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resumo 
 
 

O aumento das atividades humanas tem sido responsável por mudanças 
profundas e por uma degradação contínua do compartimento solo, em todo o 
território Europeu. Em resposta a este problema, algumas políticas Europeias 
estão agora a emergir orientadas especificamente para a proteção do solo e 
para a gestão das áreas contaminadas, a fim de recuperar os solos 
degradados para outros usos. Para regulamentar a avaliação de risco e a 
gestão de solos contaminados, muitos Estados-Membros Europeus adoptaram 
valores de qualidade do solo, como por exemplo os “valores de rastreio ou 
triagem” (do inglês: soil screening values ou SSVs). Estes valores são 
particularmente úteis para a primeira etapa dos processos de avaliação de 
risco ecológico (ARE) de locais contaminados, especialmente para um primeiro 
rastreio dos locais, destinado a separar aqueles em que os riscos são 
claramente reduzidos daqueles que exigem uma avaliação mais específica e 
aprofundada para o local. Assim, a definição de SSVs regionais terá impactos 
económicos relevantes na gestão dos locais contaminados. Portugal é um dos 
Estados-Membros Europeus que ainda não definiu SSVs. Neste contexto, este 
estudo dá uma notável contribuição na geração de dados ecotoxicológicos 
para parâmetros microbiológicos do solo, plantas terrestres e invertebrados 
necessários para a obtenção de SSVs para urânio (U), cádmio (Cd) e cobre 
(Cu), utilizando um solo natural Português, representante de um tipo 
dominante de solo existente no território nacional. 
Assim, foram obtidos SSVs para os metais referidos com base em dois 
métodos propostos pelo Documento de Orientação Técnica para Avaliação de 
Riscos da Comissão Europeia, nomeadamente o método dos factores de 
avaliação (do inglês: assessment factors ou AF) e o método probabilístico da 
distribuição da sensibilidade espécies (do inglês: species sensitivity 
distributions ou SSDs) (com algumas adaptações). Os resultados dos dois 
métodos foram comparados e discutidos. Além disso, este estudo lançou as 
bases para uma reflexão mais profunda sobre o ponto de corte (concentração 
de risco para uma determinada percentagem de espécies) a ser estimado a 
partir das distribuições de sensibilidade das espécies (SSDs), e para ser 
selecionado para a obtenção de SSVs, com o nível adequado de proteção. 
Neste estudo foi comprovado que esta seleção pode variar para diferentes 
metais ou outros contaminantes, no entanto, uma justificação clara deve ser 
dada, em cada caso. 
Os SSvs propostos neste estudo foram de: U (151,4 mg U kg- 1

ms ), Cd (5,6 mg 
Cd  kg- 1

ms ) e Cu ( 58,5 mg Cu kg- 1
 ms) Estes valores devem agora ser testados 

quanto à sua capacidade para descriminar solos com diferentes níveis de 
contaminação. No entanto, este estudo esclarece e sugere a abordagem que 
deve ser seguida para a derivação de SSVs para outros metais e 
contaminantes orgânicos, e para outros tipos dominantes de solos naturais 
portugueses. 
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The increasing human activity has been responsible by profound changes 
and a constinuos degradation of the soil compartment in all the European 
territory. Some European policies are appearing focusing soil’s protection and 
the management of contaminated sites, in order to recover land for other 
uses. To regulate the risk assessment and the management of contaminated 
soils, many European member states adopted soil guideline values, as for 
example soil screnning values (SSV).These values are particularly useful for 
the the first tier of the Ecological Risk Assessment (ERA) processes of 
contaminated sites,especially for a first screening of sites requiring a more 
site-specific evaluation. Hence, the approriate definition of regional SSVs will 
have relevant economic impacts in the management of contaminated sites. 
Portugal is one of European Member States that still lack these soil guideline 
values. In this context, this study gaves a remarkable contribution in the 
generation of ecotoxicological data for soil microbiological parameters, 
terrestrial plants and invertebrates for the derivation of SSVs for uranium (U), 
cadmium (Cd) and copper (Cu), using a Portuguese natural soil, 
representative of a dominant type of soil in the Portuguese territory.  
SSVs were derived based on two methods proposed by the the Technical 
Guidance Document for Risk Assessment of the European Commission; 
namely the assessment factor method (AF) and the species sensitivity 
distribution (SSD) method (with some adaptations). The outputs of both 
methods were compared and discussed. Further, this study laid the 
foundation for a deeper reflection about the cut-off (hazard concentration for a 
given percentage of species - HCps) to be estimated from the SSDs, and to 
be selected for the derivation of SSVs, with the adequate level of protection. It 
was proven that this selection may vary for different contaminants, however a 
clear justification should be given, in each case.  
The SSvs proposed in this study were for:  U (151.4 mg U kg-1

