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Abstract

Groundbreaking new drugs called direct acting antivirals have been introduced recently for
the treatment of chronic Hepatitis C virus infection. We introduce a mathematical model for
Hepatitis C dynamics treated with the direct acting antiviral drug, telaprevir, alongside
traditional interferon and ribavirin treatments to understand how this combination therapy
affects the viral load of patients exhibiting different types of response. We use sensitivity and
identifiability techniques to determine which model parameters can be best estimated from
viral load data. Parameter estimation with these best estimable parameters is then performed
to give patient-specific fits of the model to partial virologic response, sustained virologic
response and breakthrough patients.

Keywords: hepatitis C dynamics, inverse problem, subset selection, sensitivity analysis,
identifiability analysis, automatic differentiation

1. Introduction

Over 200–300 million people worldwide are infected with a virus called Hepatitis C (HCV)

that affects the liver, which was discovered in 1989 [1]. It is usually spread by blood-to-blood

contact via intravenous drug use, poorly sterilized medical equipment and transfusions.

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



Scarring of the liver and ultimately cirrhosis are just a few of the more severe complications

associated with HCV [2].

Six different genotypes of HCV exist due to the highly error prone RNA polymerase with the

most common being genotype 1 that has the lowest levels of response to standard treatment [3, 4].

Genotype 1 patients have about a 50% chance for sustained virologic response (SVR), while non-

genotype 1 patients have about an 80% chance for SVR [5]. The clinical data used for this study

were provided by the University of Sao Paulo, School of Medicine in Sao Paulo, Brazil and consist

of genotype 1 patients.

One of the first treatments for HCV was 6–12 months monotherapy with interferon glyco-

proteins. Interferon is naturally secreted from our bodies to fight off infection and

monotherapy treatment with them is associated with around 10% SVR [6]. The addition of

ribavirin (RBV), a drug believed to render some of the virus non-infectious, increased SVR

to around 30% [6]. RBV monotherapy is not recommended because it does not give a

significant benefit to SVR [7]. Until recently, the most common therapy was a combination

of pegylated Interferon (IFN) and RBV for 24–48 weeks that yielded about a 45% SVR [5, 6].

One of the major differences between IFN and standard inteferon glycoproteins is that the

pegylation allows the drugs to stay in the body longer [8]. There have also been clinical

trials with RBV monotherapy before and after IFN + RBV therapy as described in [9].

Recently, new drugs called direct-acting antiviral agents (DAAs) have raised the chance

for SVR for HCV patients.

DAAs give an increase to about an 80% chance for SVR for genotype 1 [10]. According to the

FDA, DAAs are drugs that interfere with specific steps in the HCV replication cycle by taking

advantage of the biological makeup of HCV [11]. HCV is a single-stranded RNAmolecule that

is several nucleotides in length. During HCV’s life cycle, it is translated into a polyprotein that

is composed into structural and nonstructural proteins that aid in replication. During post-

translational processing, DAAs called protease inhibitors block a key protease from the repli-

cation process and hinders further infection [10, 12]. Among the protease inhibitors available

are boceprevir, telaprevir and simeprevir. Simeprevir is recommended over telaprevir and

boceprevir because of both improved efficacy and less side effects, but telaprevir continues to

be used because of its cost efficiency [13, 14].

Integration of mathematical modeling of viral dynamics with clinical data has led to further

understanding of how different treatment strategies dictate viral load dynamics. One of the

first mathematical models was given by Neumann et al. which attempted to describe HCV

dynamics with interferon monotherapy [4]. Improvements were made to the Neumann’s

model to better describe different mechanisms in the liver during treatment including the

regeneration of liver cells. Adjustments were also made to include the standard of care,

IFN, and RBV. Some of these modifications can be found in [5, 15]. In particular, Snoeck

et al. [5] had data after the end of the treatment phase so that the model can give a more

accurate representation of its prediction of SVR. The introduction of DAAs has ushered in

more mathematical models that include this type of therapy [16]. For example, mathemat-

ical models have been proposed using telaprevir monotherapy [17–20] and in combination
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with IFN and RBV [18] that uses Bayesian feedback to estimate the parameters in the

model. The challenges that come with modeling DAAs is that since they are relatively

new, there is not as much data available [17]. It can be difficult to predict SVR because of a

lack of data after the treatment phase ends due to how recent the drugs have been

approved.

