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Abstract

The importance of different arsenic forms in public health is well recognized owing to its
distinct physical characteristics and toxicity. Chronic arsenic exposure has left a trail of
disastrous health consequences around the world. However, the mechanisms behind the
toxicity and the consequential diseases occurring after acute or chronic exposure to arsenic
are not well understood. The toxicity of trivalent arsenic primarily occurs due to its
interaction with cysteine residues in proteins. Arsenic binding to protein may alter its
conformation and interaction with other functional proteins leading to tissue damage.
Therefore, there has been much emphasis on studies of arsenic-bound proteins, for the
purpose of understanding the origins of toxicity and to explore therapeutics. This book
chapter illustrates the molecular mechanisms of arsenic toxicity with a special emphasis
on arsenic binding to proteins and its consequences in alteration of tissue homeostasis.

Keywords: arsenic, gap junction intercellular communication (GJIC), gap junction
proteins, connexin 43, DJ-1, sulfhydryl groups

1. Introduction

Long-term exposure to arsenic has resulted in the largest mass poisoning of the human

population, making more than 100 million people defenseless against cancer and other

arsenic-related diseases [1, 2]. Epidemiological studies have revealed that arsenic exposure
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spans a wide geographical area spread across continents, with contaminations originating

from soil, water, air and even food. Arsenic pollution gets aggravated through natural pro-

cesses like volcanic eruptions, weathering, and biological activity. Anthropogenic activities,

such as ore smelting, mining, well drilling and combustion of fossil fuels, also accelerate

infusion of arsenic into places of human habitation [3]. Owing to its toxic nature, arsenic is a

threat not only to humans but also to other living species. Figure 1 illustrates natural and

anthropogenic sources of arsenic.

Many mechanisms of arsenic-induced carcinogenicity have been proposed like DNA repair

inhibition, oxidative stress, epigenetic events, effect on signal transduction and genotoxic

damage. Studies have been focused to understand the molecular mechanisms of arsenic-

induced carcinogenesis with an emphasis on oxidative stress and related signal transduction

pathways. One of the hallmarks of oxidative stress is generation of reactive oxygen species

(ROS) which triggers the antioxidant pathways as a cellular defense response. Two of the

major players of cellular defence response on arsenic exposure are nuclear factor (erythroid-

derived 2)-like 2 (Nrf2) and Parkinson’s disease protein 7 (DJ-1), and their interplay results in

activation and upregulation of several genes like glutathione-S-transferase A2 (GSTA2), NAD

(P)H dehydrogenase quinone 1 (NQO1) and thioredoxin (Trx). There has been increasing

evidence correlating arsenic exposure to reactive oxygen species (ROS) generation, DNA

Figure 1. Mobilization of arsenic into environment.
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damage and tumor promotion. Inorganic arsenic has been recognized as a potent human

carcinogen. A number of epidemiological studies have found that human populations exposed

to arsenic are prone to different types of cancers including that of the bladder, lung, skin, liver

and kidney [4, 5]. Human body responds to arsenic ingestion through a set of concerted

metabolic actions starting with methylation of the inorganic arsenic to monomethylarsonic

(MMAV) acid, which is then methylated again to dimethylarsinic acid (DMAV) to permit its

excretion through urine. However, this response may result in persistent methyl exhaustion in

the event of chronic arsenic exposure leading to hypomethylation of DNA, which can alter the

gene expression making the cells susceptible to carcinogenesis [6]. Interestingly, arsenic alone

is considered to be a very weak mutagen; however, its synergistic association with genotoxic

agents like ultraviolet radiation is reported to make it a potent mutagen [7]. Notwithstanding,

the diverse mechanisms of arsenic toxicity need far greater elucidation, though the health

hazards are well understood.

From the mechanistic standpoint, arsenic binding to cellular proteins can be a plausible mech-

anism of toxicity based on two hypotheses premised on functional disruption arising out of (a)

sulfhydryl groups in proteins forming covalent bond with arsenite [8] and (b) the phosphate

groups in proteins replaced by an arsenate. Arsenic binding to a specific protein could change

the conformation and interaction with other functional proteins [9]. Therefore, many studies

have been undertaken to examine the direct binding of arsenic to proteins, for the understand-

ing mechanisms of arsenic toxicity and designing therapeutics against it.

All proteins with functionally important and conserved cysteine (Cys) residues, whose sulfhy-

dryl groups are reactive nucleophiles or form disulfide bonds, are potential targets of func-

tional disruption during chronic arsenic exposure. One such protein with conserved cysteines

is the gap junction protein, connexin 43 (Cx43), belonging to the connexin family, and is the

most commonly expressed member in different cell types. Our recent study showed that direct

arsenic binding to this protein causes alteration in trafficking and the absence of gap junctional

plaques on cell surface, resulting in propensity for cell proliferation. Given the hazardous

nature of arsenic, the qualitative and quantitative analysis of arsenic is a much needed require-

ment. The conventional methods like neutron activation analysis and X-ray analysis, atomic

absorption spectrometry (HG-AAS) and stripping voltammetry are very costly as well as

complex. So, the quest for easy and cost-effective method continues till date. One such method

gaining reputation in the field relies on optical sensors which have been discussed in this

chapter. This chapter summarizes numerous traits of arsenic toxicity and emphasizes the

interaction of arsenic with proteins to evaluate the chemical, biological, and physiological

consequences.

