We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

4,800 122,000 135M

ailable International authors and editors Downloads

among the

154 TOP 1% 12.2%

Countries deliv most cited s Contributors from top 500 universities

Sa
S

BOOK
CITATION
INDEX

Selection of our books indexed in the Book Citation Index
in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.
For more information visit www.intechopen.com

Y

Chapter 3

Evaluation of Non-Parametric Selection Mechanisms in
Evolutionary Computation: A Case Study for the
Machine Scheduling Problem

Maxim A. Dulebenets

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75984

Abstract

Evolutionary Algorithms have been extensively used for solving stochastic, robust, and
dynamic optimization problems of a high complexity. Selection mechanisms play a very
important role in design of Evolutionary Algorithms, as they allow identifying the parent
chromosomes, that will be used for producing the offspring, and the offspring chromo-
somes, that will survive in the given generation and move on to the next generation.
Selection mechanisms, reported in the literature, can be classified in two groups: (1)
parametric selection mechanisms, and (2) non-parametric selection mechanisms. Unlike
parametric selection mechanisms, non-parametric selection mechanisms do not have any
parameters that have to be set, which significantly facilitates the Evolutionary Algorithm
parameter tuning analysis. This study presents a comprehensive analysis of the com-
monly used non-parametric selection mechanisms. Comparison of the selection mecha-
nisms is performed for the machine scheduling problem. The objective of the presented
mathematical model is to determine the assignment of the arriving jobs among the avail-
able machines, and the processing order of jobs on each machine, aiming to minimize the
total job processing cost. Different categories of Evolutionary Algorithms, which deploy
various non-parametric selection mechanisms, are evaluated in terms of the objective
function value at termination, computational time, and changes in the population diver-
sity. Findings indicate that the Roulette Wheel Selection and Uniform Sampling selection
mechanisms generally yield higher population diversity, while the Stochastic Universal
Sampling selection mechanism outperforms the other non-parametric selection mecha-
nisms in terms of the solution quality.

Keywords: optimization, Evolutionary Algorithms, non-parametric selection
mechanisms, machine scheduling problems, parameter tuning, computational time

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
InteChOpen Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,

distribution, and reproduction in any medium, provided the original work is properly cited.

24 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

1. Introduction

Evolutionary Algorithms (EAs) and other metaheuristic algorithms have been widely used for
solving complex stochastic, robust, and dynamic optimization problems. These complex prob-
lems include but are not limited to the following: vertex cover problem, Boolean satisfiability
problem, maximum clique size problem, Knapsack problem, traveling salesman problem, bin
packing problem, machine scheduling problems, and others [1, 2]. Some of the aforementioned
problems have a non-deterministic polynomial time complete (NP-complete) complexity,
while the others are non-deterministic polynomial time hard (NP-hard). The exact solution
algorithms cannot be used to solve NP-complete and NP-hard problems to the global optimal-
ity for the realistic size problem instances within an acceptable computational time. On the
other hand, the approximation algorithms, including EAs and other metaheuristic algorithms,
are able to provide good quality solutions within a reasonable computational time. Candidate
solutions to the problem of interest are encoded in the chromosomes within EAs. Different
types of chromosome representations have been reported in the EA literature. For example,
canonical Genetic Algorithms, developed by Holland, rely on a binary chromosome represen-
tation; while canonical Evolutionary Strategies, proposed by Rechenberg, use a real-valued
chromosome representation [3, 4]. On the other hand, Genetic Programming, developed by
Koza, relies on a tree-based chromosome representation [3, 4].

Once the chromosome representation is selected, the initial population is generated, and
fitness values of the initial population chromosomes are estimated. Then, the EA starts an
iterative process, where the population chromosomes are continuously altered using selection
and EA operators (e.g., crossover and mutation) from one generation to another, aiming to
identify superior solutions. The EA is terminated, once a certain stopping criterion is met (in
some EAs multiple stopping criteria can be imposed). Two types of selection mechanisms are
applied throughout the EA evolution: (1) parent selection, which aims to identify a subset of
individuals from the offspring chromosomes, survived in the previous generation, that will
participate in the EA operations and generate the new offspring chromosomes; and (2) off-
spring selection, which aims to identify a subset of individuals from the generated offspring
chromosomes that will survive in the given generation and will be moved to the next genera-
tion. A large number of different selection mechanisms have been reported in the EA literature,
which can be categorized in two groups: (1) parametric selection mechanisms (e.g., Exponen-
tial Ranking Selection, Tournament Selection, Boltzmann Selection), and (2) non-parametric
selection mechanisms (e.g., Roulette Wheel Selection, Stochastic Universal Sampling, Binary
Tournament Selection, Ranking Selection, Uniform Sampling).

Each EA has several parameters (e.g., population size, crossover probability, mutation probability,
and others), which are generally determined based on a parameter tuning [3, 4]. A “full factorial
design” methodology has been widely used for the EA parameter tuning [5]. Based on the latter
methodology, the algorithm has a number of parameters (or factors - f), which have a set of
candidate values (or levels - [). In order to set the appropriate EA parameter values, a total of ¥
algorithmic runs will be required throughout the parameter tuning analysis. Based on the analysis
of a tradeoff between the objective function and computational time values, the most promising

Evaluation of Non-Parametric Selection Mechanisms in Evolutionary Computation: A Case Study for the Machine...
http://dx.doi.org/10.5772/intechopen.75984

parameter combination will be chosen. Parametric selection mechanisms will increase the number

of algorithmic runs to jUN SEL), where N°FF — is the number of parameters for a given selection
mechanism. Such increase in the number of algorithmic runs can make the parameter tuning
analysis computationally prohibitive due to significant computational time required. Moreover,
the parameter values of the selection mechanisms, adopted for a given set of problem instances,
may worsen the EA performance, when applied to a different set of problem instances.

In order to avoid the latter drawbacks and facilitate the EA parameter tuning analysis, this
study solely applies non-parametric selection mechanisms throughout the EA design. Differ-
ent EA categories, which rely on various non-parametric selection mechanisms, are evaluated
based on the major algorithmic performance indicators, including the objective function value
at termination, computational time, and changes in the population diversity throughout the
algorithmic evolution. The computational experiments are conducted for the machine sched-
uling problem. The machine scheduling problem deals with allocation of the available han-
dling resources (i.e., machines) for service of the tasks (i.e., jobs), which arrive at the given
facility with a specific frequency [2]. The machine scheduling problem receives an increasing
attention from the community, as it is considered as an important decision problem in
manufacturing, service industries, and supply chain management [6-10]. Without efficient
sequencing and scheduling, the supply chain players may not be able to meet specific dead-
lines, which are established for processing certain products. The latter may incur substantial
monetary losses and, ultimately, can even result in the customer loss. In the meantime, poor
utilization of the available handling resources may cause drastic monetary losses as well.
Therefore, development of advanced decision support tools for the machine scheduling prob-
lems (including effective solution algorithms, which are the primary focus of this study)
becomes critical in the current competitive environment.

Findings from this research are expected to provide important insights regarding non-
parametric selection mechanisms, which can be further used in future for the design of EAs.
Efficient non-parametric selection mechanisms will be critical for Hybrid EAs, which along
with the standard EA parameters (e.g., population size, crossover probability, mutation prob-
ability) may require setting additional parameters for the local search heuristics. The
remaining sections of this chapter are organized in the following order. The next section
discusses the machine scheduling environment, where the developed EA will be applied. The
third section presents a mixed integer mathematical model for the machine scheduling prob-
lem. The fourth section focuses on a detailed description of the main EA components. The fifth
section discusses the computational experiments, which were conducted in this study for
evaluation of non-parametric selection mechanisms. The last section summarizes findings and
outlines potential directions for the future research.