This chapter introduces a novel approach for the development of a mathematical model

describing HCV dynamics given the triple-drug combination treatment of IFN, RBV, and the

DAA telaprevir. In Section 2, we describe how we adapted a previously known HCV model to

include telaprevir and the available clinical data. Section 3 describes the a priori analysis of

sensitivity and identifiability and its incorporation into the parameter estimation problem.

Section 4 gives the parameter estimation results using several patient specific clinical data

including partial virologic response, sustained virologic response and breakthrough. Finally,

concluding remarks are provided in Section 5.

2. Mathematical models of HCV dynamics

The original model for HCV dynamics in Neumann et al. [4] was frequently used to assess

viral-load profiles after short-term treatment and is given by

dT

dt
¼ s� dT � 1� ηð ÞβVT,

dI

dt
¼ 1� ηð ÞβVT � δI,

dV

dt
¼ 1� εð ÞpI � cV,

(1)

where T and I denote the concentrations of healthy and infected hepatocytes, and V

represents viral concentration in the liver fluid. One of the key contributions of the model

was the understanding of the mechanism of IFN. It was unknown whether it acted

through η > 0 (i.e., inhibiting the infection of healthy liver cells) or ε > 0 (i.e., reducing

virion production in infected cells). In [4], it is determined that it is through ε which

inhibits production of the virus. The drawback to (1) is that it cannot describe patients

exhibiting breakthrough, relapse, and most importantly SVR. These responses are reasons

that early viral response does not uniformly predict responses in the long term. Another

important aspect is the handling of viral load measurements below the lower limit of

quantification (LLOQ). Previous analysis omitted the data below LLOQ, but it can contain

critical information regarding long-term treatment outcome. Snoeck et al. [5] present a

mathematical model for the dynamics of HCV with the drug treatment combination of

IFN and RBV that attempts to address both the long-term responses and the use of the

LLOQ. The model described in [5] is given by the following system of nonlinear differen-

tial equations
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dT

dt
¼ sþ rT 1�

T þ I

Tmax

� �

� dT � βV IT, b

dI

dt
¼ βV IT þ rI 1�

T þ I

Tmax

� �

� δI,

dV I

dt
¼ 1� rð Þ 1� εð ÞpI � cV I ,

dVNI

dt
¼ r 1� εð ÞpI � cVNI ,

(2)

where T (uninfected hepatocytes), I (infected hepatocytes), V I (infectious virions) and VNI

(noninfectious virions) are natural states (international units IU/mL). This model was adapted

from a standardmodel of viral infection [4]. The number of uninfected hepatocytes increases each

day with reproduction rate s and regeneration rate r. That number decreases each day as those

hepatocytes die naturally at a rate d or infected at a rate β. The maximum number of hepatocytes

per mL is Tmax. The number of infected hepatocytes increases when the healthy liver cells are

infected andwhen the infected cells regenerate themselves. That number decreases when they die

off naturallyat a rate δ. Infectedhepatocytes produce both infectious andnoninfectious virions at a

rate p. Virions are naturally cleared at a rate c. IFN inhibits virus production while RBV renders

some of the virus noninfectious. The drug efficacies of IFN and RBV are represented by ε and r,

respectively. The bounds for IFN and RBVare 0 < ε ≤ 1 and 0 < r ≤ 1 where themore effective the

drug is, the closer the efficacy of the drug will be to 1. Snoeck uses data that extend beyond

treatment for patients so the terms ε and r in (2) account for the exponential decays of the efficacies

of the drugs after treatment has ceased. The exponential decay of the drug efficacies is given by

ε ¼ εe�k t�tendð Þþ , (3)

and

r ¼ re�k t�tendð Þþ , (4)

where k is the efficacy decay rate, tend marks the end of treatment, and

að Þþ ¼
a if a ≥ 0,

0 otherwise:

�

The drug efficacies ε and r are related to the drug dosage levels by the following expressions

ε ¼
DosePEG

ED50PEG þDosePEG
, (5)

and

r ¼
DoseRBV

ED50RBV þDoseRBV
, (6)

where Dose PEG is the weekly subcutaneous dose of IFN and ED50PEG is the estimated weekly

dose that causes 50% inhibition of virion production. DoseRBV represents the daily dose of
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RBV/kg body weight, and ED50RBV represents the estimated daily dose in mg/kg that makes

50% of the virions noninfectious. Biologically, all state variables and parameters are non-

negative. Typical values for model parameters used by Snoek et al. [5] are given in Table 1.

