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Abstract

Evolutionary Algorithms have been extensively used for solving stochastic, robust, and
dynamic optimization problems of a high complexity. Selection mechanisms play a very
important role in design of Evolutionary Algorithms, as they allow identifying the parent
chromosomes, that will be used for producing the offspring, and the offspring chromo-
somes, that will survive in the given generation and move on to the next generation.
Selection mechanisms, reported in the literature, can be classified in two groups: (1)
parametric selection mechanisms, and (2) non-parametric selection mechanisms. Unlike
parametric selection mechanisms, non-parametric selection mechanisms do not have any
parameters that have to be set, which significantly facilitates the Evolutionary Algorithm
parameter tuning analysis. This study presents a comprehensive analysis of the com-
monly used non-parametric selection mechanisms. Comparison of the selection mecha-
nisms is performed for the machine scheduling problem. The objective of the presented
mathematical model is to determine the assignment of the arriving jobs among the avail-
able machines, and the processing order of jobs on each machine, aiming to minimize the
total job processing cost. Different categories of Evolutionary Algorithms, which deploy
various non-parametric selection mechanisms, are evaluated in terms of the objective
function value at termination, computational time, and changes in the population diver-
sity. Findings indicate that the Roulette Wheel Selection and Uniform Sampling selection
mechanisms generally yield higher population diversity, while the Stochastic Universal
Sampling selection mechanism outperforms the other non-parametric selection mecha-
nisms in terms of the solution quality.

Keywords: optimization, Evolutionary Algorithms, non-parametric selection
mechanisms, machine scheduling problems, parameter tuning, computational time
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1. Introduction

Evolutionary Algorithms (EAs) and other metaheuristic algorithms have been widely used for

solving complex stochastic, robust, and dynamic optimization problems. These complex prob-

lems include but are not limited to the following: vertex cover problem, Boolean satisfiability

problem, maximum clique size problem, Knapsack problem, traveling salesman problem, bin

packing problem, machine scheduling problems, and others [1, 2]. Some of the aforementioned

problems have a non-deterministic polynomial time complete (NP-complete) complexity,

while the others are non-deterministic polynomial time hard (NP-hard). The exact solution

algorithms cannot be used to solve NP-complete and NP-hard problems to the global optimal-

ity for the realistic size problem instances within an acceptable computational time. On the

other hand, the approximation algorithms, including EAs and other metaheuristic algorithms,

are able to provide good quality solutions within a reasonable computational time. Candidate

solutions to the problem of interest are encoded in the chromosomes within EAs. Different

types of chromosome representations have been reported in the EA literature. For example,

canonical Genetic Algorithms, developed by Holland, rely on a binary chromosome represen-

tation; while canonical Evolutionary Strategies, proposed by Rechenberg, use a real-valued

chromosome representation [3, 4]. On the other hand, Genetic Programming, developed by

Koza, relies on a tree-based chromosome representation [3, 4].

Once the chromosome representation is selected, the initial population is generated, and

fitness values of the initial population chromosomes are estimated. Then, the EA starts an

iterative process, where the population chromosomes are continuously altered using selection

and EA operators (e.g., crossover and mutation) from one generation to another, aiming to

identify superior solutions. The EA is terminated, once a certain stopping criterion is met (in

some EAs multiple stopping criteria can be imposed). Two types of selection mechanisms are

applied throughout the EA evolution: (1) parent selection, which aims to identify a subset of

individuals from the offspring chromosomes, survived in the previous generation, that will

participate in the EA operations and generate the new offspring chromosomes; and (2) off-

spring selection, which aims to identify a subset of individuals from the generated offspring

chromosomes that will survive in the given generation and will be moved to the next genera-

tion. A large number of different selection mechanisms have been reported in the EA literature,

which can be categorized in two groups: (1) parametric selection mechanisms (e.g., Exponen-

tial Ranking Selection, Tournament Selection, Boltzmann Selection), and (2) non-parametric

selection mechanisms (e.g., Roulette Wheel Selection, Stochastic Universal Sampling, Binary

Tournament Selection, Ranking Selection, Uniform Sampling).

Each EAhas several parameters (e.g., population size, crossover probability, mutation probability,

and others), which are generally determined based on a parameter tuning [3, 4]. A “full factorial

design” methodology has been widely used for the EA parameter tuning [5]. Based on the latter

methodology, the algorithm has a number of parameters (or factors - f ), which have a set of

candidate values (or levels - l). In order to set the appropriate EA parameter values, a total of lf

algorithmic runswill be required throughout the parameter tuning analysis. Based on the analysis

of a tradeoff between the objective function and computational time values, the most promising
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parameter combinationwill be chosen. Parametric selectionmechanismswill increase the number

of algorithmic runs to l fþNSELð Þ, where NSEL
– is the number of parameters for a given selection

mechanism. Such increase in the number of algorithmic runs can make the parameter tuning

analysis computationally prohibitive due to significant computational time required. Moreover,

the parameter values of the selection mechanisms, adopted for a given set of problem instances,

may worsen the EA performance, when applied to a different set of problem instances.

In order to avoid the latter drawbacks and facilitate the EA parameter tuning analysis, this

study solely applies non-parametric selection mechanisms throughout the EA design. Differ-

ent EA categories, which rely on various non-parametric selection mechanisms, are evaluated

based on the major algorithmic performance indicators, including the objective function value

at termination, computational time, and changes in the population diversity throughout the

algorithmic evolution. The computational experiments are conducted for the machine sched-

uling problem. The machine scheduling problem deals with allocation of the available han-

dling resources (i.e., machines) for service of the tasks (i.e., jobs), which arrive at the given

facility with a specific frequency [2]. The machine scheduling problem receives an increasing

attention from the community, as it is considered as an important decision problem in

manufacturing, service industries, and supply chain management [6–10]. Without efficient

sequencing and scheduling, the supply chain players may not be able to meet specific dead-

lines, which are established for processing certain products. The latter may incur substantial

monetary losses and, ultimately, can even result in the customer loss. In the meantime, poor

utilization of the available handling resources may cause drastic monetary losses as well.