2. Biogeochemical cycle: transformation and mobilization of arsenic

in nature

Arsenic is commonly mobilized into the environment due to both natural and anthropogenic

processes. The natural processes include geological (weathering of rocks and volcanic erup-

tions) and biological (microbial activity) events (Figure 1). Ancient or recent volcanic activities
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results in the inclusion of arsenic in the environment [10]. The earth’s atmosphere also has a

significant presence of arsenic species owing to wind erosion processes, sea spray, hot springs,

volcanic emissions, forest fires and volatilization (in cold climates). Human activities like

pharmaceutical manufacturing, glassmaking industry, wood processing, chemical weapons,

burning of arsenic-rich fossil fuels and electronics industry also contribute to the addition of

arsenic compounds into the environment [11]. Industrial by-products and wastes, ore

smelting, mineral mining and well drilling can also mobilize and intensify arsenic into the

environment.

Microbial metabolisms like arsenate reduction, arsenite oxidation and methylation processes are

also a determining factor of the occurrence of the various arsenic oxidation states in the environ-

ment. Reduction of arsenate to arsenite by arsenate reductase enzymes is a common feature in

the microbial world, while incidences of oxidation of arsenite to arsenate have also been reported

in contaminated environments. These reactions also contribute to the protective and/or energy

metabolisms of the bacteria from various arsenic-induced stress conditions (Figure 2) [12, 13].

3. Cellular mechanisms of arsenic toxicity

The levels of ROS play a key role in normal cell signaling, and its alteration can result in

aberrant expression of genes that are activated by redox mechanisms. Notably, genes associ-

ated with redox mechanisms include those regulating cellular proliferation, differentiation and

apoptosis. The consequences of ROS production can further lead to DNA damage which typi-

cally involves the conversion of 2-deoxyguanine to 8-hydroxyl-20-deoxyguanosine (8-OHdG),

Figure 2. Biogeochemical cycle of arsenic.
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which is considered as a marker indicating oxidative stress of DNA. Arsenic was capable of

inducing specific DNA lesions consistent with oxidative damage like 8-OHdG generation.

Moreover, 8-OHdG has also been detected in the skin of patients with arsenic-related Bowen’s

disease and in the liver of rats exposed to dimethylarsinic acid (DMAV). These results indicate

that ROS generation is a major pathway for arsenic-mediated genotoxicity in mammalian cells

[14, 15].

Glutathione and other aminothiols such as cysteine and cysteamine comprise the non-protein

sulfhydryls (NPSHs) in a cell and have significant free radical scavenging abilities. Therefore,

depletion of intracellular glutathione levels is known to have an effect on arsenic mutagenesis.

Studies have shown that pretreatment of cells with an inhibitor of glutathione biosynthesis

(buthionine sulfoximine) reduces NPSH levels in the cell, resulting in enhancement of both the

cytotoxicity and mutagenicity of arsenic. In contrast, glutathione and cysteine pretreatments

are capable of protecting mammalian cells against the toxic effects of arsenite [16].

In a similar way, various antioxidants also have a significant effect on arsenic-induced genotoxicity.

The balance between the rate of generation of free radicals and the rate of their removal by various

antioxidant enzymes dictates the deleterious effect of oxidative stress. Enzymes like superoxide

dismutase (SOD) and catalase are capable of partially suppressing both the toxicity and the

mutagenic potential of sodium arsenite. These enzymes catalyze the dismutation of superoxide

anions and prevent the formation of hydroxyl radicals by removal of hydrogen peroxide, respec-

tively. Therefore, catalase and SOD are capable of reducing the mutagenic potential of arsenic. This

is also consistent with other reports which reveal the ability of sodium arsenite to induce heme

oxygenase, an oxidative stress protein, and peroxidase in various human cell lines. Moreover, the

arsenite-induced occurrence of sister chromatid exchanges is reduced by SOD in cultured human

lymphocytes [16].

In mammalian liver, the methylation of arsenic to MMA and DMA occurs at a high level by an

incompletely characterized methyltransferase (Figure 3) using S-adenosylmethionine (SAM)

as a methyl donor. SAM is a global methyl donor, required for DNA methylations, and its

depletion can lead to hypomethylation of DNA resulting in alteration of gene expression like

c-Myc, c-Met, cyclin D1 and induction of carcinogenesis [17, 18].