2.1. HCV model with DAA

Snoeck’s model is adapted to incorporate the DAA, telaprevir. Recall that a DAA targets

specific parts of the genome of the virus to inhibit both replication and infection. The hindrance

of replication of the virus in the infected hepatocytes results in the virus not being produced by

those cells. This means that the DAA should be implemented as part of the infection term,

βTV I , for inhibiting infection and viral production terms, pV I and pVNI , for inhibiting replica-

tion of the virus in (2). However, after simulations and analysis, it is concluded in this study

that the obstruction of the infection and replication of the virus by telaprevir can be described

solely as an amplifier for mitigating the production of virions alongside IFN. With this

assumption, the model in [5] is modified to include the triple drug combination of IFN, RBV

and telaprevir as follows:

_T ¼ sþ rT 1�
T þ I

Tmax

� �

� dT � βV IT

_I ¼ βV IT þ rI 1�
T þ I

Tmax

� �

� δI

_V I ¼ 1� rð Þ 1� εð Þ 1� γð ÞpI � cV I

_VNI ¼ r 1� εð Þ 1� γð ÞpI � cVNI ,

(7)

where γ represents the exponential decay of the telaprevir efficacy and is defined similarly

as for ε and r (see (3) and (4)). In [21], existence and uniqueness of solutions to this updated

Parameter Value

s 6:17� 104 hepatocyte
mL�day

r .00562 day�1

β 8:7� 10�9 mL
virion�day

δ .139 day�1

c 4.53 day�1

Tmax 1:85� 107
hepatocytes

mL

d .003 day�1

p 25.1 virions
hepatocyte�day

ε .896

r .4–.6

k .0238 day�1

Table 1. Typical values from [5].
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HCV dynamical model were established, and a steady-state stability analysis was also

performed.

2.2. Treatment schedule

The data in this research uses the treatment schedule timeline as follows (also summarized in

Figure 1).

1. The patient is treated with the triple drug combination of IFN + RBV + telaprevir for the

first 12 weeks.

2. If at 12 weeks, viral load > 1000 IU/mL, then discontinue treatment. Otherwise, continue

12-week treatment of IFN + RBV.

3. If at 24 weeks, viral load > LLOQ (12–15 IU/mL), then discontinue treatment. Otherwise,

continue 12-week treatment of IFN + RBV.

4. If at 36 weeks, viral load > LLOQ, then discontinue treatment. Otherwise, continue 12-

week treatment of IFN + RBV.

5. End of treatment at 48 weeks.

3. Subset selection

The forward problem refers to using a model to predict the future behavior of a system given

a set of parameters. The inverse problem, on the other hand, is the parameterization of a model

from empirical data [22–24]. There have been extensive studies about parameter selection

while solving the inverse problem for biological models and other applications that can be

found in [3, 22, 25–27] and references therein. In this study, we use a simple algorithm to

choose a subset of parameters to be estimated from clinical data based on both sensitivity and

identifiability as follows:

1. Start with the full parameter set Q.

2. Remove parameters that are not locally sensitive to attain QS ⊂Q.

3. Remove parameters that are not locally identifiable from QS to obtain sensitive and

identifiable parameter set QSI

Figure 1. Treatment schedule for patients used for data received from patients treated at University of Sao Paulo, School

of Medicine in Sao Paulo, Brazil.
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Since these are local analyses, this procedure is repeated over a large number of parameter sets

and the parameters that appear most often in QSI are the parameters that are estimated. All

other parameter values are fixed to values from the literature. A biological and structural

explanation for some of the fixed parameters is given in the next section.

3.1. Fixed parameters

The assumptions for fixed parameters are the same as in [5]. Since the maximum number of

hepatocytes in the liver is 2:50� 1011 and HCV RNA is distributed in plasma and extracellular

fluids with a volume of � 1:35� 104 ml, then Tmax ¼
2:50�1011

1:35�104
¼ 1:85� 107. d is obtained from

hepatocyte turnover being every 300 days and s ¼ Tmax � d can be deduced in the absence of

liver disease. p is always fixed because p 1� εð Þ appears in _V and _VNI making p and ε,

impossible to estimate uniquely. The rest of the parameters will be considered in the sensitivity

analysis.