Therefore, development of advanced decision support tools for the machine scheduling prob-

lems (including effective solution algorithms, which are the primary focus of this study)

becomes critical in the current competitive environment.

Findings from this research are expected to provide important insights regarding non-

parametric selection mechanisms, which can be further used in future for the design of EAs.

Efficient non-parametric selection mechanisms will be critical for Hybrid EAs, which along

with the standard EA parameters (e.g., population size, crossover probability, mutation prob-

ability) may require setting additional parameters for the local search heuristics. The

remaining sections of this chapter are organized in the following order. The next section

discusses the machine scheduling environment, where the developed EA will be applied. The

third section presents a mixed integer mathematical model for the machine scheduling prob-

lem. The fourth section focuses on a detailed description of the main EA components. The fifth

section discusses the computational experiments, which were conducted in this study for

evaluation of non-parametric selection mechanisms. The last section summarizes findings and

outlines potential directions for the future research.

2. Machine scheduling

The objective of the machine scheduling problems (MSPs) is to allocate the arriving jobs among

the available machines and identify the processing order of jobs on each machine. A large
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number of various MSPs have been widely studied in the past, such as single machine,

identical machines in parallel, machines in parallel with different speeds, unrelated machines

in parallel, job shop, and others [2]. The aforementioned MSPs differ in terms of machine

properties (e.g., machines at a given facility have identical properties vs. machines at a given

facility have different properties), job type (e.g., the processing time of a given job may vary on

two machines with the same speeds based on the job type), order of machines to be visited

(e.g., a given job may have to be processed on several machines in a specific order), etc.

The unrelated MSP will be studied in this chapter. Let I ¼ 1;…;mf g be a set of jobs, arriving at

the facility, which should be processed on the available machines within a given planning

horizon. Let J ¼ 1;…; nf g be a set of machines available at the given facility within a given

planning horizon. Let K ¼ 1;…; pf g be a set of job processing orders. Each job should be

assigned for processing on one of the available machines in one of the processing orders. The

machines at the given facility are assumed to have different properties (e.g., different speeds);

therefore, the processing time of a given job may vary depending on the machine assignment.

Furthermore, the processing time on a given machine depends on the job type (i.e., the

processing time for a given job on the machines with the same speed may be different due to

the job type). The latter three aspects are common for the unrelated MSPs. The MSP environ-

ment, modeled in this study, is illustrated in Figure 1.

Once the job arrives at the facility, it will be directed to the assigned machine for processing. If

the assigned machine is processing another job at the moment, the arriving job will be queued,

while waiting to be processed (see Figure 1). It is assumed that the facility operator will incur

the job waiting cost (cWC
i , i∈ I in USD/hour), as increasing number of waiting jobs may cause

congestion at the given facility. Furthermore, the facility operator will incur the cost of

processing a given job on one of the available machines (cHC
i , i∈ I in USD/hour). Each job,

arriving at the facility, must be processed by specific time (DPi, i∈ I in hours). If the job

processing deadline is violated, the facility operator will incur the cost due to job processing

delays (cDC
i , i∈ I in USD/hour). The objective of the facility operator is to allocate the arriving

jobs among the available machines and identify the processing order of jobs on each machine,

Figure 1. Machine scheduling environment.
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aiming to minimize the total job processing cost, which includes: (1) the total job handling cost;

(2) the total job waiting cost; and (3) the total cost due to job processing delays.

3. Mathematical model

This section of the chapter presents a mixed integer programming model for the machine sched-

uling problem (MSP), which is studied herein. A detailed description of notations used in the

mathematical model and throughout this book chapter is provided at the end of the book chapter.

MSP: Machine Scheduling Problem

min
X

i∈ I

X

j∈ J

X

k∈K

HTijxijkc
HC
i

� �

þ
X

i∈ I

WT ic
WC
i

� �

þ
X

i∈ I

PDic
DC
i

� �

2

4

3

5 (1)

Subject to:

X

j∈ J

X

k∈K

xijk ¼ 1∀i∈ I (2)

X

i∈ I

xijk ≤ 1∀j∈ J, k∈K (3)

X

i∗ ∈ I:i∗ 6¼i

X

k∗ ∈K:k∗<k

HTi∗jxi∗jk∗ þ IT i∗jk∗
� �

þ IT ijk � ATixijk ≥ 0 ∀i∈ I, j∈ J, k∈K (4)
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� �

þ IT ijk � PN 1� xijk
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∀i∈ I, j∈ J, k∈K (5)

WT i ≥ SPT i � ATi∀i∈ I (6)

FPT i ≥ SPT i þ
X

j∈ J

X

k∈K

HTijxijk

� �

∀i∈ I (7)

PDi ≥ FPT i �DPi∀i∈ I (8)

The objective function (1) of the MSP mathematical model minimizes the total job processing

cost, which is composed of the following components: (1) the total job handling cost; (2) the

total job waiting cost; and (3) the total cost due to job processing delays. Constraint set (2)

guarantees that each job will be scheduled for processing on one of the available machines in

one of the processing orders. Constraint set (3) ensures that no more than one job can be

processed on each machine in a given processing order. Constraint set (4) ensures that the

processing of a given job will not start before its arrival at the facility. Constraint set (5)

calculates the start processing time for each job, arriving at the facility. Constraint set (6)

computes the waiting time for each job, arriving at the facility. Constraint set (7) estimates the

finish processing time for each job. Constraint set (8) calculates hours of delay in processing

each job, arriving at the facility.
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4. Evolutionary Algorithm description

MSPs belong to the class of NP-hard problems, which cannot be solved using the exact

optimization algorithms to the global optimality for the realistic size problem instances within

an acceptable computational time. Therefore, a set of EAs were developed in this study to

solve the MSP mathematical model. EAs were differentiated based on the type of non-

parametric selection mechanism adopted. This section provides an outline of the main EA

steps and a detailed description of each step.