dw),  Cd (5.6 mg 
Cd  kg-1

dw), and Cu (58.5 mg Cu kg-1
dw) These values should now be tested 

for their descriminating power of soils with different levels of contamination. 
However, this studies clarifies the approach that should be followed for the 
derivation of SSVs for other metals and organic contaminants, and for other 
dominant types of Portuguese natural soils.   
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Chapter I – General introduction 

 

General Introduction 

1.1 The importance of soil and its protection at international and national level  

Soil is the upper layer of the earth crust, with a highly variable thickness, composed of 

mineral  components  (mainly silica and several trace metals) resulting from the 

weathering of bedrock and other parent materials, organic matter , water, air and living 

organisms (Buyer et al., 2010; Gerrard, 2000), and occupies most of our planet’s 

continental areas. For Singer & Warkentin, (1996), soils  are  the  excited  skin of  the  

earth  where  the  atmosphere,  hydrosphere,  biosphere  and  pedosphere  meet  and 

interact, in an open system. Soil is the ecosystems life substrate, as one finds in it an 

ample quantity and diversity of living organisms (microorganisms, plants, animals), 

constituting an abundant biodiversity habitat, with unique genetic patterns. A piece of 

soil that could be held by our hand may contain hundreds of thousands or even millions 

of species living in, which benefit from the great number of ecological niches provided by 

the extremely heterogeneous structure of the soil (Buyer et al., 2010),These organisms 

are parts of the soil and their activity is vital for its own functioning, as they are 

responsible for the organic matter decay, nutrient cycling, help in the soil structure 

formation, thus contributing for the ecosystems stability (Lavelle et al., 2006; Park et al., 

2011; Rutgers et al., 2009). The soil is for this reason considered, a living and dynamic 

medium and represents the main compartment for the global interchange of matter and 

energy. This compartment plays such necessary functions as the production of a wide 

range of nourishment and bioenergy (Sparks, 2000), is a physical and nutritive subtract 

for plants development due to its ability to store water, minerals, organic matter and 

several chemical substances necessary for the vegetal growth. In addition is an 

environmental regulator, since besides the storing capacity, it partially transforms 

compounds flowing between the atmosphere, the hydrosphere and the living organisms, 

being part of the biochemical and hydrologic cycles. All this characteristics grant it a high 

buffering capacity strictly related with its organic matter load, which limits the erosion 

and diffusion of soil contaminants to the water. The soil also performs social economic 

functions, since it is used by any known society as an important source of raw materials 

(sands, clays, coal and minerals), as substrate for biomass production, as support for 
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infrastructures (communication ways, buildings) and for almost all cultural activities 

(Lavelle et al., 2006; Sampaio, 2004; Swartjes et al., 2008).  