2. Machine scheduling

The objective of the machine scheduling problems (MSPs) is to allocate the arriving jobs among
the available machines and identify the processing order of jobs on each machine. A large

25

26 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

number of various MSPs have been widely studied in the past, such as single machine,
identical machines in parallel, machines in parallel with different speeds, unrelated machines
in parallel, job shop, and others [2]. The aforementioned MSPs differ in terms of machine
properties (e.g., machines at a given facility have identical properties vs. machines at a given
facility have different properties), job type (e.g., the processing time of a given job may vary on
two machines with the same speeds based on the job type), order of machines to be visited
(e.g., a given job may have to be processed on several machines in a specific order), etc.

The unrelated MSP will be studied in this chapter. Let I = {1, ...,m} be a set of jobs, arriving at
the facility, which should be processed on the available machines within a given planning
horizon. Let | = {1,...,n} be a set of machines available at the given facility within a given
planning horizon. Let K = {1,...,p} be a set of job processing orders. Each job should be
assigned for processing on one of the available machines in one of the processing orders. The
machines at the given facility are assumed to have different properties (e.g., different speeds);
therefore, the processing time of a given job may vary depending on the machine assignment.
Furthermore, the processing time on a given machine depends on the job type (i.e., the
processing time for a given job on the machines with the same speed may be different due to
the job type). The latter three aspects are common for the unrelated MSPs. The MSP environ-
ment, modeled in this study; is illustrated in Figure 1.

Once the job arrives at the facility, it will be directed to the assigned machine for processing. If
the assigned machine is processing another job at the moment, the arriving job will be queued,
while waiting to be processed (see Figure 1). It is assumed that the facility operator will incur
the job waiting cost (c/'“, i€l in USD/hour), as increasing number of waiting jobs may cause
congestion at the given facility. Furthermore, the facility operator will incur the cost of
processing a given job on one of the available machines (c/¢, i€ in USD/hour). Each job,
arriving at the facility, must be processed by specific time (DP; i€l in hours). If the job
processing deadline is violated, the facility operator will incur the cost due to job processing
delays (cP, i€l in USD/hour). The objective of the facility operator is to allocate the arriving
jobs among the available machines and identify the processing order of jobs on each machine,

Figure 1. Machine scheduling environment.

Evaluation of Non-Parametric Selection Mechanisms in Evolutionary Computation: A Case Study for the Machine...
http://dx.doi.org/10.5772/intechopen.75984

aiming to minimize the total job processing cost, which includes: (1) the total job handling cost;
(2) the total job waiting cost; and (3) the total cost due to job processing delays.

3. Mathematical model

This section of the chapter presents a mixed integer programming model for the machine sched-
uling problem (MSP), which is studied herein. A detailed description of notations used in the
mathematical model and throughout this book chapter is provided at the end of the book chapter.

MSP: Machine Scheduling Problem

min Z Z Z (HTi]‘xijkClHC) + Z (WTiC}NC) + Z (PDiClDC) 1)

iel je] keK iel iel

Subject to:

SN wip=1viel)

jeJ] kek
Y xps<lvie] kek (3)
i€l

> > (HTpppe +ITppe) + 1Ty — ATixip 20 Viel,je], k€K (4)

i* eLi*#i k" e Kik* <k

SPT;> Y > (HTpapjge + 1Ty) + 1T — PN(1 — x)Vi€Lj€L k€K (5)
i eLi*#i k" € Kik*<k

WT;>SPT; — ATViel (6)

FPT;2SPT; + Y > (HTyxy)Viel @)
je] keK

PD;>FPT; — DPYi€l ®)

The objective function (1) of the MSP mathematical model minimizes the total job processing
cost, which is composed of the following components: (1) the total job handling cost; (2) the
total job waiting cost; and (3) the total cost due to job processing delays. Constraint set (2)
guarantees that each job will be scheduled for processing on one of the available machines in
one of the processing orders. Constraint set (3) ensures that no more than one job can be
processed on each machine in a given processing order. Constraint set (4) ensures that the
processing of a given job will not start before its arrival at the facility. Constraint set (5)
calculates the start processing time for each job, arriving at the facility. Constraint set (6)
computes the waiting time for each job, arriving at the facility. Constraint set (7) estimates the
finish processing time for each job. Constraint set (8) calculates hours of delay in processing
each job, arriving at the facility.

27

28 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

4. Evolutionary Algorithm description

MSPs belong to the class of NP-hard problems, which cannot be solved using the exact
optimization algorithms to the global optimality for the realistic size problem instances within
an acceptable computational time. Therefore, a set of EAs were developed in this study to
solve the MSP mathematical model. EAs were differentiated based on the type of non-
parametric selection mechanism adopted. This section provides an outline of the main EA
steps and a detailed description of each step.

4.1. Main EA steps

The main EA steps are presented in Algorithm 1. The data structures for the EA variables are
initialized in step 0. The initial population is generated in steps 1-2. After that, fitness of the
initial population chromosomes is evaluated in step 3. Then, the EA algorithm starts an
iterative process (steps 4-12), where the fittest individual is stored before applying the parent
selection in step 6. The latter strategy is commonly referred to as “Elitist Strategy” in Evolu-
tionary Computation. After that, the parent chromosomes are determined in step 7, while the
offspring chromosomes are produced via the EA operations in step 8. Fitness of the offspring
chromosomes is evaluated in step 9. After that, the offspring selection is executed to determine
the offspring chromosomes that along with the fittest individual will be moved to the next
generation (steps 10 and 11). The iterative process is continuously executed until a certain
stopping criterion is met. At convergence, the proposed EA algorithm returns the best solu-
tion, which corresponds to the job to machine to processing order assignment with the least
possible job processing cost. A detailed description of each EA component is presented in
Sections 4.2—4.8.

Algorithm 1. Evolutionary Algorithm (EA).

EA(Data, Q,0¢,0M,SC).
in: Data - input data for the MSP mathematical model; 2 - population size; o€

probability; SC - stopping criterion

- crossover probability; oM - mutation

out: Solution - the best job to machine to processing order assignment
0: |Population| < Q; |Fitness| < Q; |Parents| < (; |Offspring| < Q; |Best| — @
1: gen 1

2: Population,,,, — InitPopulation(Data, Q)

3: Fitnessg., «+— FitnessEval (Datm Populationgen>
4: while SC — FALSE do

5. gen «— gen+1

6: Best « argmin (Fitnessge)

7: Parentsge, «— ParentSel (Populationg Fitnessgm>

en’

Evaluation of Non-Parametric Selection Mechanisms in Evolutionary Computation: A Case Study for the Machine... 29
http://dx.doi.org/10.5772/intechopen.75984

Algorithm 1. Evolutionary Algorithm (EA).

8 Offspring,,, — EAoperation(Parentsy, o<, o)
9: Fitnessge, — FitnessEval(Data, Offspringgen>

10: Population «— Population,,, ,,U{Best}

gen+1 gen+1
11: Population,, ., — Oﬂ'springSel(Oﬁspringw,Fitnessgen>
12: end while

13: Solution «— argmin (Fitnessge,U Fitnesspes)

14: return Solution

4.2. Chromosome representation

Two-dimensional integer chromosomes will be used in this study to represent candidate
solutions to the MSP mathematical model (i.e., job to machine to processing order assign-
ments). Note that the term “chromosome” is used interchangeably with the term “individual”
throughout this chapter, as both terms represent the same meaning [3]. An example of a
chromosome is illustrated in Figure 2, where 9 jobs are scheduled for processing on 3 machines.
Specifically, jobs “2”, “3”, and “5” are scheduled for processing on machine “1” (in that specific
processing order); jobs “4”, “6”, and “9” are scheduled for processing on machine “2” (in that
specific processing order); while jobs “1”, “7”, and “8” are scheduled for processing on
machine “3” (in that specific processing order). The term “genes” will be used in this study to
denote components of a chromosome (i.e., machine identifiers and job identifiers).