4.1. Main EA steps

The main EA steps are presented in Algorithm 1. The data structures for the EA variables are

initialized in step 0. The initial population is generated in steps 1–2. After that, fitness of the

initial population chromosomes is evaluated in step 3. Then, the EA algorithm starts an

iterative process (steps 4–12), where the fittest individual is stored before applying the parent

selection in step 6. The latter strategy is commonly referred to as “Elitist Strategy” in Evolu-

tionary Computation. After that, the parent chromosomes are determined in step 7, while the

offspring chromosomes are produced via the EA operations in step 8. Fitness of the offspring

chromosomes is evaluated in step 9. After that, the offspring selection is executed to determine

the offspring chromosomes that along with the fittest individual will be moved to the next

generation (steps 10 and 11). The iterative process is continuously executed until a certain

stopping criterion is met. At convergence, the proposed EA algorithm returns the best solu-

tion, which corresponds to the job to machine to processing order assignment with the least

possible job processing cost. A detailed description of each EA component is presented in

Sections 4.2–4.8.

Algorithm 1. Evolutionary Algorithm (EA).

EA Data;Ω; σ
C
; σ

M
;SC

� �

:

in: Data - input data for the MSP mathematical model; Ω - population size; σC - crossover probability; σM - mutation

probability; SC - stopping criterion

out: Solution - the best job to machine to processing order assignment

0: ∣Population∣ Ω; ∣Fitness∣ Ω; ∣Parents∣ Ω; ∣Offspring∣ Ω; ∣Best∣ ⊘

1: gen 1

2: Populationgen  InitPopulation Data;Ωð Þ

3: Fitnessgen  FitnessEval Data;Populationgen

� �

4: while SC FALSE do

5: gen genþ 1

6: Best argmin Fitnessgen
� �

7: Parentsgen  ParentSel Populationgen; Fitnessgen

� �
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Algorithm 1. Evolutionary Algorithm (EA).

8: Offspringgen  EAoperation Parentsgen; σ
C
; σ

M
� �

9: Fitnessgen  FitnessEval Data;Offspringgen

� �

10: Populationgenþ1  Populationgenþ1∪ Bestf g

11: Populationgenþ1  OffspringSel Offspringgen; Fitnessgen

� �

12: end while

13: Solution argmin Fitnessgen∪ FitnessBest
� �

14: return Solution

4.2. Chromosome representation

Two-dimensional integer chromosomes will be used in this study to represent candidate

solutions to the MSP mathematical model (i.e., job to machine to processing order assign-

ments). Note that the term “chromosome” is used interchangeably with the term “individual”

throughout this chapter, as both terms represent the same meaning [3]. An example of a

chromosome is illustrated in Figure 2, where 9 jobs are scheduled for processing on 3machines.

Specifically, jobs “2”, “3”, and “5” are scheduled for processing on machine “1” (in that specific

processing order); jobs “4”, “6”, and “9” are scheduled for processing on machine “2” (in that

specific processing order); while jobs “1”, “7”, and “8” are scheduled for processing on

machine “3” (in that specific processing order). The term “genes” will be used in this study to

denote components of a chromosome (i.e., machine identifiers and job identifiers).

4.3. Initialization of the chromosomes and population

There are two major approaches for initializing the chromosomes and population within EAs.

The first approach initializes the chromosomes and population randomly (i.e., the job to

machine to processing order assignment is determined randomly). The second approach relies

on application of the local search heuristics. A large number of the local search heuristics have

been presented in the machine scheduling literature, such as [2]: First In First Out, First In Last

Out, Shortest Processing Time First, Shortest Remaining Processing Time on the Fastest

Machine, Shortest Setup Time First, and others. The local search heuristics may allow obtaining

better quality solutions as compared to the random initialization mechanisms. However, the

local search heuristics, which have been used for MSPs, are typically deterministic. Therefore,

the population, initialized using deterministic local search heuristics, will have identical chro-

mosomes, which will negatively affect the population diversity (i.e., only one domain of the

Figure 2. Chromosome representation example.
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search space will be explored at the population initialization stage). To avoid the latter draw-

back and ensure the population diversity, this study will use a random initialization mecha-

nism to create the initial population. The number of individuals in the population is

determined based on the population size parameter (Ω).

4.4. Fitness function

The fitness function of chromosomes is assumed to be equal to the objective function of the

MSP mathematical model (i.e., total job processing cost). Application of various scaling mech-

anisms for the fitness function (e.g., linear scaling, sigma truncation, and power law scaling) to

control the selection pressure throughout the algorithmic run will be one of the future research

directions of this study.