DNA methylation is an epigenetic modification that plays an important role in controlling the

expression of various genes. Methylation generally occurs at cytosine residues located in

symmetrical CpG nucleotide sequences, and its alteration, both in the global and regional

levels, has been associated with oncogenesis. Methylation of CpG islands in the promoter

region suppresses gene expression, as 5-methylcytosine interferes with the binding of tran-

scription factors or other DNA-binding proteins causing reduced transcription. On the other

hand, promoter hypomethylation causes overexpression of associated genes. Therefore, aber-

rant DNA methylation could be an underlying epigenetic mechanism causing altered gene

expression that contributes towards the formation of cancers. This has been studied well in

hepatocytes where chronic arsenic exposure induces hepatic DNA hypomethylation, which

can potentially lead to aberrant gene expression and oncogenic growth in the liver, therefore

suggesting a plausible mechanism of hepatocarcinogenesis (major cellular effects of arsenic are

summarized in Figure 4) [18].
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Estrogens are considered to be liver carcinogens in rodents and are suspected to cause carci-

nogenesis in humans [19]. Evidence suggests that they cause hepatocellular proliferation and

aberrant mitogenesis through ER-mediated mechanisms in addition to the likelihood that they

confer epigenetic modifications. Hypomethylation of estrogen receptor-α (ER-α) promoter

region caused by arsenic exposure and ER-α overexpression have been found to trigger

associated formation of proliferative lesions and hepatocellular carcinogenesis. Therefore,

chronic arsenic exposure causes overexpression of ER-α creating hypersensitivity of hepatic

cells to endogenous steroids. As evidenced by microarray analysis, various cell cycle-

regulating genes like cyclin D1, cyclin D2 and cyclin D3 were overexpressed on exposure to

arsenic. Liver cells that acquired malignant properties upon arsenic treatment also showed

cyclin D1 overexpression. In addition, this overexpression had a direct effect on the observed

malignant transformation, as selective cyclin D1 overexpression in the liver was sufficient

enough to initiate hepatocellular carcinogenesis. Cyclin D1 can, therefore, be considered as a

hepatic oncogene. Cyclin D1 is also known to be upregulated transcriptionally by various

growth factors which potentially include estrogens. In estrogen-responsive tissues like the liver

and uterus, proliferative lesions and co-overexpression of ER-α and cyclin D1 after chronic

arsenic exposure are reported. Cyclin D1 activation by arsenic may be a secondary effect to ER-

α overexpression as cyclin D1 is potentially an ER-α-linked gene. Therefore, we can expect that

aberrant expression of cyclin D1 along with that of other oncogenes leads to carcinogenic

Figure 3. A homology model for arsenite methyltransferase from humans (AS3MT_HUMAN) showing arsenic bound to

Cys residues. PDB ID: 5EVJ with 42% sequence identity spanning residues 38–327 was used to build the model. The

coordinates were downloaded from https://swissmodel.expasy.org/repository/uniprot//Q9HBK9 and refined to introduce

the arsenic atom.
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transformation. Altogether, cyclin D1 overexpression was seen upon arsenic exposure in mul-

tiple in vitro and in vivo model systems of arsenic carcinogenesis, which includes skin and

bladder cancers in rodents. Thus, under conditions of arsenic-induced carcinogenesis,

overexpression of cyclin D1 is observed consistently [18–20].

In mouse lung tissue, reduced expression of proteins associated with cellular migration was

observed when exposed to low dose of arsenic. On lung tissue of mice fed low-dose arsenic,

changes in extracellular matrix (ECM) protein expression and a large increase in matrix

metalloproteinase (MMP)-9 expression were revealed [21]. MMPs are responsible for ECM deg-

radation among other proteolyses. MMP-9 is the most prominently studied MMP in the lung and

has been associated with a variety of lung diseases [22]. An increase in the ratio of MMP-9 to

tissue inhibitor of matrix metalloproteinase (TIMP)-1 was observed under low-level arsenic expo-

sure [23]. This imbalance between MMP-9 and TIMP-1 can cause changes in epithelial wound

response, thereby contributing to the progression of airway remodeling. Altered wound response

is partly due to increased secretion and activity, upon increasing concentration of arsenic. There-

fore, arsenic ingestion may alter wound response and, specifically, MMP-9/TIMP-1 ratios in the

lung. To conclude, arsenic is capable of causing or exacerbating lung diseases by directly affecting

signaling pathways involved in cell migration and remodeling of the airway [24].

Studies have revealed that both c-Jun NH2-terminal kinases (JNKs) and extracellular signal-

regulated protein kinases (Erks) are activated by arsenite, with their activation varying tempo-

rally and depending on the dosage. Various results also indicate that Erk activation but not JNK

activation is required for arsenite-induced cell transformation. Expression of the dominant-

negative mutant JNK1 blocked induction of apoptosis by arsenite or arsenate compared with

Figure 4. Cellular effects of arsenic toxicity.
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vector-transfected JB6 cells, indicating the role of activation of JNKs in arsenic-induced apoptosis.