However, and despite its importance as a natural resource, the soil keeps being 

neglected by several human activities (agriculture, industry, mining exploration), which 

cause deeply adverse effects on its chemical composition, physical structure and its 

organisms (Cortes et al., 2003; Vaalgamaa and Conley, 2008). Additionally, the soil is a 

particularly vulnerable medium to external aggressions both from anthropogenic and 

natural origin, as are the erosion, salinization, acidification, floods and landslides which 

assume a significant importance on its degradation (Bone et al., 2010; Fullen and Catt, 

2004). The decreased fertility, decline in soil organic matter, biodiversity loss, smaller 

water retention capacity and the interruption of the gaseous cycle and nutrients, are 

some of the consequences which stems from natural or anthropogenic soil degradation 

processes. Nevertheless, in the public opinion, air and water are more important than 

soil, since these are directly used to breathe and drink, while soil only indirectly influences 

human life. In fact, the relationship between human health and soil quality stills unclear 

for the general public and the economic value of soil was never perceived even when the 

conflicts were related with available arable land (Bone et al., 2010). On the other hand, 

and unlike water and air, the majority of the soil is private property and belongs to people 

who have their own rights and private interests in the soil use (Römbke et al., 2005). 

Consequently, and till the nineteen decade, the soil was managed mainly by farmers for 

increasing fertility and subsequently crop production, without ecological concerns 

(Postma-Blaauw et al., 2012). 

Mainly in the last three decades, the perception of: i) the treats to the soil; ii) the 

economic and environmental consequences of soil contamination on water and air 

quality; iii) the loss in biodiversity; iii) the potential impacts of climate change on arable 

lands and of iv) the non-renewable character of this resource has increasingly revealed its 

protection a global concern. Despite the efforts to obtain a global assessment of soil 

degradation, at the end the eighties a great uncertainty persist about the extent, severity 

and multiple impacts of soil degradation (Hurni et al., 2006). The international documents 

and agreements specifically dedicated to soil available till then, namely the European Soil 
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Charter (CE, 1972), the World Soil Charter (FAO, 1982) and the World Soil Policy (UNEP, 

1982) did not promote any type of actions on soil protection mainly due to their non-

binding nature (Hurni et al., 2006). In 1998, in the 16th World Congress of Soil Sciences 

(WCSS) of the International Union of Soil Sciences (IUSS) held in Montpelier, specialists 

agreed on the need of global soil agenda, to the soil on the top of the table of decision-

makers and to call the attention of the general public for soil related issues (Hurni et al., 

2006). Four years later, a group of specialist was invited to pronounce about the subject, 

aimed in producing texts for a draft of the soil agenda during the 17th WCSS. The soils 

specialists agreed about the need of an international soil instrument dedicated 

exclusively to the soil, to raise awareness about the concerning level of soil degradation 

worldwide. Nevertheless, they were more confident on the efficiency of international 

guidelines for soil management rather than on enforceable legislation to protect this 

resource (Hurni and Meyer, 2002) In 2001, the Convention on Biological Diversity, under 

the program of work on agricultural biodiversity, recognized the value of the diverse soil 

biota and of their role in several soil services crucial for the maintenance of all the 

ecosystems, but especially agro-ecosystems and the maintenance of their production to 

sustain the growing demand for food (UNEP-CBD, 2000). Despite, highlighting the 

ecological attributes of soil whose importance go far beyond its production function, the 

CBD emphasized the benefits of managing soil biodiversity in agricultural systems, in 

terms of crop production, economic profits and food security (UNEP-CBD, 2000). Under a 

decision of the Convention of Parties (COP decision IV/6), the parties asked FAO (Food 

and Agriculture Organization of the United Nations) and other organizations to provide 

methodologies for the assessment of the biodiversity of agro-systems and tools for their 

monitorisation (UNEP-CBD, 2000).The CBD, have also highlighted knowledge gaps in 

terms of soil biodiversity and of the effects of agriculture practices in the soil biota and in 

their functions (UNEP-CBD, 2000). In 2004, the CBD published a new document describing 

the context and objectives of the “International Initiative for the Conservation and 