4.5. Parent selection mechanism

The purpose of the parent selection mechanism is to determine a subset of individuals from the

offspring chromosomes, survived in the previous generation, that will participate in the EA

operations and generate the new offspring chromosomes. As discussed in the introduction

section of this chapter, the main objective of this study is to evaluate various non-parametric

selection mechanisms, commonly used in the literature, including the following [3, 4]:

a. Roulette Wheel Selection (also known as Fitness Proportionate Selection) – each indi-

vidual of the population is assigned a portion of a roulette wheel, where a larger portion is

allocated to the individual with a higher fitness value. Then, the roulette wheel is contin-

uously rotated until the required amount of parent chromosomes has been selected.

b. Stochastic Universal Sampling – each individual of the population is assigned a portion

of a straight line segment, where a larger portion is allocated to the individual with a

higher fitness value (similar to the Roulette Wheel Selection mechanism). Then, the parent

chromosomes are selected based on the evenly spaced fitness intervals (unlike Roulette

Wheel Selection, which requires generating a random number each time in order to rotate

the roulette wheel).

c. Binary Tournament Selection – multiple binary tournaments are executed, where two

individuals are randomly sampled from the population during each tournament, and the

individual with a higher fitness value is chosen to become a parent. The required number

of tournaments is determined based on the population size.

d. Ranking Selection – the parent and offspring chromosomes from the previous generation

are combined in a one data structure, sorted based on their fitness, and a subset of

chromosomes with higher fitness values (out of the available parent and offspring chro-

mosomes) will become parents. Such selection mechanism has been widely used in canon-

ical Evolutionary Strategies [3] and is generally referred to as μþ λ
� �

-selection, where

parents (μ) are allowed to compete with offspring (λ).
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e. Uniform Sampling – the parent chromosomes are selected from the population by uni-

form (or random) sampling. Unlike the aforementioned selection mechanisms, Uniform

Sampling is not biased by fitness.

For a detailed description of the considered non-parametric selection mechanisms and illus-

trative examples of these mechanisms, this study refers to Eiben and Smith [3] and

Sivanandam and Deepa [4]. Five categories of the EA algorithm, deploying different types of

parent selection mechanisms, will be evaluated in this study, including the following: (1) EA

with Roulette Wheel Selection (EA-RWS); (2) EA with Stochastic Universal Sampling (EA-

SUS); (3) EA with Binary Tournament Selection (EA-BTS); (4) EA with Ranking Selection (EA-

RS); and (5) EA with Uniform Sampling (EA-US).

4.6. EA operations

Once the parent chromosomes are selected, the developed EA algorithm applies the crossover

and mutation operators in order to produce and mutate the offspring chromosomes. Both

operators are described in sections 4.6.1–4.6.2 of the chapter.

4.6.1. Crossover

The order crossover is used to produce the offspring chromosomes. Selection of the latter

crossover operator can be justified by the adopted chromosome representation. Specifically,

certain crossover operators (e.g., N-point, whole arithmetic, uniform) may produce infeasible

offspring for the integer chromosome representation [3]. On the other hand, the order cross-

over guarantees feasibility of the generated offspring chromosomes. An example of an order

crossover operation is illustrated in Figure 3. Two chromosomes are randomly selected from

the available parent chromosomes. The probability of parents to undergo a crossover opera-

tion is determined by the crossover probability parameter (σC). After that, a string of genes is

copied from parent “1” to offspring “1”. Note that the length of a string will be set randomly,

and, therefore, may vary from one crossover operation to another. In the considered example, a

string of genes with jobs “2”, “6”, “8”, and “3” is copied from parent “1” to offspring “1”.

Then, the genes with missing jobs are copied from parent “2” to offspring “1”. In the

Figure 3. Order crossover operation example.
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considered example, jobs “9”, “7”, “4”, “5”, and “1” are copied from parent “2” to offspring

“1”. The offspring “2” is produced in a similar manner.

4.6.2. Mutation

The offspring chromosomes, produced via the order crossover, will be mutated. Two types of

mutation operators will be applied in this study: (a) swap; and (b) insert. An example of a

mutation operation is illustrated in Figure 4. In case of a swap mutation operation, job “2”,

initially scheduled for processing on machine “1” as the first job, is re-scheduled for processing

on machine “3” as the second job. On the other hand, job “7”, initially scheduled for processing

on machine “3” as the second job, is re-scheduled for processing on machine “1” as the first

job. In case of an insert mutation operation, job “4”, initially scheduled for processing on

machine “2” as the first job, is re-scheduled for processing on machine “1” as the second job.

On the other hand, job “1”, initially scheduled for processing on machine “3” as the first job, is

re-scheduled for processing on machine “2” as the second job. Application of both swap and

insert mutation operators allows altering job to machine and job to processing order assign-

ments. The number of genes to be mutated throughout the mutation operation is determined

by the mutation probability parameter (σM).

4.7. Offspring selection mechanism

The purpose of the offspring selection mechanism is to determine a subset of individuals from

the generated offspring chromosomes that will survive in the given generation and will be

moved to the next generation. This study relies on the generational offspring selection mecha-

nism, where all offspring chromosomes will be moved to the next generation and become

candidate parent chromosomes. Such offspring selection mechanism has been widely used in

canonical Genetic Algorithms, proposed by Holland, and Genetic Programming, developed by

Koza [3, 4].

4.8. Stopping criterion

The developed EA algorithm will be terminated, once a certain stopping criterion is met. The

stopping criterion, adopted in this study, is the maximum number of generations (gMAX).

Figure 4. Mutation operation example.
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5. Computational experiments

This section provides a detailed description of the computational experiments, which were

conducted to evaluate the considered non-parametric selection mechanisms. Five EA catego-

ries, applying different non-parametric selection mechanisms (i.e., the EA-RWS, EA-SUS, EA-

BTS, EA-RS, and EA-US algorithms, described in Section 4.5), were evaluated in terms of the

objective function value at termination, computational time, and changes in the population

diversity throughout the algorithmic run. All EA algorithms were coded in MATLAB 2016a.

The computational experiments were executed on a CPUwith Dell Intel(R) Core™ i7 Processor

and 32 GB of RAM. Sections 5.1–5.3 elaborate on the input data selection for the MSP mathe-

matical model, parameter tuning of the developed EA algorithms, and comprehensive com-

parative analysis of the considered non-parametric selection mechanisms.