Studies have found that both arsenite and arsenate can cause transactivation of activation

protein-1 (AP-1). Since increased activation of AP-1 by arsenite could be inhibited by either

treating cells with MAP kinase Erk kinase (MEK)1 inhibitor or overexpression of dominant-

negative protein kinase C α (PKCα), this induction appears to occur through activation of

mitogen-activated protein (MAP) kinases and PKC. Moreover, in AP-1-luciferase reporter trans-

genic mice, transactivation of AP-1 was caused by both arsenite and arsenate. Recent data also

indicates that PKC, upstream from the MAP kinases, may be involved in mediating arsenite-

induced signal transduction. Activation of PKC requires it to be translocated from the cytosol to

the membrane, and this phenomenon is observed within 15 minutes when cells are treated with

arsenite. Moreover arsenite-induced AP-1 activity, phosphorylation of Erks, JNKs and p38 kinase

were blocked once PKC activation was inhibited. These results suggest that PKC plays a critical

role in arsenite-induced activation of MAP kinases [25, 26].

Nuclear factor kappa B (NF-κB) is a rapidly induced stress-responsive transcription factor that

may play an important role in arsenic-induced signal transduction, cell transformation and

apoptosis [27]. Reports suggest that in arsenic-induced oxidative stress, H2O2 and superoxide

are the predominant reactive species in endothelia cells and may be the mediators for the

activation of the NF-κB pathway. It was also shown that arsenic could induce activation of

NF-κB in different cell culture models. Expression of a dominant-negative inhibitory kappa-Β-

α blocked arsenic-induced activation of NF-κB and apoptosis [26].

4. Arsenic binding to proteins

The trivalent arsenite has a tendency to bind to sulfhydryl groups. The cysteine residues are a

direct target of arsenite in proteins and peptides [28]. The chemical reaction involved in arsenic

binding to cysteines has been well recognized. Some of the chemicals like arsine halides used

in warfare during the First World War owe their toxicity to their ability of binding to protein

dithiols. To defy the toxic effects of such warfare agents, the British government approved the

use of β-chlorovinyldichloroarsine (dithioglycerol) which has the ability to form stable com-

plexes with arsenic. The competitive binding of arsenic to dithioglycerol rescues cellular pro-

teins from binding to arsenic [29, 30].

Arsenic affinity for proteins can result in conformational changes in the protein and loss of

protein–protein and protein-DNA interactions. Escherichia coli consists of a repressor protein

ArsR in which each subunit within its α-helix contains two cysteine residues. The unraveling

of this α-helix is required in order to accommodate trivalent arsenite for binding to the protein.

The unraveling of the helix causes the conformational change in the protein that dissociates

ArsR from DNA resulting in induction of gene expression. Arsenite binds to three cysteine

(Cys32, Cys34 and Cys37) residues in ArsR, where Cys32 and Cys37 are present in the α-helix

of the DNA-binding sites (Figure 5). The Cys residues in the protein are located in such a way

that arsenite is unable to bind unless the protein unwinds for a conformational change [31].
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4.1. Binding sites of arsenic in proteins

Cysteine and histidine residues are thought to be the most frequent targets of metals like

zinc, copper and iron resulting in such metals binding to peptides and proteins [32, 33].

However, the binding of arsenic to histidine is not well understood and is yet to be

established. There is no change in nuclear magnetic resonance (NMR) spectra once arsenic

was added to a buffered solution of histidine signifying the absence of interaction between

histidine and arsenic [34]. Many studies have also used site-directed mutagenesis to replace

cysteine residues with serine residues on the reason that interaction between arsenic and

serine is very weak. Arsenic is however known to bind to zinc finger protein in C3H1 motif

and not in C2H2 motif, releases zinc, and thus decreases the capacity of the protein to bind to

DNA. Selenocysteine—a cysteine analogue—also has the ability to bind to arsenic species.

This amino acid is present in selenoproteins and has a lower pKa which increases nucleophi-

licity. The amino acid residues in the vicinity of cysteine (or selenocysteine) act as proton

donors [35–37].

Studies with some enzymes reveal that serine residues can be potential targets of arsenic

species, thereby inhibiting their function. It was found that in serine hydrolases and the arsenic

moieties interacting with hydroxyl containing serine, pentavalent forms of arsenic rather than

trivalent forms were prevalent. The complex between the serine residue and the pentavalent

arsenic consists of a tripartite oxyanion hole in the proximity of the active site [38].

Figure 5. A homology model for arsenical resistance operon repressor protein from E. coli (ARSR_ECOLI) showing

arsenic bound to Cys residues. PDB ID: 1SMT with 40% sequence identity spanning residues 8–90 was used to build the

model. The coordinates were downloaded from https://swissmodel.expasy.org/repository/uniprot//P37309 and refined to

introduce the arsenic atom.
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4.2. Arsenic binding to specific proteins

4.2.1. Arsenic binding to hemoglobin

Arsenic species are cleared from the blood immediately in humans, but the time of clearance of

arsenic from animal species varies noticeably. The retention of arsenic in rat blood is longer

when compared with other species. Arsenic has been found to bind to transferrin in hemodi-

alysis patients [39]. Hemoglobin in red blood cells (RBCs) were predicted to be the sites of

arsenic accumulation, because hemoglobin constitutes 97% of dry weight of RBCs [40]. The

affinity of hemoglobin in rat liver is much higher in rats as compared with humans. The rat

and human hemoglobins are tetramers, each consisting of two α-chains and two β-chains. The

difference lies in the number of the cysteine residues with rat hemoglobin consisting of three

cysteines (Cys111, Cys104 and Cys13) in α-chain, while two cysteines (Cys125 and Cys93) in β-

chain. On the other hand, human hemoglobin has only one cysteine in α-chain and two

cysteines in β-chain [3].