Sustainable Use of Soil Biodiversity” coordinated by FAO, and corresponding strategies 

and actions to attain these objectives (UNEP-CBD, 2004). Although still mainly focused in 

agricultural biodiversity, the Convention highlighted the role of soil biota in critical 
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ecosystem services and the importance of these services not only for a sustainable 

agricultural production but also for the functioning of natural ecosystems. In 2006-2007, 

FAO, had its first external evaluation, and one of the conclusions of the report was that 

FAO, the organization founded in 1945, was in crisis, mainly due to a shift of research 

interests to land and climate change research (Hartemink and McBratney, 2008). This 

report however, considered that land and soils should be a prior area for the allocation of 

resources, due to the global lack of data required for their management, and the 

recognition that the pressures on land resources caused by an increasing human 

population and corresponding demand for agricultural products, urbanization and climate 

change are expected to persist and to worsen (Hartemink and McBratney, 2008).  

Previously to the CBD, only the United Nations Convention to Combat Desertification, 

established in 1994, focused on a specific soil related problem, the desertification in dry 

land areas, caused by the combined effect of the over-exploration of resources, 

inappropriate land use and paucity of rainfall (Fuchs, 2008; UNCCD, 2012)1. In fact 

desertification was the first soil related problem gaining international political attention, 

after the first United Nations Desertification Conference held in Nairobi, during the 

seventy decade. However, this convention focused again in the soil as a resource, and its 

main aim was to restore land and soil productivity to guarantee the sustainability of 

human populations from these vulnerable areas (UNCCD 2012)2. Under the scope of the 

convention, the parties were also obliged to report the status of land cover, and call the 

attention of policy makers for the importance of the topic. Despite the efforts the 

problem was not solved, and a ten year strategic plan (2008-2018) was adopted by the 

COP-8 (8th Convention of the Parties), to enhance the implementation of the convention 

(CBD).  

Other United Nations networks/organizations, like the UNDP (United Nations 

Development Program founded in 1965) and the UNEP (United Nations Environment 

Programme) only after the year 2000, started mentioning soils in their reports, calling the 

attention, inter alia, for the role of global climate changes in the exacerbation of 

biodiversity loss in this compartment (Hartemink and McBratney, 2008).  

1 http://www.unccd.int/en/Pages/default.aspx 
2 http://www.unccd.int/en/Pages/default.aspx 
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Some expectations were placed in the Millennium Ecosystem Assessment (MEA) called 

by the United Nations Secretary – General Kofi Annan in 2000 - aimed in having 

information about the consequences of ecosystem change on human well-being and to 

establish the scientific basis required by decision makers for actions needed to enhance 

the conservation and sustainable use of ecosystems (MEA, 2005). However, soils did not 

receive a particular attention, being conceptually considered as an ecosystem service, and 

once again no meaningful knowledge about the status of soils worldwide was obtained 

with MEA (Hurni et al., 2006). Meanwhile, countries like the USA, Japan, Canada, Australia 

and Brazil, have already started establishing soil protection policies (CEC, 2006a). In 2008, 

the US Congress has adopted a Senate resolution on Soil, which inter alia, emphasized the 

lack of legislation on soils in USA (Hartemink and McBratney, 2008).  

Since 1970 the European Commission was very proliferous in the definition of policies 

and in the publication of different legal documents aimed in: protecting water resources; 

managing and reducing solid wastes; landfills management; assess and mitigate the risks 

of new chemicals produced by the industry, starting by phytopharmaceuticals and then 

extended to all the chemicals produced by the industry (CEC, 2006a; JRC, 2012). However, 

any legislation had specifically targeted the protection of soil. The protection of water 

resources for human consumption was the main focus. In fact this was the priority after 

the perception of the risks posed to these resources and to the human health (e.g. 

nitrates contamination of groundwater and eutrophication of surface waters) caused by 

the intensive application of fertilizers and pesticides by farmers in several European 

countries (Napier, 1998). Taxes on farm chemicals; the control of their application or even 

its ban in more sensitive areas, near groundwater resources; education and information 

programs for farmers; compensations for economic losses caused by the adoption of 

production systems with lower risks to soil and water resources were some of the 

measures adopted by some countries and by the Common Agricultural Policy (CAP) of the 

European Union, after 1992 (Napier, 1998). Several European Member states have also 

established Water Quality Standards. In 2002 the European Commission took the first 

step, for the protection of soils, publishing a Communication towards the development of 

a Thematic Strategy for Soil Protection (CEC, 2002), which was finally published in 2006 
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(CEC, 2006a), in parallel with a proposal for the Soil Framework Directive (CEC, 2006b). 