5.1. Input data selection

The required input parameters for the MSP mathematical model were primarily generated

based on the relevant literature [2, 6–36]. The adopted parameter values are presented in

Table 1. A total of 40 problem instances were developed to conduct the computational exper-

iments by changing the number of arriving jobs from 50 to 140 with an increment of 10 jobs,

while the number of available machines was changed from 4 to 10 with an increment of 2

machines.

MSP parameter Adopted value

Number of arriving jobs: m (jobs) Varies based on the problem instance

Number of available machines: n (machines) Varies based on the problem instance

Number of job processing orders: p (orders) p ¼ m (considering the case, when all jobs are assigned for

processing on one machine)

Arrival time of job i: ATi, i∈ I (hours) Exponential 2ð Þ=60

Handling time of job i on machine j: HT ij, i∈ I, j∈ J (hours) Uniform 20; 80ð Þ=60

Deadline for processing job i: DPi, i∈ I (hours) ATi þUniform 1:2; 1:5ð Þ∙minj∈ J HT ij

� �

Unit handling cost for job i: cHC
i , i∈ I (USD/hour) Uniform 200; 400ð Þ

Unit waiting cost for job i: cWC
i , i∈ I (USD/hour) Uniform 50; 100ð Þ

Unit delayed processing cost of job i: cDC
i , i∈ I (USD/hour) Uniform 300; 600ð Þ

Large positive number: PN 106

Exponential að Þ – exponentially distributed pseudorandom numbers with a mean inter-arrival time of a; Uniform b; cð Þ –

uniformly distributed pseudorandom numbers, varying from b to c.

Table 1. MSP parameter values.
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5.2. EA parameter tuning

A parameter selection analysis was performed for the EA-RWS, EA-SUS, EA-BTS, EA-RS, and

EA-US algorithms to identify the appropriate parameter values. Each one of the developed EA

algorithms has a total of 4 parameters, including the following: (1) population size – Ω; (2)

crossover probability – σ
C; (3) mutation probability – σ

M; and (4) maximum number of gener-

ations – gMAX. A “full factorial design” methodology [5], described in the introduction section

of the chapter, was adopted for the EA parameter tuning. A total of 3 candidate values were

considered for each parameter (i.e., 3f factorial design). A total of 3 problem instances were

chosen at random from the generated problem instances (see Section 5.1) in order to conduct

the parameter tuning analysis.

A total of 10 replications were performed for each algorithm and each problem instance to

obtain the average objective function and computational time values. The number of replica-

tions was found to be sufficient, as the objective function values did not vary substantially

from one replication to another. Specifically, the coefficient of variation of the objective func-

tion values at termination did not exceed 1.00% over the performed replications for all the

generated problem instances and the developed solution algorithms. Based on preliminary

algorithmic runs, it was found that increasing number of replications would incur a significant

increase in the computational time without a significant reduction of the objective function

coefficient of variation for each EA. Table 2 provides a summary of the parameter analysis for

each EA, including the following data: (1) algorithm; 2) parameter; (3) considered candidate

values for each parameter; and (4) the best parameter value, highlighted in bold font (deter-

mined based on the analysis of a tradeoff between the obtained objective function values and

computational time required).

The parameter tuning analysis for the developed EA algorithms took more than 11 days (i.e.,

more than 51 hours for each EA). Application of parametric selection mechanisms would

increase the computational time of the parameter tuning analysis even further. The latter

highlights the importance of adopting non-parametric selection mechanisms.

5.3. Comparative analysis

This section focuses on a detailed comparative analysis of the considered EA algorithms,

deploying different non-parametric selection mechanisms, in terms of the objective function

Algorithm\Parameter Ω σ
C σM gMAX

EA-RWS [40; 50; 60] [0.25; 0.50; 0.75] [0.01; 0.02; 0.05] [2000; 2500; 3000]

EA-SUS [40; 50; 60] [0.25; 0.50; 0.75] [0.01; 0.02; 0.05] [2000; 2500; 3000]

EA-BTS [40; 50; 60] [0.25; 0.50; 0.75] [0.01; 0.02; 0.05] [2000; 2500; 3000]

EA-RS [40; 50; 60] [0.25; 0.50; 0.75] [0.01; 0.02; 0.05] [2000; 2500; 3000]

EA-US [40; 50; 60] [0.25; 0.50; 0.75] [0.01; 0.02; 0.05] [2000; 2500; 3000]

Table 2. EA parameter tuning analysis summary.
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values at termination and required computational time. Moreover, changes in the population

diversity are analyzed throughout evolution of each EA.

5.3.1. Objective function and computational time

The developed EA-RWS, EA-SUS, EA-BTS, EA-RS, and EA-US algorithms were executed for

all the generated problem instances, which were described in Section 5.1. A total of 10 replica-

tions were performed for each algorithm and each problem instance. Results of the conducted

analysis are reported in Table 3 for each algorithm and each problem instance, including the

following data: (1) instance number; (2) number of arriving jobs (m); (3) number of available

machines (n); (4) average objective function value at termination (Z) for each EA algorithm;

and (5) average computational time value (CPU) for each EA algorithm.