4.2.2. Arsenic binding to glutathione

The metabolism of arsenic in the cells involves the reduction of pentavalent arsenic to trivalent

arsenic. This reaction consists of a redox cycle involving a bio-thiol (glutathione) with the produc-

tion of a tris-glutathionyl-arsenite species. The multiple methylations of arsenite by S-adenosyl-

methionine to the generation of trimethylarsine (hemolytic toxin) also involve glutathione.

Glutathione presence in the intermediate conjugate forms of methylated arsenic species helps

these molecules to be removed from the cells by the multidrug-resistant proteins (having ATP-

binding cassette). Dimethylarsinic acid (carcinogenic end-metabolite) also reacts with glutathione

having a high cytolethal effect on cells. Moreover, various enzymes and regulatory elements can

contribute to the arsenic biotransformation by contributing individual or multiple cysteine thiol

groups in vicinity in proteins, for example, thiol groups required for catalytic activity [41].

4.2.3. Arsenic binding to metallothioneins

Metallothioneins are expressed by various organisms including bacteria, fungi, plants and

vertebrates. They belong to a protein family of ubiquitous nature characterized by low molec-

ular weight, high metal and cysteine content. They are capable of binding essential metal ions

(zinc, copper) and toxic heavy metals (arsenic, cadmium).

Studies have revealed that bioaccumulation of arsenic in seaweed species Fucus vesiculosus is

achieved through the binding of arsenite to the cysteine-rich metallothioneins. Moreover,

arsenic is also known to bind to mammalian metallothioneins in rabbit and human species. It

is present abundantly in the kidneys and liver of mammals. Further studies on human

metallothioneins were consistent with the hypothesis that arsenite has a binding preference

for three vicinal thiol groups, with α and β domain of human metallothionein containing 11

and 9 cysteines, respectively. All the 9 cysteines were involved in binding to three arsenite

molecules in β domain, while in the case of α domain, only 9 out of 11 cysteine residues were

involved in binding to three arsenites. This leaves two cysteine residues protonated with no

fourth arsenite engaged in binding [42, 43].
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4.2.4. Arsenic binding to ArsD As(III) metallochaperone

Arsenic being the most common toxic element in the environment has resulted in the evolution

of arsenic detoxifying mechanisms in nearly all organisms. In archaea and bacteria, trivalent

metalloids like arsenite are pumped out of the cell by ArsAB ATPases encoded by various ars

operons. Three conserved cysteine residues (Cys12, Cys13 and Cys18) are required for the

chaperone activity of ArsD. ArsD also helps to increase the arsenite affinity of Ars A enabling

the detoxification of arsenite, even at low concentrations. In the case of ArsA, there are two

cysteines (Cys113 and Cys422) in the high affinity metalloid-binding site along with the third

cysteine that participates in activation of ATP hydrolysis. In the absence of arsenite, a low

basal rate of ATPase activity is shown by ArsA [44].

4.2.5. Arsenic binding to other proteins

Trivalent arsenic species are also known to bind to other proteins like actin, tubulin, estrogen

receptor and glucocorticoid receptors. Arsenite can bind to Kelch-like ECH-associated protein

1 (KEAP 1). This is a major antioxidant-sensing protein which acts at low Kd values. One of the

most common motifs present in many proteins consists of two cysteine residues separated by

two amino acids (CXXC). The presence of cysteine residues increases with increasing complex-

ity of the organisms, making humans vulnerable to arsenic toxicity because of the high affinity

of arsenic for cysteine residues.

One such important cell surface protein consisting of highly conserved cysteine residues is

connexin 43 (Cx43)—a widely expressed gap junctional protein important for cell death,

proliferation and differentiation [45]. Cx43 has nine Cys residues, six of which are in the

extracellular domain and three in the intracellular domain. Six connexin monomers form a

hemichannel called connexin. In the plasma membrane, one connexin can dock to another

connexin in the plasma membrane of an adjacent cell resulting in the formation of complete

gap junction channel. A hemichannel formed by single type of connexin isoforms is called

homomeric hemichannel or consists of multiple types of isoforms called heteromeric

hemichannel. Two identical homomeric or heteromeric hemichannels dock to form a

homotypic channel, and two different homomeric or heteromeric hemichannels dock to form

a heterotypic channel (Figure 6). Recent in silico studies (Hussain et al., manuscript communi-

cated) in combination with cellular and biochemical analysis revealed insights into the binding

modes of arsenite to conserved Cys groups in Cx43. In Cx43, As+3 can be bound to three

cysteines in the intracellular domain in a monovalent fashion as they are free cys, while it can

bind the extracellular domain cysteines in either monovalent, divalent or trivalent fashion

depending on the state and location of the protein in the cell. Arsenite ion (As+3) can attack

the free sulfhydryl group until all the valencies of the As+3 are satisfied by covalent bonding to