4.3. Initialization of the chromosomes and population

There are two major approaches for initializing the chromosomes and population within EAs.
The first approach initializes the chromosomes and population randomly (i.e., the job to
machine to processing order assignment is determined randomly). The second approach relies
on application of the local search heuristics. A large number of the local search heuristics have
been presented in the machine scheduling literature, such as [2]: First In First Out, First In Last
Out, Shortest Processing Time First, Shortest Remaining Processing Time on the Fastest
Machine, Shortest Setup Time First, and others. The local search heuristics may allow obtaining
better quality solutions as compared to the random initialization mechanisms. However, the
local search heuristics, which have been used for MSPs, are typically deterministic. Therefore,
the population, initialized using deterministic local search heuristics, will have identical chro-
mosomes, which will negatively affect the population diversity (i.e., only one domain of the

MachineID— [I |1 |1[2]2]2|3([3(3
JobID— [2[3|5]|4]|6|9|1|7]|8

Figure 2. Chromosome representation example.

30 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

search space will be explored at the population initialization stage). To avoid the latter draw-
back and ensure the population diversity, this study will use a random initialization mecha-
nism to create the initial population. The number of individuals in the population is
determined based on the population size parameter (Q2).

4.4. Fitness function

The fitness function of chromosomes is assumed to be equal to the objective function of the
MSP mathematical model (i.e., total job processing cost). Application of various scaling mech-
anisms for the fitness function (e.g., linear scaling, sigma truncation, and power law scaling) to
control the selection pressure throughout the algorithmic run will be one of the future research
directions of this study.

4.5. Parent selection mechanism

The purpose of the parent selection mechanism is to determine a subset of individuals from the
offspring chromosomes, survived in the previous generation, that will participate in the EA
operations and generate the new offspring chromosomes. As discussed in the introduction
section of this chapter, the main objective of this study is to evaluate various non-parametric
selection mechanisms, commonly used in the literature, including the following [3, 4]:

a. Roulette Wheel Selection (also known as Fitness Proportionate Selection) — each indi-
vidual of the population is assigned a portion of a roulette wheel, where a larger portion is
allocated to the individual with a higher fitness value. Then, the roulette wheel is contin-
uously rotated until the required amount of parent chromosomes has been selected.

b. Stochastic Universal Sampling — each individual of the population is assigned a portion
of a straight line segment, where a larger portion is allocated to the individual with a
higher fitness value (similar to the Roulette Wheel Selection mechanism). Then, the parent
chromosomes are selected based on the evenly spaced fitness intervals (unlike Roulette
Wheel Selection, which requires generating a random number each time in order to rotate
the roulette wheel).

c¢. Binary Tournament Selection — multiple binary tournaments are executed, where two
individuals are randomly sampled from the population during each tournament, and the
individual with a higher fitness value is chosen to become a parent. The required number
of tournaments is determined based on the population size.

d. Ranking Selection — the parent and offspring chromosomes from the previous generation
are combined in a one data structure, sorted based on their fitness, and a subset of
chromosomes with higher fitness values (out of the available parent and offspring chro-
mosomes) will become parents. Such selection mechanism has been widely used in canon-
ical Evolutionary Strategies [3] and is generally referred to as (u + A)-selection, where
parents (u) are allowed to compete with offspring (A).

Evaluation of Non-Parametric Selection Mechanisms in Evolutionary Computation: A Case Study for the Machine...
http://dx.doi.org/10.5772/intechopen.75984

e. Uniform Sampling — the parent chromosomes are selected from the population by uni-
form (or random) sampling. Unlike the aforementioned selection mechanisms, Uniform
Sampling is not biased by fitness.

For a detailed description of the considered non-parametric selection mechanisms and illus-
trative examples of these mechanisms, this study refers to Eiben and Smith [3] and
Sivanandam and Deepa [4]. Five categories of the EA algorithm, deploying different types of
parent selection mechanisms, will be evaluated in this study, including the following: (1) EA
with Roulette Wheel Selection (EA-RWS); (2) EA with Stochastic Universal Sampling (EA-
SUS); (3) EA with Binary Tournament Selection (EA-BTS); (4) EA with Ranking Selection (EA-
RS); and (5) EA with Uniform Sampling (EA-US).

4.6. EA operations

Once the parent chromosomes are selected, the developed EA algorithm applies the crossover
and mutation operators in order to produce and mutate the offspring chromosomes. Both
operators are described in sections 4.6.1-4.6.2 of the chapter.

4.6.1. Crossover

The order crossover is used to produce the offspring chromosomes. Selection of the latter
crossover operator can be justified by the adopted chromosome representation. Specifically,
certain crossover operators (e.g., N-point, whole arithmetic, uniform) may produce infeasible
offspring for the integer chromosome representation [3]. On the other hand, the order cross-
over guarantees feasibility of the generated offspring chromosomes. An example of an order
crossover operation is illustrated in Figure 3. Two chromosomes are randomly selected from
the available parent chromosomes. The probability of parents to undergo a crossover opera-
tion is determined by the crossover probability parameter (c¢). After that, a string of genes is
copied from parent “1” to offspring “1”. Note that the length of a string will be set randomly,
and, therefore, may vary from one crossover operation to another. In the considered example, a
string of genes with jobs “2”, “6”, “8”, and “3” is copied from parent “1” to offspring “1”.
Then, the genes with missing jobs are copied from parent “2” to offspring “1”. In the

Parent 1 Offspring 1

Machine ID — | 1 :: MachineID — |1 [1]2
JobID—|[1]|4)2[6[8[3]5|9)|7 JobID— |9 7]2

—
(W]
[\
N
W]
(O8]
LU'S]
(P8]
[\
\)
[\
[\
3]
(O8]

(=)
[}
(U8}
i
W
—

Parent 2 Offspring 2
MachineID— |1 [112|2|2|2]2|2]|3 MachineID—- 11212 |2/2 2133 |3
JobID—[9 |72 |8|6[4]5|3]|1 JobID—- 11312864159 |7

Figure 3. Order crossover operation example.

31

32

Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

Before Swap Mutation Before Insert Mutation

MachineID — |1 |1[1]2]2]|2 3/3| MachinelID— |1 |1]1]2]2]2][3|3|3
JobID—|2]3]5|/4 6/ 9|1]|7|8 JobID—|2]3]5|4/6 9178

After Swap Mutation After Insert Mutation

MachineID— |1 |1 [1]2]|2]|2 33| MachinelD—|1/1]11]2/2]2[3]3
JobID—[7[3/5/4/6[/9]1]2 8 JobID—|[2/4/3 5]6|1/9[7 8

Figure 4. Mutation operation example.

considered example, jobs “9”, “7”, “4”, “5”, and “1” are copied from parent “2” to offspring
“1”. The offspring “2” is produced in a similar manner.

4.6.2. Mutation

The offspring chromosomes, produced via the order crossover, will be mutated. Two types of
mutation operators will be applied in this study: (a) swap; and (b) insert. An example of a
mutation operation is illustrated in Figure 4. In case of a swap mutation operation, job “2”,
initially scheduled for processing on machine “1” as the first job, is re-scheduled for processing
on machine “3” as the second job. On the other hand, job “7”, initially scheduled for processing
on machine “3” as the second job, is re-scheduled for processing on machine “1” as the first
job. In case of an insert mutation operation, job “4”, initially scheduled for processing on
machine “2” as the first job, is re-scheduled for processing on machine “1” as the second job.
On the other hand, job “1”, initially scheduled for processing on machine “3” as the first job, is
re-scheduled for processing on machine “2” as the second job. Application of both swap and
insert mutation operators allows altering job to machine and job to processing order assign-
ments. The number of genes to be mutated throughout the mutation operation is determined

by the mutation probability parameter (o).