3.2. Sensitivity analysis

A sensitivity analysis is the process of understanding how the model output is affected by

changes in the parameters. Sensitivity analyses are used in many branches of mathematics

such as statistics, partial differential equations (PDEs), and control design [28, 29]. The param-

eters that give the most change in the output are said to be sensitive parameters. This is

important in the forward problem because it allows an understanding of which parameters will

give useful information. Once the parameters have been identified, a sensitivity analysis for the

inverse problem is usually performed to determine the sensitive parameters. Parameters with

minimal impact are fixed from the literature. There are two different types of sensitivity

analysis: global and local. A global sensitivity analysis heavily depends on the structure of

the model and quantifies how uncertainties in outputs can be apportioned to uncertainties in

inputs. We refer the reader to [30] for a more comprehensive discussion. Our study uses a local

sensitivity analysis that depends on the prescribed values of the parameters.

3.2.1. Sensitivity equations

The sensitivity analysis presented in this section uses a derivative-based approach. Consider

the general form of an ODE model and a function z of its output

dy

dt
¼ f t; y; qð Þ,

z ¼ g t; y; qð Þ,

(8)

whereby the vectors y and q contain the variables and parameters of the model, respectively.

Since we are concerned with how our model output, z, is influenced by changes to our

parameters, q, then we consider the partial derivative of z, ∂z
∂q, with respect to q. One approach

to computing this partial derivative is by solving the associated sensitivity equations. Differ-

entiating both sides of the output Eq. (8) with respect to the parameter q yields
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∂z

∂q
¼

∂g

∂t

∂t

∂q
þ

∂g

∂y

∂y

∂q
þ

∂g

∂q

∂q

∂q

¼
∂g

∂y

∂y

∂q
þ

∂g

∂q

(9)

since ∂t
∂q ¼ 0 and ∂q

∂q ¼ 1. The two components ∂g
∂y and

∂g
∂q can be directly calculated from g, but can

be cumbersome to do by hand depending on the complexity of the function g. Thus, one can

employ automatic differentiation to evaluate these derivatives. Since any mathematical func-

tion can be decomposed into elementary functions, automatic differentiation numerically

implements the chain rule and basic arithmetic equations repeatedly to compute the total

derivative of a function with accuracy to working machine precision [31]. This is achieved with

table lookups and tabulating all the functional compositions [32, 33]. An automatic differenti-

ation (AD) code developed by Martin Fink in MATLAB was employed [34]. Finally, to calcu-

late ∂y
∂q, it is noted that y is continuous in t and q. Since ∂y

∂q exists, by taking the partial derivative

with respect to q of the state equations and reversing the order of differentiation [35], we obtain

∂

∂q

dy

dt

� �

¼
d

dt

∂y

∂q

� �

¼
∂f

∂t

∂t

∂q
þ

∂f

∂y

∂y

∂q
þ

∂f

∂q

∂q

∂q

¼
∂f

∂y

∂y

∂q
þ

∂f

∂q
:

(10)

Similar to ∂g
∂y and ∂g

∂q,
∂f
∂y and ∂f

∂q are calculated using automatic differentiation. From (10), the

sensitivity equations are given by the following coupled system of differential equations

dy

dt
¼ f t; y; qð Þ,

d

dt

∂y

∂q

� �

¼
∂f

∂q

∂y

∂q
þ

∂f

∂q
:

(11)

Solving the sensitivity equations yields ∂y
∂q, which, in turn, gives ∂z

∂q from (9).

3.2.2. Model considerations and sensitivity results

The sensitivities of each parameter are ranked to obtain which parameters are most sensitive.

Since there is a large range of parameter and viral load values, each parameter, qj, is log scaled

in association with the state variable, y, that is,

d log 10 yð Þ

d log 10 qj

� � ¼
qj

y

dy

dqj

is considered instead of dy
dqj
. This allows a comparison of the sensitivities of each parameter

using similar magnitudes. The l2� norm is used to nondimensionalize the sensitivities over

time so the following sensitivity coefficient is considered for each parameter
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Sij ¼
∂yi
∂qj

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

2

¼
1

tf � t0

ðtf

t0

∂yi
∂qj

qj

maxyi

� �

 !2

dt

2

4

3

5

1
2

: (12)

Eq. (12) is defined to be the relative ranking sensitivity of each variable yi in y with respect to

each individual parameter qj.