the sulfur from the cys residues. This profoundly affects the Cx43 primary, secondary, tertiary

and the quaternary structure. This study is the first of its kind which shows that arsenic can

directly bind to Cx43 via its highly conserved cysteine residues causing misfolding of Cx43,

which leads to alteration of transportation, localization and oligomerization of Cx43. Further

experiments revealed that Cx43 was colocalizing with ER marker (calnexin), revealing the

inability of Cx43 to be transported beyond endoplasmic reticulum/endoplasmic reticulum
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Golgi intermediate compartment (ER/ERGIC) (Hussain et al., manuscript communicated). This

loss of Cx43 composed of functional gap junctions on the cell surface has deleterious effect on

cellular homeostasis (Figure 7).

Arsenic is considered a group 1 carcinogen by the International Agency for Research on

Cancer (IARC) and causes cancers of the lung, liver and skin [46]. Gap junction intercellular

communication has been found disrupted in many tumors and malignancies. Gap junctions

are considered tumor suppressors, and the persistent downregulation of gap junction proteins

makes cells susceptible to cancer [47]. Decreased or diminished expression and/or function of

Cxs has been observed in most tumor cell lines and in solid tissue tumors, including melano-

mas. Our study revealed that arsenic causes disruption of gap junction intercellular communi-

cation both in vivo and in vitro. Arsenic is considered a weak mutagen; therefore, recent trends

in the field have focused on deciphering the role of non-mutagenic pathways like cell–cell

communication in arsenic-induced cancer. Our study revealed that arsenic induces disruption

of gap junctions which are considered as tumor suppressors, thereby putting forward new non-

mutagenic pathways which may be altered during the course of arsenic-induced carcinogenesis.

Figure 6. Hierarchy of structures involved in the formation of gap junction intercellular communication (GJIC).
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Another such important cellular factor involved in cellular stress is DJ-1. DJ-1 is a 20KDa,

homodimeric protein containing a nucleophilic elbow forming the active site of the protein.

There are three important and conserved cysteine residues (Cys46, Cys53 and Cys106) in the

DJ-1 protein, of which Cys53 and Cys106 are exposed. Cys106 has been found to be a promi-

nent player in the nucleophilic groove that binds to divalent ions like zinc (II), copper (II) [48]

and mercury [49] in vitro. Interaction with metal ions might be a possible mechanism of DJ-1-

mediated cellular protection against metal-induced toxicity. Arsenic in the form of arsenite (As

(III)) has been found to interact with three thiol group of cysteine residues [3]. Therefore, there

is a possibility that arsenic binds to the nucleophilic groove in the homodimer of DJ-1. Oxida-

tion state of the Cys106 is one of the determining factors behind the activity of the protein.

Cysteine has the propensity to bind to three oxygen atoms resulting in the formation of the

three forms—SOH, SO2H and SO3H. The presence of the SOH and SO2H form activates the

protein causing its translocation into the nucleus. Upon activation, DJ-1 regulates the activity

of several transcription factors like nuclear factor erythroid 2-related factor 2 (Nrf2),

polypyrimidine tract-binding protein-associated splicing factor (PSF) and sterol regulatory

element-binding protein (SREBP), signal transducer and activator of transcription 1 (STAT1)

and Ras-responsive element-binding protein (RREB1). DJ-1 has been found to inhibit phospha-

tase and tensin homolog (PTEN), an inhibitor of the AKT (protein kinase B) signaling pathway,

resulting in enhanced cell proliferation. DJ-1 also functions in the sequestration of the death

domain-associated protein (DAXX) in the nucleus. DAXX is required in the cytoplasm for

Figure 7. Arsenic binding causes alteration in trafficking of connexin 43 to the cell membrane.
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providing the second activation signal to the phosphorylated apoptosis signal-regulating

kinase 1 (ASK1) protein, which then triggers the apoptotic pathway. As a result, unavailability

of DAXX in the cytoplasm hinders the initiation of the apoptotic pathway. Under condition of

excess oxidative stress, the SO3H form prevails which inactivates the protein and re-

translocates back to the cytoplasm. As a result, the entire antioxidant response regulated by

the activated DJ-1 protein is inhibited. Moreover, DAXX protein also becomes free, which then

translocates into the cytoplasm and provides the required second activation signal to the

phosphorylated ASK1 protein.

4.3. Therapeutic applications of arsenic binding to proteins

Arsenous acid [As(OH)3] formed by dissolving of arsenic trioxide (As2O3) was found to be an

effective and safe treatment for acute promyelocytic leukemia (APL) in the 1970s. The United

States Food and Drug Administration approved the use of As2O3 as a treatment for APL in

September 2000 [50]. As2O3 treatment was shown to have a dual effect on APL cells, with low

arsenic concentration (0.25–0.50 mM) favoring APL cell differentiation and high concentra-

tions (1–2 mM) inducing apoptosis (programmed cell death). Direct arsenic binding to cysteine

residues present in zinc fingers of promyelocytic leukemia fusion protein (PML-RARa) was

found to be a mechanism underlying APL remission [51]. Arsenic binding induces a confor-

mational change in the structure of the protein (PML-RARa), facilitating its oligomerization.