4.7. Offspring selection mechanism

The purpose of the offspring selection mechanism is to determine a subset of individuals from
the generated offspring chromosomes that will survive in the given generation and will be
moved to the next generation. This study relies on the generational offspring selection mecha-
nism, where all offspring chromosomes will be moved to the next generation and become
candidate parent chromosomes. Such offspring selection mechanism has been widely used in
canonical Genetic Algorithms, proposed by Holland, and Genetic Programming, developed by
Koza [3, 4].

4.8. Stopping criterion

The developed EA algorithm will be terminated, once a certain stopping criterion is met. The
stopping criterion, adopted in this study, is the maximum number of generations (¢M4%).

Evaluation of Non-Parametric Selection Mechanisms in Evolutionary Computation: A Case Study for the Machine...
http://dx.doi.org/10.5772/intechopen.75984

5. Computational experiments

This section provides a detailed description of the computational experiments, which were
conducted to evaluate the considered non-parametric selection mechanisms. Five EA catego-
ries, applying different non-parametric selection mechanisms (i.e., the EA-RWS, EA-SUS, EA-
BTS, EA-RS, and EA-US algorithms, described in Section 4.5), were evaluated in terms of the
objective function value at termination, computational time, and changes in the population
diversity throughout the algorithmic run. All EA algorithms were coded in MATLAB 2016a.
The computational experiments were executed on a CPU with Dell Intel(R) Core™ i7 Processor
and 32 GB of RAM. Sections 5.1-5.3 elaborate on the input data selection for the MSP mathe-
matical model, parameter tuning of the developed EA algorithms, and comprehensive com-
parative analysis of the considered non-parametric selection mechanisms.

5.1. Input data selection

The required input parameters for the MSP mathematical model were primarily generated
based on the relevant literature [2, 6-36]. The adopted parameter values are presented in
Table 1. A total of 40 problem instances were developed to conduct the computational exper-
iments by changing the number of arriving jobs from 50 to 140 with an increment of 10 jobs,
while the number of available machines was changed from 4 to 10 with an increment of 2
machines.

MSP parameter Adopted value

Number of arriving jobs: m (jobs) Varies based on the problem instance

Number of available machines: n (machines) Varies based on the problem instance

Number of job processing orders: p (orders) p = m (considering the case, when all jobs are assigned for

processing on one machine)
Arrival time of job i: AT, i €I (hours) Exponential(2)/60
Handling time of job i on machine j: HTj,i€l,j€] (hours) Uniform(20;80)/60

Deadline for processing job i: DP;, i €I (hours) AT; 4 Uniform(1.2;1.5)-min; ¢](H Ti]')
Unit handling cost for job i: ¢f'€, i€ I (USD/hour) Uniform(200; 400)
Unit waiting cost for job i: ¢/'C, i €I (USD/hour) Uniform(50;100)

Unit delayed processing cost of job i: ¢P¢, i€ (USD/hour) Uniform(300; 600)

Large positive number: PN 10°

Exponential(a) — exponentially distributed pseudorandom numbers with a mean inter-arrival time of a; Uniform(b;c) —
uniformly distributed pseudorandom numbers, varying from b to c.

Table 1. MSP parameter values.

33

34 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

5.2. EA parameter tuning

A parameter selection analysis was performed for the EA-RWS, EA-SUS, EA-BTS, EA-RS, and
EA-US algorithms to identify the appropriate parameter values. Each one of the developed EA
algorithms has a total of 4 parameters, including the following: (1) population size — (; (2)
crossover probability — ¢¢; (3) mutation probability — 0™; and (4) maximum number of gener-
ations — ¢MAX. A “full factorial design” methodology [5], described in the introduction section
of the chapter, was adopted for the EA parameter tuning. A total of 3 candidate values were

considered for each parameter (i.e., 3" factorial design). A total of 3 problem instances were
chosen at random from the generated problem instances (see Section 5.1) in order to conduct
the parameter tuning analysis.

A total of 10 replications were performed for each algorithm and each problem instance to
obtain the average objective function and computational time values. The number of replica-
tions was found to be sufficient, as the objective function values did not vary substantially
from one replication to another. Specifically, the coefficient of variation of the objective func-
tion values at termination did not exceed 1.00% over the performed replications for all the
generated problem instances and the developed solution algorithms. Based on preliminary
algorithmic runs, it was found that increasing number of replications would incur a significant
increase in the computational time without a significant reduction of the objective function
coefficient of variation for each EA. Table 2 provides a summary of the parameter analysis for
each EA, including the following data: (1) algorithm; 2) parameter; (3) considered candidate
values for each parameter; and (4) the best parameter value, highlighted in bold font (deter-
mined based on the analysis of a tradeoff between the obtained objective function values and
computational time required).

The parameter tuning analysis for the developed EA algorithms took more than 11 days (i.e.,
more than 51 hours for each EA). Application of parametric selection mechanisms would
increase the computational time of the parameter tuning analysis even further. The latter
highlights the importance of adopting non-parametric selection mechanisms.

5.3. Comparative analysis

This section focuses on a detailed comparative analysis of the considered EA algorithms,
deploying different non-parametric selection mechanisms, in terms of the objective function

Algorithm\Parameter Q o€ oM gMax

EA-RWS [40; 50; 60] [0.25; 0.50; 0.75] [0.01; 0.02; 0.05] [2000; 2500; 3000]
EA-SUS [40; 50; 60] [0.25; 0.50; 0.75] [0.01; 0.02; 0.05] [2000; 2500; 3000]
EA-BTS [40; 50; 60] [0.25; 0.50; 0.75] [0.01; 0.02; 0.05] [2000; 2500; 3000]
EA-RS [40; 50; 60] [0.25; 0.50; 0.75] [0.01; 0.02; 0.05] [2000; 2500; 3000]
EA-US [40; 50; 60] [0.25; 0.50; 0.75] [0.01; 0.02; 0.05] [2000; 2500; 3000]

Table 2. EA parameter tuning analysis summary.

Evaluation of Non-Parametric Selection Mechanisms in Evolutionary Computation: A Case Study for the Machine...
http://dx.doi.org/10.5772/intechopen.75984

values at termination and required computational time. Moreover, changes in the population
diversity are analyzed throughout evolution of each EA.

5.3.1. Objective function and computational time

The developed EA-RWS, EA-SUS, EA-BTS, EA-RS, and EA-US algorithms were executed for
all the generated problem instances, which were described in Section 5.1. A total of 10 replica-
tions were performed for each algorithm and each problem instance. Results of the conducted
analysis are reported in Table 3 for each algorithm and each problem instance, including the
following data: (1) instance number; (2) number of arriving jobs (m); (3) number of available
machines (n); (4) average objective function value at termination (Z) for each EA algorithm;
and (5) average computational time value (CPU) for each EA algorithm.

The average objective function values comprised 339.79 10° USD, 321.39 10° USD, 333.97 10°
USD, and 324.14 10° USD, and 357.86 10°> USD over the developed problem instances for the
EA-RWS, EA-SUS, EA-BTS, EA-RS, and EA-US algorithms respectively. Therefore, EA-SUS
that relies on Stochastic Universal Sampling outperformed the EAs with other non-parametric
selection mechanisms in terms of the solution quality. Superiority of the EA-SUS algorithm can
be explained by the fact that Stochastic Universal Sampling selects the parent chromosomes
based on the evenly distributed fitness intervals and, therefore, ensures that high, medium,
and low quality individuals will be given a chance to reproduce. The EA-RS algorithm, which
deploys Ranking Selection, demonstrated a good performance; however, it was outperformed
by the EA-SUS algorithm due to the fact that ranking is substantially biased by fitness.
Ranking Selection allows only high and medium fitness chromosomes to become parents,
while the individuals with low fitness values are not given any chance to reproduce.