Since the local sensitivity analysis depends on values in q, independent sets of parameters that

have a log-normal distribution are created from the population-based model fit in Snoeck et al.

[5]. That is, a sequence of independent parameter sets qk
� 	

is generated from this distribution

using the typical values from [5] as the mean. To determine pseudo-global sensitivities, a

sensitivity coefficient, Skij, is computed for each parameter in the k th parameter set. Then, if B

parameter sets are to be analyzed, then an average for all the parameter sets is computed by

Sij ¼
1

B

X

B

k¼1

Skij: (13)

A cutoff is determined based on the ranking of the averages attained in (13). Those parameters

above the cutoff are further examined in the identifiability analysis. This method is a version of

what is referred to as Morris Screening in [30]. Similar to the work done here, the Morris

algorithm [36] averages local derivative approximations to provide more global sensitivity

measures. The difference being that the variance in the parameter sets is also considered. Here

that variance would be given by

σ
2
ij ¼

1

B� 1

X

B

k¼1

Skij � Sij

� �2
: (14)

As explained in [30], while the mean (13) quantifies the individual effect of the input on the

output, the variance (14) estimates the combined effects of the input due to nonlinearities or

interactions with other inputs. The reader is referred to [30, 36] and references therein for a

more detailed analysis of Morris Screening. It is noted that only the marginal distributions are

given in [5], so computations are ignorant of any covariances between parameters. The data

that were used contain only the viral load observations. So the sensitivities of V ¼ V I þ VNI are

of interest. Therefore, (8) is considered where

y ¼ T I V I VNI½ �T ,

with output

z ¼ V ¼ V I þ VNI :

Two different sets of time points are used during this analysis. The first and second set of time

points come from the partial virologic response (PVR) case and Breakthrough case, respec-

tively. This will provide a better illustration of sensitivities given that treatment decays in the

Breakthrough case, but does not in PVR. The sensitivity rankings are given in Figure 2 for over
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2000 (a) and 400 (b) parameter sets, respectively. Error bars that are two standard deviations

from the mean are included. The sensitive parameters for the PVR and Breakthrough time

points are QPVR ¼ δ; c; β; r; γ
� 	

and QBrk ¼ δ; c; β; r; r;γ; ε
� 	

, respectively. These parameters are

considered in the identifiability analysis. Note that γ is always considered in the identifiability

analysis due to there not being a value from the literature to fix it to for this model. It is used to

determine whether it affects the identifiability of other parameters.

3.3. Identifiability analysis

After deciding which parameters are sensitive, consideration is given to understanding which

sensitive parameters can uniquely be identified from the data. In this study, we employed a

sensitive-based approach for local identifiability analysis. To this end, we consider the param-

eters contained in q which minimize the cost function

J qð Þ ¼
1

N

X

N

i¼1

V i
d � V ti; qð Þ


 �2
,

with V ti; qð Þ denoting the model output and V i
d denoting the corresponding data value at time

point ti for i ¼ 1,…N, where N is the number of data values. Similar to [37], let us assume that q∗

is the minimum of this cost function. Then by using a Taylor series expansion around q∗, we

obtain

V ti; qð Þ ¼ V ti; q
∗ð Þ þ

dV ti; q
∗ð Þ

dq
q� q∗ð Þ þ…

If we only consider the first two elements of V ti; qð Þ under the assumption that q ≈ q∗ and

substitute this expression into the cost function we find that

Figure 2. Sensitivity rankings using PVR (a) and Breakthrough time points (b).
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J qð Þ ¼
1

N

X

N

i¼1

V i
d � V ti; q

∗ð Þ �
dV ti; q

∗ð Þ

dq
q� q∗ð Þ

� �2

,

¼
1

N

X

N

i¼1

dV ti; q
∗ð Þ

dq
q� q∗ð Þ

� �2

,

(15)

where we used the fact that q∗ is the minimum of the cost function so that V i
d ≈V ti; q

