 

resulting in damage to biomolecules and cell injury. Oxidative stress mediates pathogenesis 

of a number of diseases ranging from infection to cancer. Evidences from in vitro, animal and 

human studies strongly support the active involvement of oxidative stress in urinary stone 

formation. Lithogenic crystals formed in urine directly induce ROS generation in renal tubu-

lar cells causing oxidative damage and release of inflammatory mediators. Sustained tubu-

lar injury, oxidative stress and inflammation in turn accelerate crystal formation, growth and 
aggregation and ultimately stone formation. Renal fibrosis is also found in the stone-containing 
kidneys of the patients and believed to be a main contributing factor to kidney dysfunction 

in the stone patients. Stone disease is greatly contributed by environmental and behavioral 

factors, and the disease is frequently recurrent. Based on our research experiences, major risk 

factors of stone formation (in particular CaOx stone) include inadequate daily intake of fluid, 
low urinary excretion of citrate (hypocitraturia) and low antioxidative capability (high oxi-

dative stress). Therefore, regimens or approaches to recuperate these depleted conditions are 

promising to be a new therapy for UL. Citrate is a potent stone inhibitor, and potassium citrate 

is a current drug used for preventing the stone recurrence. We recently developed a novel 

herb-based antilithic drink (called HydroZitLa, patent pending) containing a therapeutic dose 

of citrate and high amount of natural polyphenol antioxidants. Our in vitro and animal studies 

show a great promise of HydroZitLa to be an alternative for preventing urinary stone forma-

tion. Clinical trials are now planning to be conducted to observe the side effect and to test the 
clinical efficacy of HydroZitLa in reducing the risk of stone formation in the real clinical setting.
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