The EA-RWS and EA-BTS algorithms were outperformed by both EA-SUS and EA-RS algo-
rithms, as they do not guarantee that high and medium quality individuals will become
parents. Although Roulette Wheel Selection and Binary Tournament Selection are biased by
fitness, and the individuals with higher fitness have higher chances to reproduce, such selec-
tion mechanisms may allow a significant portion of low quality individuals to become parents,
which negatively affects the objective function values and results in a premature convergence.
The worst performance was recorded for the EA-US algorithm, which relies on Uniform
Sampling. Uniform Sampling is not biased by fitness and gives all individuals equal chances
to become parents, which may not be desirable in some cases (i.e., higher and medium quality
individuals should have higher chances to reproduce, as compared to low quality individuals).
Uniform Sampling can be advantageous when applied in combination with other selection
mechanisms (e.g., Uniform Sampling is used at the parent selection stage, while Stochastic
Universal Sampling is used at the offspring selection stage). Evaluation of the EA algorithms,
which use a combination of various non-parametric selection mechanisms, will be one of the
future research directions of this study.

An additional statistical analysis was conducted to investigate differences between the average
objective function values at termination, suggested by the developed algorithms. The null
hypothesis was assumed to be Ho : iy, = i, (i.e., the average objective function value at

35

36 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

Instance m n EA-RWS EA-SUS EA-BTS EA-RS EA-US

Z,10° CPU, Z,10° CPU, Z,10° CPU, Z,10° CPU, Z,10° CPU,

USD sec USD sec USD sec USD sec USD sec
1 50 4 14161 5272 137.06 5626 13830 56.61 138.86 55.11 14375 61.19
2 50 6 84.43 51.76 82.89 5353 82.94 58.46 87.32 5445 89.29 62.14
3 50 8 59.35 5292 56.85 54.81 57.81 59.75 57.84 55.42 61.45 63.01
4 50 10 44.52 5454 42.98 56.07 45.19 60.40 45.14 56.32 48.43 63.94
5 60 4 19897 5839 19043 60.07 19137 6579 192.01 6047 19531 68.20
6 60 6 12149 59.69 111.83 6133 11481 6733 11347 6206 12311 69.39
7 60 8 82.89 61.17 80.00 62.16 80.71 68.59 80.60 63.14 84.01 70.83
8 60 10 62.31 6212 60.37 6335 62.98 7017 60.61 64.00 66.13 72.39
9 70 4 27859 6571 25923 6740 26927 7493 26785 6811 28521 77.10
10 70 6 16486 6719 159.63 69.17 16125 7634 159.87 = 69.38 17677 78.77
11 70 8 11925 6820 11144 7007 11407 7785 11352 7161 12213 80.20
12 70 10 87.04 69.71 84.72 70.99 88.47 79.31 85.13 7272 92.40 82.75
13 80 4 35882 7398 341.87 7549 34755 8401 34251 7736 368.74 87.29
14 80 6 21452 7525 20472 7647 21232 8490 20670 78.60 22290 88.00
15 80 8 14800 7639 14260 79.78 14880 8586 143.65 7950 15565 89.31
16 80 10 112.84 7759 10688 79.47 11021 8752 10723 80.47 12404 91.83
17 90 4 46090 81.58 444.03 8376 44623 9298 44681 85.02 48448 9691
18 90 6 27798 8284 26976 8489 27157 9384 27119 8696 29747 92.80
19 90 8 19122 8395 180.81 8622 19522 9537 18097 8843 203.99 9431
20 90 10 15194 8554 13586 87.94 14250 9732 13617 89.75 15942 9593
21 100 4 600.06 89.07 564.90 9229 580.63 10197 56824 94.03 60143 101.61
22 100 6 35599 89.84 34357 9310 348.84 101.66 346.33 94.63 38470 102.99
23 100 8 249.85 9111 22849 9442 24306 103.32 22937 9594 26030 103.12
24 100 10 190.11 9281 171.88 9595 184.94 10481 17424 9751 19691 104.42
25 110 4 72016 9639 67810 9921 706.05 109.70 678.90 10152 74549 108.94
26 110 6 440.85 98.03 419.34 101.31 42949 111.74 421.62 10251 461.96 110.18
27 110 8 300.11 99.59 280.76 10257 292.38 11276 28159 10407 317.98 111.86
28 110 10 223.92 100.81 208.87 103.90 22049 11461 21076 105.66 24574 113.24
29 120 4 85823 10478 802.81 108.03 848.19 12034 816.61 110.30 900.09 120.61
30 120 6 53924 10552 48890 109.46 514.46 120.73 498.86 112.01 549.63 122.26
31 120 8 35624 10750 34326 11121 363.44 12290 34524 11377 389.83 123.98
32 120 10 273.65 109.06 249.24 112.04 267.37 12511 250.87 11476 28492 124.56
33 130 4 101156 112.84 97407 11621 100136 123.02 979.15 119.14 1069.10 129.10
34 130 6 62042 114.00 583.82 11726 61810 12251 589.85 119.96 65025 130.27

Evaluation of Non-Parametric Selection Mechanisms in Evolutionary Computation: A Case Study for the Machine...
http://dx.doi.org/10.5772/intechopen.75984

Instance m n EA-RWS EA-SUS EA-BTS EA-RS EA-US

Z,10% CPU, Z,10° CPU, Z,10° CPU, Z,10° CPU, Z,10° CPU,
USD sec USD sec USD sec USD sec USD sec

35 130 8 418.78 11549 401.15 118.47 424.44 124.11 403.36 121.57 449.19 132.76
36 130 10 310.32 116.52 296.11 119.97 318.84 12534 298.81 12295 342.26 134.08
37 140 4 118491 120.74 112127 12396 1168.76 129.81 1123.67 127.12 126722 138.33
38 140 6 71251 121.49 680.00 12512 696.63 130.66 690.01 129.63 757.52 139.52
39 140 8 499.65 123.61 465.71 126.37 483.23 131.65 469.30 129.50 529.86 141.40
40 140 10 363.36 12470 349.41 12791 366.61 133.38 351.45 130.79 405.48 142.81
Average: 339.79 87.38 321.39 89.95 333.97 97.69 324.14 91.66 357.86 100.56

Table 3. Objective function and computational time values for the considered EA algorithms.

termination of algorithm EA; [up,] is equal to the average objective function value at termi-
nation of algorithm EA; [up,]), while the alternative hypothesis was assumed to be
Hg : pps, < pipy, (algorithm EA; returns lower average objective function value at termination

as compared to algorithm EA;). The average objective function values were estimated over 40
problem instances for each EA algorithm. Based on the hypothesis testing results, no statisti-
cally significant difference has been identified among the average objective function values at
termination, suggested by the EA-SUS algorithm and other developed EA algorithms, at
significance level a = 0.05. The latter finding can be justified by the fact that for some of the
problem instances the developed algorithms did not demonstrate significant differences in
terms of the objective function values (generally, the problem instances with lower number of
arriving jobs and available machines — problem instances 1, 2, 5, 6, and others).

Furthermore, on average over all the generated problem instances the EA-SUS algorithm
outperformed the EA-RWS, EA-BTS, EA-RS, and EA-US algorithms by 5.72, 3.91, 0.86, and
11.35%. However, for some of the problem instances the EA-SUS algorithm outperformed the
EA-RWS, EA-BTS, EA-RS, and EA-US algorithms by up to 11.84, 7.97, 5.34, and 17.65%.
Therefore, application of the EA-SUS algorithm is expected to become even more advanta-
geous (in terms of objective function values at termination) with increasing problem size. The
computational time of the developed EA algorithms did not exceed 142.81 sec over all 40
problem instances, which can be considered as acceptable.