This marks the first central political approaches with the goal to establish a 

communitarian frame for soil protection and the preservation of its capacity for playing 

its ecological, economic, social and cultural functions. This Thematic Strategy was 

published under the scope of the Sixth Environment Action Program of the European 

Union (2001-2010), whose main priorities were climate change, nature and biodiversity 

health and quality of life, and natural resources and waste. The strategies are 

mechanisms for delivering the objectives of the Action Programme, and provide a broad 

analysis of the issue under consideration, focusing on the pressures and impacts and their 

link with sectorial policies and suggest a strategy to deal with such pressures and impacts 

combining market-based approaches, technology and innovation (CEC, 2006a). Each 

strategy is composed by a former communication (as mentioned above) that highlights 

the issues and proposes solutions, legislative proposals and an impact assessment. 

 In parallel with the a diagnose of the main threats to soils within the European Union 

(erosion, organic matter decline, compaction, salinization, landslides, sealing 

contamination), the soil thematic strategy established guideline principles to pursue the 

objectives of protection and sustainable use of soil, namely:  readjust soil uses and 

management in order to prevent further soil degradation; ii) act directly on sources to 

reduce the emissions/impacts on soil and to restore degrade soils at least to a level 

compatible with current or intended uses. In 2012, the EU published a report about the 

implementation of the Soil Thematic Strategies and ongoing activities (EC, 2012). Since 

the adoption of the Strategy, the EU has made big efforts for the integration of soil 

protection on sectorial policies, like the common agricultural policy and the Industrial 

Emissions Directive (IED, 2010). Further the EU has allocated funds for the rehabilitation 

of industrial sites and contaminated land as part of the Cohesion Policy, between 2007-

2013, as well as for research projects aimed in increasing background knowledge required 

for action (EC, 2012). However, six years after the adoption of the Soil Thematic Strategy, 

the main legal document that could arise, addressing systematic tools to monitor and to 

protect soils across Europe, still without approval (EC, 2012). Without this legal document 

the foundations to enforce member states to develop legislation on soil protection are 
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weak, and according to the last thematic report of the European Environment Agency, soil 

degradation processes have accelerated in many parts of Europe, since 2005, due to 

inappropriate human uses and due to the lack of harmonized approaches to tackle soil 

degradation (EEA-JRC, 2010).  A number of EU Member States have legislation specific to 

soil protection. However the majority of this legislation is focused only on soil 

contamination. Countries like Netherlands, Germany and Belgium, have policies 

addressing broader soil protection issues. These states are some of the most advanced in 

questions for soil protection in EU, being the only states with a specific legally binding soil 

definition (Van Camp et al., 2004). 

As previously described global efforts on soil protection have been mainly focused on 

the view of soil as resource for food production and sustainable development. Research 

efforts were mainly directed toward the maintenance of soil fertility and more recently 

on the impacts of climate change on such soil function. The soil as a source for carbon 

storage, with an important role in the climate control has also received a great attention 

in the last few years (Lal, 2010; Prechtel et al., 2009).  

The UK had a historically dependence on soils for food and fiber production and as a 

physical support of all activities, especially those related with industrial manufacturing. 