∗ð Þ. Let

S ¼
dV

dq
¼

dV

dq1
t1ð Þ

dV

dq2
t1ð Þ ⋯

dV

dql
t1ð Þ

dV

dq1
t2ð Þ

dV

dq2
t2ð Þ ⋯

dV

dql
t2ð Þ

⋮ ⋮ ⋮ ⋮

dV

dq1
tNð Þ

dV

dq2
tNð Þ ⋯

dV

dql
tNð Þ

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

, (16)

be an N � lð Þ sensitivity matrix relating to the sensitivities dV
dqj

tið Þ of the output with i ¼ 1,…, N

and j ¼ 1,…, l, where l denotes the number of parameters. The cost function of (15) is rewritten

in terms of this sensitivity matrix

J qð Þ ¼
1

N
S q� q∗ð Þð ÞT S q� q∗ð Þð Þ,

¼
1

N
SΔqð ÞT SΔqð Þ,

where Δq ¼ q� q∗. Rearranging Δq ¼ q� q∗, we formulate the cost function in terms of

q∗ þ Δq:

J q∗ þ Δqð Þ ¼
1

N
ΔqTSTSΔq: (17)

If we suppose that Δq is an eigenvector of STS with STSΔq ¼ λΔq, then we have

J q∗ þ Δqð Þ ¼
1

N
ΔqT λΔqð Þ,

¼
1

N
λ Δqk k22:

We note that if Δq is an eigenvector with eigenvalue λ ¼ 0, then the cost function to second-

order approximation is J q∗ þ hΔqð Þ ¼ 0: The least squares cost function does not change

values when moving from q∗ to q∗ þ hΔq, with h arbitrary. Thus, the parameters are locally

unidentifiable at q∗. If STS has very small eigenvalues, this can also be a problem

for parameter identification. There have been studies about how the Fisher Information

Matrix (STS) can be used for parameter identification [38, 39]. For example, in [38], they

search all possible parameter combinations and choose them based on the rank of the
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sensitivity matrix, S, and asymptotic standard error uncertainty. We use the following

algorithm as described in [39] to determine which of the parameters in our model will be

unidentifiable.

1. Create the matrix STS, compute its eigenvalues, and order them such that

∣λ1∣ ≤ ∣λ2∣ ≤⋯ ≤ ∣λn∣:

2. If ∣λ1∣ is less than some threshold ε (typically taken to be 10�4), we say that there is a

parameter that is unidentifiable.

3. The largest magnitude component of the eigenvector Δq1 associated with the eigenvalue

λ1 corresponds to the least identifiable parameter. Remove the corresponding column

from S and repeat step 1.

After performing this procedure, we now have a set of sensitive and locally identifiable

parameters to estimate. The rest of the parameters are set to “typical values” found

in the literature. The identifiability algorithm is applied to all the parameter sets of sensitive

parameters, QPVR and QBrk, obtained in the previous section. It is observed from Figure 3 that

the parameters in QPVR ¼ δ; c; β;γ
� 	

are identifiable at least 50% of the time and the parame-

ters in QBrk ¼ δ; c; β;γ; ε
� 	

are identifiable at least 50% of the time. The parameters contained

in QPVR and QBrk are those that will be estimated from the clinical data.

4. Parameter estimation

The parameters in QPVR and QBrk are estimated using the weighted sum of squares of errors

(WSSE) given by

Figure 3. Final subset percentages using PVR (a) and Breakthrough time points (b).
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J qð Þ ¼
X

N

i¼1

wi log V i
d


 �

� log V ti; qð Þð Þ
� 2

, (18)

where wi is the weight for the error term log V i
d


 �

� log V ti; qð Þð Þ
� 

at time ti, V
i
d is data

measurement of viral load at the i th time point and V ti; qð Þ is the model output with param-

eters q. We used both sampling and gradient based methods to minimize this function

implemented in MATLAB. The model was fit to three data sets; namely, PVR, ETR (end-of-

treatment response) and Breakthrough. PVR represents when the patient has an initial positive

reaction to the therapy, but then the viral load rebounds during treatment and never goes

below detection. ETR represents when the viral load drops below detection and does not

rebound. Breakthrough represents when the patient’s viral load drops below detection, but

rebounds. In our data, the LLOQ is 15 IU/ml. When the data drop below the LLOQ, least

squared estimation does not suffice as a statistically rigorous methodology. Instead, we

employ the expectation maximization (EM) [40] to compute maximum likelihood estimates of

our patient specific parameters. For a detailed description of the EM algorithm, we refer the

reader to [41]. The RBV dosage depends on the patient’s body weight and was sometimes

modified during treatment due to different symptoms of the patients such as blood thinning.

The patients experiencing PVR and Breakthrough had constant RBV dosage for the entire

treatment while the patient exhibiting ETR had modified dosage. The RBV efficacy is fixed to

r ¼ :1222 from [22] for the PVR and Breakthrough patients. The efficacies for the ETR patient

were modified based on time, t, in days since initial treatment and are presented in Table 2.