The average objective function values comprised 339.79 103 USD, 321.39 103 USD, 333.97 103

USD, and 324.14 103 USD, and 357.86 103 USD over the developed problem instances for the

EA-RWS, EA-SUS, EA-BTS, EA-RS, and EA-US algorithms respectively. Therefore, EA-SUS

that relies on Stochastic Universal Sampling outperformed the EAs with other non-parametric

selection mechanisms in terms of the solution quality. Superiority of the EA-SUS algorithm can

be explained by the fact that Stochastic Universal Sampling selects the parent chromosomes

based on the evenly distributed fitness intervals and, therefore, ensures that high, medium,

and low quality individuals will be given a chance to reproduce. The EA-RS algorithm, which

deploys Ranking Selection, demonstrated a good performance; however, it was outperformed

by the EA-SUS algorithm due to the fact that ranking is substantially biased by fitness.

Ranking Selection allows only high and medium fitness chromosomes to become parents,

while the individuals with low fitness values are not given any chance to reproduce.

The EA-RWS and EA-BTS algorithms were outperformed by both EA-SUS and EA-RS algo-

rithms, as they do not guarantee that high and medium quality individuals will become

parents. Although Roulette Wheel Selection and Binary Tournament Selection are biased by

fitness, and the individuals with higher fitness have higher chances to reproduce, such selec-

tion mechanisms may allow a significant portion of low quality individuals to become parents,

which negatively affects the objective function values and results in a premature convergence.

The worst performance was recorded for the EA-US algorithm, which relies on Uniform

Sampling. Uniform Sampling is not biased by fitness and gives all individuals equal chances

to become parents, which may not be desirable in some cases (i.e., higher and medium quality

individuals should have higher chances to reproduce, as compared to low quality individuals).

Uniform Sampling can be advantageous when applied in combination with other selection

mechanisms (e.g., Uniform Sampling is used at the parent selection stage, while Stochastic

Universal Sampling is used at the offspring selection stage). Evaluation of the EA algorithms,

which use a combination of various non-parametric selection mechanisms, will be one of the

future research directions of this study.

An additional statistical analysis was conducted to investigate differences between the average

objective function values at termination, suggested by the developed algorithms. The null

hypothesis was assumed to be H0 : μEA1
¼ μEA2

(i.e., the average objective function value at
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Instance m n EA-RWS EA-SUS EA-BTS EA-RS EA-US

Z, 10
3

USD

CPU,

sec

Z, 10
3

USD

CPU,

sec

Z, 10
3

USD

CPU,

sec

Z, 10
3

USD

CPU,

sec

Z, 10
3

USD

CPU,

sec

1 50 4 141.61 52.72 137.06 56.26 138.30 56.61 138.86 55.11 143.75 61.19

2 50 6 84.43 51.76 82.89 53.53 82.94 58.46 87.32 54.45 89.29 62.14

3 50 8 59.35 52.92 56.85 54.81 57.81 59.75 57.84 55.42 61.45 63.01

4 50 10 44.52 54.54 42.98 56.07 45.19 60.40 45.14 56.32 48.43 63.94

5 60 4 198.97 58.39 190.43 60.07 191.37 65.79 192.01 60.47 195.31 68.20

6 60 6 121.49 59.69 111.83 61.33 114.81 67.33 113.47 62.06 123.11 69.39

7 60 8 82.89 61.17 80.00 62.16 80.71 68.59 80.60 63.14 84.01 70.83

8 60 10 62.31 62.12 60.37 63.35 62.98 70.17 60.61 64.00 66.13 72.39

9 70 4 278.59 65.71 259.23 67.40 269.27 74.93 267.85 68.11 285.21 77.10

10 70 6 164.86 67.19 159.63 69.17 161.25 76.34 159.87 69.38 176.77 78.77

11 70 8 119.25 68.20 111.44 70.07 114.07 77.85 113.52 71.61 122.13 80.20

12 70 10 87.04 69.71 84.72 70.99 88.47 79.31 85.13 72.72 92.40 82.75

13 80 4 358.82 73.98 341.87 75.49 347.55 84.01 342.51 77.36 368.74 87.29

14 80 6 214.52 75.25 204.72 76.47 212.32 84.90 206.70 78.60 222.90 88.00

15 80 8 148.00 76.39 142.60 79.78 148.80 85.86 143.65 79.50 155.65 89.31

16 80 10 112.84 77.59 106.88 79.47 110.21 87.52 107.23 80.47 124.04 91.83

17 90 4 460.90 81.58 444.03 83.76 446.23 92.98 446.81 85.02 484.48 96.91

18 90 6 277.98 82.84 269.76 84.89 271.57 93.84 271.19 86.96 297.47 92.80

19 90 8 191.22 83.95 180.81 86.22 195.22 95.37 180.97 88.43 203.99 94.31

20 90 10 151.94 85.54 135.86 87.94 142.50 97.32 136.17 89.75 159.42 95.93

21 100 4 600.06 89.07 564.90 92.29 580.63 101.97 568.24 94.03 601.43 101.61

22 100 6 355.99 89.84 343.57 93.10 348.84 101.66 346.33 94.63 384.70 102.99

23 100 8 249.85 91.11 228.49 94.42 243.06 103.32 229.37 95.94 260.30 103.12

24 100 10 190.11 92.81 171.88 95.95 184.94 104.81 174.24 97.51 196.91 104.42

25 110 4 720.16 96.39 678.10 99.21 706.05 109.70 678.90 101.52 745.49 108.94

26 110 6 440.85 98.03 419.34 101.31 429.49 111.74 421.62 102.51 461.96 110.18

27 110 8 300.11 99.59 280.76 102.57 292.38 112.76 281.59 104.07 317.98 111.86

28 110 10 223.92 100.81 208.87 103.90 220.49 114.61 210.76 105.66 245.74 113.24

29 120 4 858.23 104.78 802.81 108.03 848.19 120.34 816.61 110.30 900.09 120.61

30 120 6 539.24 105.52 488.90 109.46 514.46 120.73 498.86 112.01 549.63 122.26

31 120 8 356.24 107.50 343.26 111.21 363.44 122.90 345.24 113.77 389.83 123.98

32 120 10 273.65 109.06 249.24 112.04 267.37 125.11 250.87 114.76 284.92 124.56

33 130 4 1011.56 112.84 974.07 116.21 1001.36 123.02 979.15 119.14 1069.10 129.10