After the Second World War land-use production was intensified through the use of 

industrially produced fertilizers and biocides to control pests, and by mechanically based 

land preparation practices (Haygarth and Ritz, 2009).  More recently, one of the main 

concerns with soil protection in UK (as well as in other member states) is related with 

their intensive use for construction, since recovery from soil sealing is practically 

irreversible, representing a definitive loss for any other type of soil use (Haygarth and 

Ritz, 2009). A postnote document published by the Parliament, in 2006, made a 

description of the nature and extent of soil degradation in the UK, assuming that about 

2.2 million of tons of topsoil were being lost annually, by erosion, in UK (POST, 2006). 

Despite the perception of the national authorities of the degree of soil degradation, there 

is no specific UK regulations related with soil protection. Similarly to other member states 

it is argued that soil has being indirectly protected by other legislation like those related 

with control of emissions of pollutants, land management and the cleanup of 
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contaminated sites. The Environment Protection Act from 1990, is an act of the 

Parliament of the United Kingdom, which establishes for England, Wales and Scotland the 

structure and the authority that regulates the managements of wastes and the emissions 

into the environment. The Part II of this act, was added in 1995, and is dedicated 

specifically to define policies for the identification and compulsory remedial actions of 

contaminated sites (USEPA, 2009)). According to the Contaminated Land (England) 

Regulations 2006 (UK Government, 2006), the local authorities are the primary 

responsible for the identification and management of contaminated lands. The 

Department of Environment, Food, and Rural Affairs (DEFRA) manages the capital 

projects program, aimed in assisting local authorities (USEPA, 2009). The work of 

remediation has been supported carried out by quasi-governmental and non-

governmental authorities. Aimed in addressing other soil treats, in 2009 DEFRA published 

a Soil Strategy for England (DEFRA, 2009), where the main objectives to be attained and 

the actions previewed are described. With this strategy DEFRA intends to attain a 

sustainable management of UK soils in 2030, safeguarding their ability to provide 

essential services for future generations (DEFRA, 2009). According to Haygarth and Ritz, 

(2009) the challenge will be to optimize the utilization of soils with the variety of 

demands, identifying the areas more appropriate for specific uses. However, this will 

require great efforts to obtain detailed soil maps, combining soils data with several other 

attributes of this resource. 

Germany and Netherlands, as stated above, are the most advanced countries in terms 

of soil protection policies. German government policy recognizes the importance of soils 

in agriculture, the role soil protection plays in safeguarding other environmental media, 

and the importance of soil in fighting climate change. Their policies include, the 1998 

Federal Soil protection act (Federal Ministry for the Environment Nature Conservation 

and Nuclear Safety, 1998), and the 1999 Federal Soil Protection and Contaminated Sites 

Ordinance (Federal Ministry for the Environment Nature Conservation and Nuclear 

Safety, 1999) which address soil protection and soil remediation and provide the basis for 

soil policy in Germany. A number of government agencies that have been established for 

soil protection, like the Federal Institute for Geosciences and Natural Resources formally 
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established in 1975 and the Federal Environment Agency Soil Protection Commission 

(KBU) in 2004.The KBU’s work focuses on renewable organic resources and soil quality, 

pollutants and soils, and soil protection and soil awareness. The Federal Institute for 

Geosciences and Natural Resources   conducts research on sustainable soil uses. 

Dutch soil policy addresses the long-term protection, management, and sustainable use 

of soil in the Netherlands. The Dutch soil protection policy includes, The 1987 Dutch Soil 

Protection Act (revised in 2008), (VROM, 1986), that provides a basis for Dutch soil policy, 

The 2003 VROM Soil Policy Letter, that articulates an integrated and sustainable approach 

to soils that incorporates considerations related to land use planning, land conservation, 

water management, and agriculture and finally, in 2009, the soil remediation circular 

(VROM, 2009) which establishes remediation objectives and describes soil remediation 

requirements. 