This oligomerization enhances ubiquitylation and SUMOylation, resulting in its degradation

[52]. Given the constant requirement for DNA and protein synthesis, thioredoxin (Trx) and

thioredoxin reductase (TrxR) are observed to be overexpressed in various tumors. Moreover,

in vivo data suggests that TrxR is necessary for the growth of tumor cells, making them

plausible targets for anticancer therapies [53].

Arsenic has been proposed to induce cell death through thioredoxin reductase (TrxR) inhibi-

tion, with both N-terminal dithiols and C-terminal selenothiol interacting with arsenic com-

pound [54]. Sensitivity of cells to arsenic can be attributed to high expression of membrane

transporter aquaglyceroporin which allows arsenite uptake, along with a low, basal level of

cellular glutathione. Multiple factors such as liver damage, cardiac toxicity and peripheral

neuropathies caused by toxicity at higher dosage of As2O3, along with bioavailability of

arsenic compounds, limit the widespread use of As2O3 against solid tumors [50].

5. Arsenic sensing

Considering the hazardous facts of arsenic, it is very important to detect arsenic both

qualitatively and quantitatively. Many conventional methods like hydride generation atomic

absorption spectrometry (HG-AAS), neutron activation analysis and X-ray analysis and

stripping voltammetry are available to determine arsenic. Though these methods are avail-

able, they are not very cost-effective and are very complex [55–59]. To determine arsenic,

easy and cost-effective methods are yet to be explored. In recent times various heavy metals

and toxic anions are detected selectively and sensitively by using optical detection tech-

niques (fluorescence and UV–Vis), which implement a viable and simple approach towards
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the detection process. Except optical (fluorescence and UV–Vis) detection methods, other

available methods need complex experimental setup; hence, they are far from ‘on-field’

application purpose. Simplicity, low-cost and ‘on-field’ application possibilities make optical

sensing technique versatile.

Optical sensors can be of different types depending upon the material used for sensing. The

first one is nanomaterial-based assays for the detection of the arsenic in different mediums.

Though the detection of arsenic is tough, but researchers are able to draw an outline about the

ligands which can bind arsenic, and these ligands can be used as a binding unit in a sensing

material which leads to either color change or change in emission spectrum. As arsenic is very

much labile towards thiol group, a bunch of thiolated ligands are reported for arsenic binding.

These ligands are dithiothreitol (DTT), reduced glutathione (GSH) and cysteine, and Figure 8

describes the chemical structure of these three ligands. Arsenic can bind with GSH and

cysteine by forming As-O bond also, if no free –SH available. Except thiolated ligands, there

are some ligands like humic acid [60] and N-(dithiocarboxy)-N-methyl-D-glucamine [61]

which can also bind As(III) by forming As-O bond. Keeping this information in mind, gold

nanoparticle-based sensors were reported for As(III) detection. The surface of the gold

nanoparticles can be modified by the thiolated ligands, which after binding with As(III)

showed a drastic color change to indicate the presence of the toxicant in the aqueous medium

[62]. Aptamer-conjugated nanoparticles are also very effective composites which can detect

arsenic in aqueous medium [63, 64] by changing the color. In all these types of detection

assays, aggregation of the nanoparticles is the predominant factor to show the color change.

Though these kinds of materials are responsive towards arsenic, but sensitivity is one of the

issues which prevent these from field effectiveness.

Both selectivity and sensitivity are important for effective detection of arsenic. Small molecules

are developed to detect different forms of arsenic in aqueous medium having good selectivity

over other toxicants as well as good sensitivity. Baglan M et al. have reported a cysteine-fused

tetraphenylethene, which can bind with As3+, and showed aggregation-induced emission as a

signal [65]. Here, also the thiol group of cysteine acts as the dominating factor for As3+ binding

and leading to the close proximity arrangement of the tetraphenylethene. More toxic As3+ can

be distinguished over less toxic As5+ using this system, and the detection limit tends to 0.5 ppb,

which is lower than the limit according to the World Health Organization (WHO) [66]. Keep-

ing besides the thiol systems, Somentah et al. have designed a simple Schiff base system which

can identify the most toxic AsO3
3� fluorometrically. ‘Off–on’ system in fluorescence is always

most exciting and effective for the detection of pollutants. In this work they have designed a

molecule which is initially not showing any fluorescence emission, but after selective addition

of AsO3
3� fluorescence, signal is turned on due to intermolecular H-bonding leading to

chelation-enhanced fluorescence (CHEF) [67]. Development of arsenic sensor is evolving year

Figure 8. Chemical structures of thiolated ligands (DTT, GSH and cysteine).