5.3.2. Changes in the population diversity

The population diversity is critical in EAs especially at early stages of the search process.
Without a diverse population, a given EA will not be able explore the available domains of
the search space in an efficient manner. Lack of diversity in early generations of the EA
algorithm may lead to negative consequences, including premature convergence. The popula-
tion fitness values were recorded throughout evolution of the developed EA-RWS, EA-SUS,

37

38

Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

EA-BTS, EA-RS, and EA-US algorithms for each replication and each problem instance. The
population fitness boxplots are illustrated in Figures 5 and 6 for the first replication of each EA
algorithm after the parent selection in generations 500, 1000, 1500, 2000, 2500, and 3000. Note
that boxplots are presented only for the first replication of each EA algorithm and problem
instances 37—40 (i.e., the problem instances with the largest number of arriving jobs), but

x10° Inst-37: Gen-500 x10° Inst-37: Gen-1000 x10° Inst-37: Gen-1500
2 T 18 T
i ! 1871
1 | 1.7 : e
B 1 N = 2 1
7] D16 %)
2 < =] T Siet T ? % |
® 1.6 1 @15 i] !
87| ¥ — 18" 8 _ -, |
S : T 14 ; y - e e _ +]
S 14 E:E o [- ! 8 i 5 14 i
-] i 1 = L ! - = g a1
A o — T =i 13 _ . : E i T
- == == |12t == 1 12} ES =
‘ ; 11 & ; ; : :
EA-RWS EA-SUS EA-BTS EA-RS EA-US EA-RWS EA-SUS EA-BTS EA-RS EAUS EA-RWS EA-SUS EA-BTS EA-RS EA-US
Algorithm Algorithm Algorithm
x10° Inst-37: Gen-2000 %10° Inst-37: Gen-2500 x10° Inst-37: Gen-3000
El T 1.8 T
18 3 18 4o ‘ ‘
1] T 2] w16 =3 1
216 ' 1 2186 s T = ! T
@ i ® i ! ® 1.5 o
Q L Q - ! Q |
8 ~ = ! R = - L
Sqap T 1 14t : ‘ g 4 -
S =l & B 2 13 T = 7
! ‘ ey v i i ‘ T !
12t L E g == 1 1.2} S : 2 A g 1.2 g
= = 11 L
EA-RWS EA-SUS EA-BTS EA-RS EA-US EA-RWS EA-SUS EA-BTS EA-RS EA-US EA-RWS EA-SUS EA-BTS EA-RS EA-US
Algorithm Algorithm Algorithm
%10° Inst-38: Gen-500 %10° Inst-38: Gen-1000 x10° Inst-38: Gen-1500
i 1.4 : g 13 ‘ i
14 i 153 B 12t E
o) al2 | B |l
0 0 ' wn 11
=12 24 = | _
3 " = g10r ‘
(5] @ 1 : T [$) i
S 1+ : I - " : 8 9 g :
<] ! 0.0 == ! o i :
[E o i [v - | L] i [. - : i
3 B = T == | 8 L B3 11 , I =
= 0.7 e 7 s
EA-RWS EA-SUS EABTS EA-RS EA-US EA-RWS EA-SUS EA-BTS EA-RS EA-US EA-RWS EA-SUS EA-BTS EARS EA-US
Algorithm Algorithm Algorithm
%10° Inst-38: Gen-2000 %10° Inst-38: Gen-2500 %10% Inst-38: Gen-3000
12 i —
12] i
- ; 12 i
1 i 1 !
=] o == o1t
0 0 § %)
S g = | > |
B an ! k7]] @ 10 H
o} ! | o I o] '
O g E Lis 29 o 4 9 ' :
5 . : g - : 595 J - v
=] : i =] ! 5] i
L . - = ' e - ks ' e = :
8 4 . 8 i 8 ! i : 1 8 i | : !
L = i o2 T i T i
7 1 i 4 7 T i 7t i 4

EA-RWS EA-SUS EA-BTS EA-RS EA-US EA-RWS EA-SUS EA-BTS EA-RS EA-US EA-RWS EA-SUS EA-BTS EA-RS EA-US
Algorithm Algorithm Algorithm

Figure 5. EA population fitness boxplots for problem instances 37 and 38.

Evaluation of Non-Parametric Selection Mechanisms in Evolutionary Computation: A Case Study for the Machine...
http://dx.doi.org/10.5772/intechopen.75984

%10° Inst-39: Gen-500
T
8 ‘
750 | > ;
2 ‘ T
D s % :
Zes| | -
o 4
©
©°
[

b=}
Ot

Inst-39: Gen-1000

Total Cost, USD
~

%10°
ol

Inst-39: Gen-1500

Total Cost, USD
~
=)

EA-RWS EA-SUS EA-BTS EA-RS EA-US

EA-RWS EA-SUS EA-BTS EA-RS

EA-US EA-RWS EA-SUS EA-BTS EA-RS EA-US
Algorithm Algorithm Algorithm
%10° Inst-39: Gen-2000 x10° Inst-39: Gen-2500 x10° Inst-39: Gen-3000
9 T -
i 9- 1
i T 8r T]
o8 a 1 a |
(%} i3 % ?D8r 1 L 2] L
s ; = ! EE = = i
a7 foll i 1] ! H k7] H
87| 1 |]8T L] 81h T -
I ; ! s | : Zgl L 1
28 - = i cer | L == 2 T 8 =
ety H ! i ! - H : |
sl o 5 I = of B3 = ERIE QR =
EA-RWS EA-SUS EA-BTS EA-RS EA-US EA-RWS EA-SUS EA-BTS EA-RS EA-US EA-RWS EA-SUS EA-BTS EA-RS EA-US
Algorithm Algorithm Algorithm
x10° Inst-40: Gen-500 " x10° Inst-40: Gen-1000 x10° Inst-40: Gen-1500
4 = = 7 =
65 6.5 3 65 |
B 6 - g 18 ° — 8 3 6 | g
= | : o) 5.5 ! 3 ! !
#551 — 1 5% i 5 5.5 |
o] | L Q CE Qo -
O g ‘ O Bf = ! O 5 |
] ; T 1) i 7 1])
P45l 1 8 T L45F | ! EE Pasr | T g _
- : ‘ - | i 4 - ‘ ‘
4 L T I
35 - - 1 35 s = 350 . a
EA-RWS EA-SUS EA-BTS EA-RS EA-US EA-RWS EA-SUS EA-BTS EA-RS EA-US EA-RWS EA-SUS EA-BTS EA-RS EA-US
Algorithm Algorithm Algorithm
x10° Inst-40: Gen-2000 x10° Inst-40: Gen-2500 7 x10° Inst-40: Gen-3000
o 7 T T
] i 6.5 i
65 1 65 i -
a] e) o 6 i
0 6 ' 1 @ 6 __ [:
= | =, i | 255 |
%55 : %55 ! ! k7] - s
o] ol o ! Q i
: . e LR w
— 5 i = 5 == 1 t
g =2 Bl L T L Bust | |
Pasr | & ‘ = Pasp - o= T Rasr i ; T
== : = =
35 - = 35 - = 35 -~ =
EA-RWS EA-SUS EA-BTS EA-RS EA-US EA-RWS EA-SUS EA-BTS EA-RS EA-US EA-RWS EA-SUS EA-BTS EA-RS EA-US
Algorithm Algorithm Algorithm

Figure 6. EA population fitness boxplots for problem instances 39 and 40.

similar patterns have been observed for the rest of algorithmic replications and problem
instances. The population fitness boxplots have the following components: (1) rectangle, where
the top and the bottom parts correspond to 75th and 25th population fitness value percentiles
respectively; (2) median, which is shown using a red line; (3) whiskers, which are shown using
dashed lines covering 99.30% of the population fitness value data points; and (4) extreme

39

40 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

population fitness value points (falling outside of 99.30% of the population fitness value data
points) or “outliers”, which are shown using “°” symbol.