34 130 6 620.42 114.00 583.82 117.26 618.10 122.51 589.85 119.96 650.25 130.27
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termination of algorithm EA1 [μEA1
] is equal to the average objective function value at termi-

nation of algorithm EA2 [μEA2
]), while the alternative hypothesis was assumed to be

Ha : μEA1
< μEA2

(algorithm EA1 returns lower average objective function value at termination

as compared to algorithm EA2). The average objective function values were estimated over 40

problem instances for each EA algorithm. Based on the hypothesis testing results, no statisti-

cally significant difference has been identified among the average objective function values at

termination, suggested by the EA-SUS algorithm and other developed EA algorithms, at

significance level α ¼ 0:05. The latter finding can be justified by the fact that for some of the

problem instances the developed algorithms did not demonstrate significant differences in

terms of the objective function values (generally, the problem instances with lower number of

arriving jobs and available machines – problem instances 1, 2, 5, 6, and others).

Furthermore, on average over all the generated problem instances the EA-SUS algorithm

outperformed the EA-RWS, EA-BTS, EA-RS, and EA-US algorithms by 5.72, 3.91, 0.86, and

11.35%. However, for some of the problem instances the EA-SUS algorithm outperformed the

EA-RWS, EA-BTS, EA-RS, and EA-US algorithms by up to 11.84, 7.97, 5.34, and 17.65%.

Therefore, application of the EA-SUS algorithm is expected to become even more advanta-

geous (in terms of objective function values at termination) with increasing problem size. The

computational time of the developed EA algorithms did not exceed 142.81 sec over all 40

problem instances, which can be considered as acceptable.

5.3.2. Changes in the population diversity

The population diversity is critical in EAs especially at early stages of the search process.

Without a diverse population, a given EA will not be able explore the available domains of

the search space in an efficient manner. Lack of diversity in early generations of the EA

algorithm may lead to negative consequences, including premature convergence. The popula-

tion fitness values were recorded throughout evolution of the developed EA-RWS, EA-SUS,

Instance m n EA-RWS EA-SUS EA-BTS EA-RS EA-US

Z, 10
3

USD

CPU,

sec

Z, 10
3

USD

CPU,

sec

Z, 10
3

USD

CPU,

sec

Z, 10
3

USD

CPU,

sec

Z, 10
3

USD

CPU,

sec

35 130 8 418.78 115.49 401.15 118.47 424.44 124.11 403.36 121.57 449.19 132.76

36 130 10 310.32 116.52 296.11 119.97 318.84 125.34 298.81 122.95 342.26 134.08

37 140 4 1184.91 120.74 1121.27 123.96 1168.76 129.81 1123.67 127.12 1267.22 138.33

38 140 6 712.51 121.49 680.00 125.12 696.63 130.66 690.01 129.63 757.52 139.52

39 140 8 499.65 123.61 465.71 126.37 483.23 131.65 469.30 129.50 529.86 141.40

40 140 10 363.36 124.70 349.41 127.91 366.61 133.38 351.45 130.79 405.48 142.81

Average: 339.79 87.38 321.39 89.95 333.97 97.69 324.14 91.66 357.86 100.56

Table 3. Objective function and computational time values for the considered EA algorithms.
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EA-BTS, EA-RS, and EA-US algorithms for each replication and each problem instance. The

population fitness boxplots are illustrated in Figures 5 and 6 for the first replication of each EA

algorithm after the parent selection in generations 500, 1000, 1500, 2000, 2500, and 3000. Note

that boxplots are presented only for the first replication of each EA algorithm and problem

instances 37–40 (i.e., the problem instances with the largest number of arriving jobs), but

Figure 5. EA population fitness boxplots for problem instances 37 and 38.
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similar patterns have been observed for the rest of algorithmic replications and problem

instances. The population fitness boxplots have the following components: (1) rectangle, where

the top and the bottom parts correspond to 75th and 25th population fitness value percentiles

respectively; (2) median, which is shown using a red line; (3) whiskers, which are shown using

dashed lines covering 99.30% of the population fitness value data points; and (4) extreme

Figure 6. EA population fitness boxplots for problem instances 39 and 40.
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population fitness value points (falling outside of 99.30% of the population fitness value data

points) or “outliers”, which are shown using “
�
” symbol.

It can be observed that the population fitness boxplot whiskers of the EA-RWS and EA-US

algorithms consistently cover a wider range of the population fitness values. The latter finding

indicates that both EA-RWS and EA-US algorithms maintain a more diverse population, as

compared to the EA-SUS, EA-BTS, and EA-RS algorithms. However, the quality of individuals

within both EA-RWS and EA-US populations is significantly lower as compared to the EA-

SUS, EA-BTS, and EA-RS populations. For example, the EA-RWS and EA-US algorithms cover

the population fitness ranges of [1193.15; 1627.94] 103 USD and [1276.65; 1829.78] 103 USD

respectively, while the EA-SUS algorithm covers the population fitness range of [1110.66;

1387.16] 103 USD for problem instance 37 at termination (i.e., in generation 3000). Therefore,

as discussed in Section 5.3.1, the EA-RWS and EA-US algorithms were outperformed by the

EA-SUS, EA-BTS, and EA-RS algorithms in terms of the objective function values at termina-

tion. The EA-SUS, EA-BTS, and EA-RS algorithms were able to maintain the adequate popula-

tion diversity and return good quality job to machine to processing order assignments.