 

1.2. Contaminated Sites and risk assessment frameworks 

Concerns with contaminated areas, started in the nineteen nineties and analyzed in 

several concerted actions and forums of the European Union (CARACAS, CLARINET and 

NICOLE), were particularly addressed by the Soil Thematic Strategy and by the proposal of 

the Soil Framework Directive (SFD), (Swartjes et al., 2008). During this decade several 

countries started to define risk-based soil quality standards, but mainly related with risks 

to human health, except for The Netherlands which at this time has already integrated 

ecological protection objectives (Swartjes et al., 2008). The text of the SFD  requests all 

member states to identify the existing danger zones in their territories, based on common 

elements which call into question the soil stability, giving them, however, total freedom 

about how to do it. It is up to each member state the responsibility for the risk zones 

identification in their own territory and for the goals definition for its mitigation, as well 

as the measures program to reach. These obligations will allow a better knowledge of the 

dimension and localization of the soil threats, as well as an integrated adoption, by all 

member states of the most specific and efficient common measures (CEC, 2006a). For the 

identification of the threat zones, the commission encourages the usage of the already 

existent monitoring systems, as well as the development of new methodologies. 
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However, and according to the Environment European Agency stills difficult to quantify 

the real extent of soil contamination in Europe, due to the lack of European legislation to 

oblige member states to make such inventories. This agency estimated in 2007, the 

existence of about 3 million of contaminated sites in Europe, of which about 250 000 may 

need urgent remediation (EEA, 2007). The main contaminants are metals and mineral oils 

(EEA-JRC, 2010). Although progresses have been made in remediation, it also expected an 

increase in the previous number, as data collection increases. 

There is no specific legislation for the soil protection at the national level, the one 

currently in effect, only contemplates some of its functions and threats to them. The 

protection of this compartments is dispersed by several strategies connected to the 

agriculture, to the rural development, territorial planning and to the environment (CEC, 

2006a). The Law on Environment of 1987 (law nº 11/87, of April 7, modified by the law 

nº13/2002, of February 19) is one of the currently used strategies with a positive impact 

to the matter of soils. This law, which quite recently has undergone a deep revision due to 

being completely outdated, refers to the need to implement measures for the defense 

and valorization of the soils and frames itself on the needs and options of the European 

community in environmental matter. However, and considering this law as a cross-

sectoral nature, being the protection of the environment as a whole, it is far from 

integrating all the problematic of the soil degradation, remediation and protection. It is 

therefore urgent to implement strategies specially aimed at soil protection, since few 

where the regulations specifically produced on the matter of soil, to answer these 

recommendations requested by the Soil Framework Directive. In this sense, the 

methodology of Ecological Risk Assessment (ERA), proposed by USEPA, (1989), has been 

recognized as powerful tool for the decision-making process in contaminated sites 

management, and therefore capable of meet the required framework directive on soil 

(Critto et al., 2007; O’Halloran, 2006; Solomon and Sibley, 2002; Suter et al., 2000). This 

methodology, quite flexible and multifunctional is based on the collection, organization 

and analysis of environmental data in order to determine the acceptable level of risk and 

to set priorities for action (Jensen and Mesman, 2006a).  ERA has as goal to estimate the 

adverse effects that may occur or are already underway in natural communities, in sites 
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exposed to physical, chemical and biological agents (Solomon and Sibley, 2002; USEPA, 

1989). The Ecological Risk assessments may be used to predict the likelihood of future 

adverse effects, the prospective risk, or may be used to evaluate environmental problems 

arising from historical and ongoing activities, the retrospective risk assessment (Gorsuch 

et al., 2006; Newman and Unger, 2003). The prospective risk analysis, allows the 

production of information for generic or hypothetical contamination scenarios. This 

method proceeds to the estimation of the foreseen effects, studying the behavior and the 

toxicological/ecological impacts which the chemical substances may have in the different 

ecological receptors. The prospective analysis has been assuming great importance in the 

soil contamination prevention, since it starts to become required for the notification of 

new chemical, dangerous, biocides substances [Directive 93/67/EEC (EEC, 1993) and the 

Regulation 1488/94 (EEC, 1994)]. On the other hand, the retrospective risk analysis, 

evaluates the chemical effects after they have been freed on the environment, allowing 

the acknowledgment of contaminated sites, with past origins, but with serious 

consequences in the present. This type of analysis is essential for the contaminated sites 

management, once given its diversity, it allows to define the true problem dimension, 

giving a more accurate evaluation of the real risks for the ecological receptors potentially 

affected by the contaminant.  