It can be observed that the population fitness boxplot whiskers of the EA-RWS and EA-US
algorithms consistently cover a wider range of the population fitness values. The latter finding
indicates that both EA-RWS and EA-US algorithms maintain a more diverse population, as
compared to the EA-SUS, EA-BTS, and EA-RS algorithms. However, the quality of individuals
within both EA-RWS and EA-US populations is significantly lower as compared to the EA-
SUS, EA-BTS, and EA-RS populations. For example, the EA-RWS and EA-US algorithms cover
the population fitness ranges of [1193.15; 1627.94] 10°> USD and [1276.65; 1829.78] 10° USD
respectively, while the EA-SUS algorithm covers the population fitness range of [1110.66;
1387.16] 10° USD for problem instance 37 at termination (i.e., in generation 3000). Therefore,
as discussed in Section 5.3.1, the EA-RWS and EA-US algorithms were outperformed by the
EA-SUS, EA-BTS, and EA-RS algorithms in terms of the objective function values at termina-
tion. The EA-SUS, EA-BTS, and EA-RS algorithms were able to maintain the adequate popula-
tion diversity and return good quality job to machine to processing order assignments.

Throughout the computational experiments, it was found that the population diversity pat-
terns did not change significantly from generation 500 up to generation 3000 (e.g., the range,
covered by the population fitness boxplot whiskers, does not alter substantially throughout
evolution of each EA after generation 500). The latter finding can be justified by the fact that
the developed EAs relatively quickly identified the promising domains of the search space (i.e.,
within the first 400-500 generations), and then focused on exploiting the identified domains
for the rest of generations, aiming to discover solutions with superior fitness values. Applica-
tion of scaling mechanisms (such as linear scaling, sigma truncation, and power law scaling)
will allow controlling the population diversity of the developed EA algorithms (e.g., reduce
the population diversity towards the EA convergence and give higher reproduction chances to
“super-individuals” —i.e. the individuals with the highest fitness values) and will be one of the
future research directions of this study.

6. Concluding remarks and future research extensions

Evolutionary Algorithms and other metaheuristic algorithms have been extensively applied
for solving complex stochastic, robust, and dynamic optimization problems. Two types of
selection mechanisms are deployed within Evolutionary Algorithms, including the parent
selection and the offspring selection. Evolutionary Algorithms have a lot of parameters, which
are generally set based on the parameter tuning analysis. Parametric selection mechanisms
(e.g., Exponential Ranking Selection, Tournament Selection, Boltzmann Selection) increase the
number of parameters within a given Evolutionary Algorithm, which can make the parameter
tuning analysis computationally prohibitive due to significant computational time required.
To avoid the latter drawback and facilitate the parameter tuning analysis of Evolutionary
Algorithms, this study focused on design of the Evolutionary Algorithm that solely relied on

Evaluation of Non-Parametric Selection Mechanisms in Evolutionary Computation: A Case Study for the Machine...
http://dx.doi.org/10.5772/intechopen.75984

non-parametric selection mechanisms. Different categories of Evolutionary Algorithms, which
applied various non-parametric selection mechanisms (Roulette Wheel Selection, Stochastic
Universal Sampling, Binary Tournament Selection, Ranking Selection, Uniform Sampling),
were evaluated based on the major algorithmic performance indicators.

A set of computational experiments were conducted for the unrelated machine scheduling
problem, which is known to be NP-hard. The objective of the mathematical model, proposed
for the problem, aimed to minimize the total job processing cost. Results indicate that the
Evolutionary Algorithm with the Stochastic Universal Sampling selection mechanism outper-
forms the Evolutionary Algorithms with other selection mechanisms in terms of the objective
function values. The worst performance was demonstrated by the Evolutionary Algorithm,
which relied on the Uniform Sampling selection mechanism. Furthermore, the Evolutionary
Algorithms with the Roulette Wheel Selection and Uniform Sampling selection mechanisms
typically allowed maintaining higher population diversity; however, the quality of individuals
within the population was lower as compared to the Evolutionary Algorithms with the Sto-
chastic Universal Sampling, Binary Tournament Selection, and Ranking Selection mechanisms.
The computational time of all the developed Evolutionary Algorithms did not exceed
142.81 sec over the considered problem instances, which can be considered as acceptable.
Therefore, based on a comprehensive analysis of the commonly used non-parametric selection
mechanisms, Stochastic Universal Sampling was found to be the most promising, as it was able
to maintain the adequate population diversity throughout the algorithmic run and return good
quality solutions at termination. Results from the conducted numerical experiments are
expected to facilitate development of efficient Evolutionary Algorithms for the machine sched-
uling problems. Moreover, the developed problem instances and findings from this study can
serve as benchmarks for the future machine scheduling studies.

The future research directions for this study include the following: (1) application of scaling
mechanisms for the fitness function; (2) evaluation of the Evolutionary Algorithms, which use
a combination of various non-parametric selection mechanisms (e.g., Uniform Sampling is
used at the parent selection stage, while Stochastic Universal Sampling is used at the offspring
selection stage); (3) consider alternative stopping criteria for the developed Evolutionary
Algorithms; (4) compare various non-parametric selection mechanisms for the Hybrid Evolu-
tionary Algorithms, which apply different local search heuristics along with the stochastic
search operators; and (5) evaluate performance of the commonly used non-parametric selec-
tion mechanisms for other NP-hard problems (e.g., bin packing problem, Knapsack problem,
traveling salesman problem).

Nomenclature
Sets
[={1,...,m} set of arriving jobs

J=A{1,....,n} set of available machines

41

42

Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

K={1,...,p}

Decision variables

xix€{0,1}Viel,je], kekK

Auxiliary variables

ITijk€R+Vi€I,j€], kekK

SPT;eR'Viel
FPT;eR"Viel
WT;eR"Viel
PD;eR'vViel
Parameters
meN

neN

pPEN
AT;eR*Viel
HTjeR"viel je]
DP;eR"vViel
cHCeRMviel
MCeRViel
cPCeRtviel

PNeR™"

Author details

Maxim A. Dulebenets

set of job processing orders

=1 if arriving job i is scheduled for processing on machine j in
processing order k (=0 otherwise)

idling time of machine j between processing job i and preceding
job processed in order (k — 1) (hours)

start processing time for job i (hours)
finish processing time for job 7 (hours)
waiting time of job 7 (hours)

delay in processing job i (hours)

number of arriving jobs (jobs)

number of available machines (machines)
number of job processing orders (orders)
arrival time of job i (hours)

handling time of job i on machine j (hours)
deadline for processing job i (hours)

unit handling cost for job i (USD/hour)

unit waiting cost for job i (USD/hour)

unit delayed processing cost of job i (USD/hour)

large positive number

Address all correspondence to: mdulebenets@eng.famu.fsu.edu

Department of Civil and Environmental Engineering, Florida A&M University-Florida State
University, Tallahassee, FL, USA

Evaluation of Non-Parametric Selection Mechanisms in Evolutionary Computation: A Case Study for the Machine...

http://dx.doi.org/10.5772/intechopen.75984

References

[1]

3]

[4]

[5]

(8]

[10]

Hromkovic J. Algorithmics for Hard Problems: Introduction to Combinatorial Optimiza-
tion, Randomization, Approximation, and Heuristics. 2nd ed. Berlin, Germany: Springer
International Publishing; 2002. p. 557. DOI: 10.1007/978-3-662-05269-3

Pinedo M. Scheduling: Theory, Algorithms, and Systems. 5th ed. New York, USA: Springer
International Publishing; 2016. p. 670. DOI: 10.1007/978-3-319-26580-3

Eiben AE, Smith JE. Introduction to Evolutionary Computing. 2nd ed. Berlin, Germany:
Springer International Publishing; 2015. p. 287. DOI: 10.1007/978-3-662-44874-8

Sivanandam SN, Deepa SN. Introduction to Genetic Algorithms. 1st ed. Berlin, Germany:
Springer International Publishing; 2008. p. 442. DOI: 10.1007/978-3-540-73190-0

de Lima EB, Pappa GL, de Almeida JM, Gongalves MA, Meira W. Tuning Genetic Program-
ming parameters with factorial designs. In: Proceedings of the IEEE Congress on Evolution-
ary Computation (CEC); 18-23 July 2010; Barcelona, Spain. New York: IEEE; 2010. pp. 1-8