Throughout the computational experiments, it was found that the population diversity pat-

terns did not change significantly from generation 500 up to generation 3000 (e.g., the range,

covered by the population fitness boxplot whiskers, does not alter substantially throughout

evolution of each EA after generation 500). The latter finding can be justified by the fact that

the developed EAs relatively quickly identified the promising domains of the search space (i.e.,

within the first 400–500 generations), and then focused on exploiting the identified domains

for the rest of generations, aiming to discover solutions with superior fitness values. Applica-

tion of scaling mechanisms (such as linear scaling, sigma truncation, and power law scaling)

will allow controlling the population diversity of the developed EA algorithms (e.g., reduce

the population diversity towards the EA convergence and give higher reproduction chances to

“super-individuals” – i.e. the individuals with the highest fitness values) and will be one of the

future research directions of this study.

6. Concluding remarks and future research extensions

Evolutionary Algorithms and other metaheuristic algorithms have been extensively applied

for solving complex stochastic, robust, and dynamic optimization problems. Two types of

selection mechanisms are deployed within Evolutionary Algorithms, including the parent

selection and the offspring selection. Evolutionary Algorithms have a lot of parameters, which

are generally set based on the parameter tuning analysis. Parametric selection mechanisms

(e.g., Exponential Ranking Selection, Tournament Selection, Boltzmann Selection) increase the

number of parameters within a given Evolutionary Algorithm, which can make the parameter

tuning analysis computationally prohibitive due to significant computational time required.

To avoid the latter drawback and facilitate the parameter tuning analysis of Evolutionary

Algorithms, this study focused on design of the Evolutionary Algorithm that solely relied on
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non-parametric selection mechanisms. Different categories of Evolutionary Algorithms, which

applied various non-parametric selection mechanisms (Roulette Wheel Selection, Stochastic

Universal Sampling, Binary Tournament Selection, Ranking Selection, Uniform Sampling),

were evaluated based on the major algorithmic performance indicators.

A set of computational experiments were conducted for the unrelated machine scheduling

problem, which is known to be NP-hard. The objective of the mathematical model, proposed

for the problem, aimed to minimize the total job processing cost. Results indicate that the

Evolutionary Algorithm with the Stochastic Universal Sampling selection mechanism outper-

forms the Evolutionary Algorithms with other selection mechanisms in terms of the objective

function values. The worst performance was demonstrated by the Evolutionary Algorithm,

which relied on the Uniform Sampling selection mechanism. Furthermore, the Evolutionary

Algorithms with the Roulette Wheel Selection and Uniform Sampling selection mechanisms

typically allowed maintaining higher population diversity; however, the quality of individuals

within the population was lower as compared to the Evolutionary Algorithms with the Sto-

chastic Universal Sampling, Binary Tournament Selection, and Ranking Selection mechanisms.

The computational time of all the developed Evolutionary Algorithms did not exceed

142.81 sec over the considered problem instances, which can be considered as acceptable.

Therefore, based on a comprehensive analysis of the commonly used non-parametric selection

mechanisms, Stochastic Universal Sampling was found to be the most promising, as it was able

to maintain the adequate population diversity throughout the algorithmic run and return good

quality solutions at termination. Results from the conducted numerical experiments are

expected to facilitate development of efficient Evolutionary Algorithms for the machine sched-

uling problems. Moreover, the developed problem instances and findings from this study can

serve as benchmarks for the future machine scheduling studies.

The future research directions for this study include the following: (1) application of scaling

mechanisms for the fitness function; (2) evaluation of the Evolutionary Algorithms, which use

a combination of various non-parametric selection mechanisms (e.g., Uniform Sampling is

used at the parent selection stage, while Stochastic Universal Sampling is used at the offspring

selection stage); (3) consider alternative stopping criteria for the developed Evolutionary

Algorithms; (4) compare various non-parametric selection mechanisms for the Hybrid Evolu-

tionary Algorithms, which apply different local search heuristics along with the stochastic

search operators; and (5) evaluate performance of the commonly used non-parametric selec-

tion mechanisms for other NP-hard problems (e.g., bin packing problem, Knapsack problem,

traveling salesman problem).

Nomenclature

Sets

I ¼ 1;…;mf g set of arriving jobs

J ¼ 1;…; nf g set of available machines
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K ¼ 1;…; pf g set of job processing orders

Decision variables

xijk ∈ 0; 1f g∀i∈ I, j∈ J, k∈K =1 if arriving job i is scheduled for processing on machine j in

processing order k (=0 otherwise)

Auxiliary variables

IT ijk ∈Rþ
∀i∈ I, j∈ J, k∈K idling time of machine j between processing job i and preceding

job processed in order (k� 1) (hours)

SPT i ∈Rþ
∀i∈ I start processing time for job i (hours)

FPT i ∈Rþ
∀i∈ I finish processing time for job i (hours)

WT i ∈Rþ
∀i∈ I waiting time of job i (hours)

PDi ∈Rþ
∀i∈ I delay in processing job i (hours)

Parameters

m∈N number of arriving jobs (jobs)

n∈N number of available machines (machines)

p∈N number of job processing orders (orders)

ATi ∈Rþ
∀i∈ I arrival time of job i (hours)

HTij ∈Rþ
∀i∈ I, j∈ J handling time of job i on machine j (hours)

DPi ∈Rþ
∀i∈ I deadline for processing job i (hours)

cHC
i ∈Rþ

∀i∈ I unit handling cost for job i (USD/hour)

cWC
i ∈Rþ

∀i∈ I unit waiting cost for job i (USD/hour)

cDC
i ∈Rþ

∀i∈ I unit delayed processing cost of job i (USD/hour)

PN∈Rþ large positive number
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