Mechanisms of Arsenic-Induced Toxicity with Special Emphasis on Arsenic-Binding Proteins
http://dx.doi.org/10.5772/intechopen.74758

71



after year due to the need of arsenic detection. A modified coumarin derivative was

documented as an As3+ sensor having a detection limit of 0.53 nM. Though the system has

excellent sensitivity, but the main drawback is its incapability of detecting As3+ in aqueous

media. So, the sensing system which can work effectively in aqueous media for the detection of

arsenic having fluorescence property is in tremendous search till date. In search of a suitable

aqueous medium arsenic sensor, an inorganic co-crystal has been reported having a unique

luminescent response to detect As(III), having a detection limit of 49 pM. But these types of

systems are not that much useful for real-life application [68]. Table 1 is prepared where

available optical sensors are summarized.

A few small molecule sensors have been explored over the years, but the ‘on-field’ application

is quite tough for small molecule sensors due to their low molecular weight and water solubil-

ity. To overcome such issues, polymeric sensing assays are developed as they have high

molecular weight, tunable solubility by introducing hydrophilic functionality, high signal

amplification and high sensitivity due to the number of more repeating units. In the field of

materials science research, polymer-based substances have high priority. For sensing of arsenic,

polymer-based sensing assay is very rare, with a few number of reports existing. A

pyridylmethyl-appended 2-aminothiophenol with 2,6-diformyl-4-methylphenol was devel-

oped, which can detect arsenate (As(v)) selectively in aqueous medium. But the interesting fact

Types of

sensors

Compounds or materials Mode of sensing with optical changes

1.Nanoparticle-

based

1. ,

2.

3.
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is that after attachment of the small molecule with polystyrene resin, the new material consists

both sensing and removal property of As(V) which is very beneficial for the treatment of As(V)

in drinking water practically [69]. All mentioned sensory assays are responding due to

Types of

sensors

Compounds or materials Mode of sensing with optical changes

2. Small

molecule-based

1.

2.

3.Polymer-

based

1.

2.

Table 1. Some available optical arsenic sensors and their mode of detections.
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interaction of host and guest. But one of the best indirect As(III) sensors is reported in recent

time. Sourav et al. reported one norbornene-derived rhodamine B, which is capable of

detecting As(III) in aqueous medium up to 200 nM concentration [70]. Here, the main domi-

nating factor is the oxidation of As(III) to As(V) in the presence of potassium iodate and

concentrated HCl. During this oxidation procedure, iodine is liberated which coordinates with

sensing molecule Nor-Rh, which leads to the colorimetric as well as fluorescence change. The

effectiveness of this work is that the polymeric material of Nor-Rh can be used to make paper

strip which will help to detect As(III) in real environmental samples. A cartoon representation

is given in Figure 9 to demonstrate the color change of polymer-coated paper strip with and

without As(III).

In summary, though few reports are available for efficient detection of arsenic in aqueous

mediumwith high sensitivity, research community continuously tries to develop sensory assay

for ‘on-field’ application, with a tremendous impact in detection of arsenic in environmental

samples with ease and real-life application.

6. Conclusion

Arsenic, having a high reactivity with cellular contents, can have diverse and deleterious effects

on the cells. One of the important players of arsenic-induced toxicity is the generation of ROS,

which can lead to DNA damage and lipid peroxidation. Another important effect is the arsenic

exposure that causes the depletion of methyl groups in cellular milieu. Hypomethylation of

promoter regions can lead to overexpression of genes which play a key role in cell proliferation,

differentiation and apoptosis. Asmentioned earlier, DNA hypomethylation upregulates receptors

like ER-α making the cells more sensitive towards endogenous steroids. Arsenic is reported to

activate PKC which activates MAPK pathway leading to the activation of various transcription

factors like AP-1. AP-1 is considered as a crucial player in regulation of cell proliferation, differ-

entiation and apoptosis. Arsenic effects extracellular matrix through upregulation of MMPs

resulting in degradation of extracellular matrix having consequences in cellular migration, angio-

genesis, proliferation and apoptosis. The biological effects of arsenic are so diverse that multiple

Figure 9. Cartoon representation to demonstrate change in color of PNor-Rh-coated paper strip in the absence and

presence of As(III).
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mechanisms have been proposed for the toxicity of the arsenic. The mechanisms involved in the

arsenic-induced carcinogenesis are also diverse and complicated. DJ-1 is a multifunctional protein

that is activated upon cellular stress response. Most of the studies on DJ-1 protein are related to

oxidative stress, although implication of its activity in ER stress response has been shown. The

interaction of arsenic with sulfhydryl groups in proteins is considered one of the principal

mechanisms which triggers the cellular responses. The binding of trivalent arsenicals to thiols in

intracellular and cell surface proteins often results in aberrations of normal cellular processes

including alteration of cell–cell communication. Cell–cell communication mediated by connexins,

especially Cx43, the most commonly expressed connexin in different cell types, is also disrupted

by arsenic binding to its highly conserved cysteine residues. In general, the effect of direct binding

of arsenic species to enzyme activity cannot be ruled out in toxicity-related investigations, where

other factors like the reactive oxygen species are often implicated. Newmethodologies are needed

to analyze the health effects of arsenic and how people cope with the socioeconomic conse-

quences of the disease. Arsenic toxicity being a global phenomenon constitutes a major public

health issue, and therefore an intense research is warranted.
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