Boysen N, Briskorn D, Meisel F. A generalized classification scheme for crane scheduling
with interference. European Journal of Operational Research. 2017;258(1):343-357. DOI:
10.1016/j.ejor.2016.08.041

Nagananda KG, Khargonekar P. An approximately optimal algorithm for scheduling
phasor data transmissions in smart grid networks. IEEE Transactions on Smart Grid.
2017;8(4):1649-1657. DOI: 10.1109/TSG.2015.2497284

Fernandez-Viagas V, Ruiz R, Framinan JM. A new vision of approximate methods for the
permutation flowshop to minimise makespan: State-of-the-art and computational evalua-
tion. European Journal of Operational Research. 2017;257(3):707-721. DOI: 10.1016/j.
€jor.2016.09.055

Ozturk O, Chu C. Exact and metaheuristic algorithms to minimize the total tardiness of
cutting tool sharpening operations. Expert Systems with Applications. 2018;95:224-235.
DOI: 10.1016/j.eswa.2017.11.030

Juarez F, Ejarque], Badia RM. Dynamic energy-aware scheduling for parallel task-based
application in cloud computing. Future Generation Computer Systems. 2018;78:257-271.
DOI: 10.1016/j.future.2016.06.029

Dulebenets MA. Application of evolutionary computation for berth scheduling at marine
container terminals: Parameter tuning versus parameter control. IEEE Transactions on
Intelligent Transportation Systems. 2018;19(1):25-37. DOI: 10.1109/T1TS.2017.2688132

Herrmann J, Proth JM, Sauer N. Heuristics for unrelated machine scheduling with prece-
dence constraints. European Journal of Operational Research. 1997;102(3):528-537. DOI:
10.1016/S0377-2217(96)00247-0

43

44 Nature-inspired Methods for Stochastic, Robust and Dynamic Optimization

[13]

[14]

[17]

[20]

[21]

[22]

[23]

[24]

Weng MX, Lu], Ren H. Unrelated parallel machine scheduling with setup consideration
and a total weighted completion time objective. International Journal of Production Eco-
nomics. 2001;70(3):215-226. DOI: 10.1016/S0925-5273(00)00066-9

Vallada E, Ruiz R. A genetic algorithm for the unrelated parallel machine scheduling
problem with sequence dependent setup times. European Journal of Operational Research.
2011;211(3):612-622. DOI: 10.1016/j.€jor.2011.01.011

Bank J, Werner F. Heuristic algorithms for unrelated parallel machine scheduling with a
common due date, release dates, and linear earliness and tardiness penalties. Mathemat-
ical and Computer Modelling. 2001;33(4):363-383. DOI: 10.1016/S0895-7177(00)00250-8

Glass CA, Potts CN, Shade P. Unrelated parallel machine scheduling using local search.
Mathematical and Computer Modelling. 1994;20(2):41-52. DOI: 10.1016/0895-7177(94)
90205-4

Pearn WL, Chung SH, Yang MH, Chen YH. Algorithms for the wafer probing scheduling
problem with sequence-dependent set-up time and due date restrictions. Journal of the
Operational Research Society. 2004;55(11):1194-1207. DOI: 10.1057/palgrave.jors.2601795

Rabadi G, Moraga R], Al-Salem A. Heuristics for the unrelated parallel machine schedul-
ing problem with setup times. Journal of Intelligent Manufacturing. 2006,17(1):85-97. DOI:
10.1007%2Fs10845-005-5514-0

Kim DW, Na DG, Chen FF. Unrelated parallel machine scheduling with setup times and a
total weighted tardiness objective. Robotics and Computer-Integrated Manufacturing.
2003;19(1):173-181. DOI: 10.1016/S0736-5845(02)00077-7

Aspnes], Azar Y, Fiat A, Plotkin S, Waarts O. On-line routing of virtual circuits with
applications to load balancing and machine scheduling. Journal of the ACM (JACM).
1997;44(3):486-504. DOI: 10.1145/258128.258201

Hsieh JC, Chang PC, Hsu LC. Scheduling of drilling operations in printed circuit board
factory. Computers and Industrial Engineering. 2003;44(3):461-473. DOI: 10.1016/S0360-
8352(02)00231-0

Chen JE, Wu TH. Total tardiness minimization on unrelated parallel machine scheduling
with auxiliary equipment constraints. Omega. 2006;34(1):81-89. DOI: 10.1016/j.omega.2004.
07.023

Jinsong B, Xiaofeng H, Ye J. A genetic algorithm for minimizing makespan of block
erection in shipbuilding. Journal of Manufacturing Technology Management. 2009;20(4):
500-512. DOI: 10.1108/17410380910953757

Agnetis A, Flamini M, Nicosia G, Pacifici A. Scheduling three chains on two parallel
machines. European Journal of Operational Research. 2010;202(3):669-674. DOI: 10.1016/
j-€jor.2009.07.001

Evaluation of Non-Parametric Selection Mechanisms in Evolutionary Computation: A Case Study for the Machine... 45
http://dx.doi.org/10.5772/intechopen.75984

[25] Hu X, Bao JS, Jin Y. Minimising makespan on parallel machines with precedence con-
straints and machine eligibility restrictions. International Journal of Production Research.
2010;48(6):1639-1651. DOI: 10.1080/00207540802620779

[26] Driessel R, Monch L. Variable neighborhood search approaches for scheduling jobs on
parallel machines with sequence-dependent setup times, precedence constraints, and
ready times. Computers and Industrial Engineering. 2011;61(2):336-345. DOI: 10.1016/j.
cie.2010.07.001

[27] Agnetis A, Kellerer H, Nicosia G, Pacifici A. Parallel dedicated machines scheduling with
chain precedence constraints. European Journal of Operational Research. 2012;221(2):296-305.
DOI: 10.1016/j.€jor.2012.03.040

[28] Park C, Seo J. A GRASP approach to transporter scheduling and routing at a shipyard.
Computers & Industrial Engineering. 2012;63(2):390-399. DOI: 10.1016/j.cie.2012.04.010

[29] Park C, Seo J. A GRASP approach to transporter scheduling for ship assembly block
operations management. European Journal of Industrial Engineering. 2013;7(3):312-332.
DOI: 10.1504/E]JIE.2013.054133

[30] Rose CD, Coenen JM. Comparing four metaheuristics for solving a constraint satisfaction
problem for ship outfitting scheduling. International Journal of Production Research.
2015;53(19):5782-5796. DOI: 10.1080/00207543.2014.998786

[31] Nicosia G, Pacifici A. Scheduling assembly tasks with caterpillar precedence constraints
on dedicated machines. International Journal of Production Research. 2017;55(6):1680-1691.
DOI: 10.1080/00207543.2016.1220686

[32] Dulebenets MA. The vessel scheduling problem in a liner shipping route with heteroge-
neous vessel fleet. International Journal of Civil Engineering. 2018;16(1):19-32. DOI:
10.1007/s40999-016-0060-z

[33] Dulebenets MA. The green vessel scheduling problem with transit time requirements in a
liner shipping route with emission control areas. Alexandria Engineering Journal. 2018;
57(1):331-342. DOI: 10.1016/j.a€j.2016.11.008

[34] Dulebenets MA. A comprehensive multi-objective optimization model for the vessel
scheduling problem in liner shipping. International Journal of Production Economics.
2018;196:293-318. DOI: 10.1016/}.ijpe.2017.10.027

[35] Kim DW, Kim KH, Jang W, Chen FF. Unrelated parallel machine scheduling with setup
times using simulated annealing. Robotics and Computer-Integrated Manufacturing.
2002;18(3):223-231. DOI: 10.1016/50736-5845(02)00013-3

[36] Caragiannis I. Efficient coordination mechanisms for unrelated machine scheduling.
Algorithmica. 2013;66(3):512-540. DOI: 10.1007/s00453-012-9650-6

ntechOpen

ntechOpen