The parameters not in QPVR or QBrk are fixed to the values in Table 3 from [5, 22]. As in [5], the

infected steady state is used for the initial conditions for (7) because the patients considered

had chronic infection. The values in Table 4 are obtained after estimating the parameters in

QPVR and QBrk. These estimates produce the model fits (graphs on the left) and residuals

(graphs on the right) in Figures 4–6. It is noted that in Figure 6, the ETR patient’s viral load

goes to zero, and the residuals for censored data are set to zero.

In practice, the mathematical model is never exact (model misspecification), and the data

contain noise (human errors, instrument errors). Hence, confidence and prediction intervals

are used to understand the extent of uncertainty involved in estimating our parameters. In

Parameter t ≤ 27 27 < t ≤ 83 t > 83

r .5127 .3185 .219

Table 2. Patient ETR’s RBV efficacies based on modified dosage.

Parameters s r Tmax d p ε

Values 6:17� 104 .00562 1:85� 107 .003 25.1 .6138

Table 3. Fixed parameter values from [5, 22].
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Patient PVR ETR Breakthrough

δ :1883� :0462 .7211 .3293

c 2:717� 2:724 11.67 2.089

γ :9987� :0015 .9999 .6575

β 1:875� 10-5 � 1:688� 10-5 8:684� 10-8 2:259� 10-6

ε .6138 .9829 .9875

Table 4. Values from parameter estimation for (7).

Figure 4. Viral load model fit (a) and residual plot (b) for PVR patient data.

Figure 5. Viral load model fit (a) and residual plot (b) for Breakthrough patient data.
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calculating these intervals, standard errors are computed from the model predictions using the

parameters that have been estimated. Moreover, 95% parameter and predictive confidence

intervals and prediction intervals for the PVR parameters (attached as half-widths in Table 4)

and predictions are calculated using the asymptotic theory outlined in [22, 27, 30, 41, 42]. The

predictive confidence intervals and prediction intervals are shown in Figure 7.

5.1. Discussion

The higher values in c and δ in the ETR patient lead us to believe that the immune

response along with the drugs has a stronger impact on the mutation and clearance of

the virus. It is known that the immune response is strongly correlated with the clearance

Figure 6. Viral load model fit (a) and residual plot (b) for ETR patient data.

Figure 7. Predictive confidence intervals (a) and prediction intervals (b).
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of the virus. Since the initial conditions of (7) are at the infected steady state, introduction

of the drugs could be a mechanism to jump start the immune response. We note that even

when the virus is not cleared, telaprevir still has a strong impact on viral load decay. This

behavior corresponds with how powerful DAAs can be in reducing viral load even when

it rebounds. The rebound could be because of mutations which are neglected in this

model as stated earlier. There is a dip at around the 150th day in the Breakthrough

response that is unquantifiable due to lack of information regarding the other three states

or a dynamic immune response. However, this type of dip is observed in [5, 27] where

data are available around this time. We conjecture that this dip is due to the immune

response being stimulated by the spike in viral load and infection. The residuals in the

PVR fit in Figure 4 seem to be i.i.d. because the errors seem to be randomly distributed

and are on both sides of the zero axis. This is unlike the Breakthrough fit in Figure 5

which have most of the residuals above the zero axis. The predictive confidence intervals

and prediction intervals look almost the same because the variance is very small, and the

model fits the data very well. The reader is referred to [30] for further details on differ-

ences between the predictive confidence intervals and prediction intervals.

6. Conclusion

The missing data between weeks 12–24, 24–36 and 36–48 for the ETR and Breakthrough

patients make parameter estimation challenging. The predictions would also be more

robust if information concerning states T, I, and VNI were available. These issues should

be considered when making remarks about the estimations and confidence measures.

DAAs were introduced in 2011, so there is not as much data available, but in the future,

we hope for a larger quantity of data to make more precise estimations.

This chapter describes a model for patients with HCV who are treated with IFN, RBV, and

telaprevir combination therapy. The development of this model was motivated by the

desire for a model that can be validated and calibrated using sensitivity and identifiability

techniques while simultaneously incorporating the new DAA, telaprevir. The model can

be used to accurately describe patients exhibiting PVR, ETR, and Breakthrough.
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