Frequently, ERA is performed in phases or tiers, which may include the retrospective 

and prospective analyses. This European method of contaminated sites risk analysis 

designated by TRIAD, was proposed by Chapman, (1990)  for the assessment of sediment 

quality and posterior adopted for the ecological risk analysis of contaminated soils 

(Rutgers et al., 2000). The TRIAD is based in an organization by steps, being therefore 

slightly different of the one proposed by (USEPA, 1989). With the adoption of this 

assessment model, the risks characterization mixes data received from three evidence 

lines: chemistry (chemical-physical properties and bioavailability of pollutants), 

ecotoxicology (laboratory-based toxicity testing) and ecology (indigenous biota 

community characterization), (Critto et al., 2007; Niemeyer et al., 2010; Swartjes, 2011). 

This multidisciplinary combination provides a reduction of uncertainty associated with 

risk assessment, since it allows a more detailed and accurate than an approach that relies 
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solely on one evidence line (Alvarenga et al., 2012; Fernández et al., 2005). ERA 

framework allows thus to get a more reliable evaluation of the contamination and its 

effects over the ecological receptors. Nevertheless, an ecological assessment based on 

this kind of methodology, as a rule of thumb, requires however more time, effort and 

money.  In this sense, it is important an initial stage of screening, which allows screening 

the sites which do not need a more detailed analysis, reducing therefore the costs and 

simplifying the decision during the risk assessment.  

 

1.3. Soil screening values (SSV) in the assessment of contaminated soils 

In most European countries, the first step of European Risk Assessment frameworks for 

contaminated soils, characterized as screening phase, consists in a quite simplified first 

approach, which includes preliminary evaluation of risks based on the total concentration 

of contaminants. These concentrations are compared with soil screening values (SSVs), 

from dose–response relationships, to assess the likelihood of harm (Jensen and Mesman, 

2006). SSVs are concentration thresholds of a given soil contaminant, which when 

exceeded, It is highly advisable to submit the site to a set of new risk evaluations more 

specific. These values should provide a level of protection for the terrestrial species and 

ecological soil functions and be practical in the contaminated soils evaluation, they 

should, however be reasonable and not so low that even at trivial concentrations no 

chemical is ever screened out from further risk assessment (Fishwick, 2004). SSVs, with 

the help of a decision support system, will allow the risk managers to identify 

contaminated sites, as well as decide about the necessity of an additional intervention in 

those same sites (Provoost et al., 2008). In the United States of America, the US 

Environmental Protection Agency (USEPA), has developed SSVs to be used in evaluation 

processes of ecological risk (USEPA, 1989). Similar work has been done in Europe, in 

which several countries like Denmark, Germany, Netherlands, Spain, have been deriving 

their own SSVs from natural soils, for the contaminants present in soil and using them to 

define environmental quality standards (Crommentuijn et al., 2000; Scott-Fordsmand and 

Pedersen, 1995; Vega et al., 1999; Wilke et al., 2004). Although the great work already 

done in other European countries, thresholds concentrations have never been 
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established for any metal in natural Portuguese soils, being that, in Portugal, these 

guidance values only exist for the application of sewage sludge in agricultural soils by the 

law by decree 118/2006. 37 (MAOTDR, 2006). As expected, these values are not 

appropriate to be used on site specific evaluations, being needed to use other countries 

values on the evaluation of contaminated sites (Pereira et al., 2008)). It is known, through 

several studies (Amorim et al., 2005; Criel et al., 2008; Kuperman et al., 2006; Peijnenburg 

and Jager T, 2003), that the soil physical and chemical properties combination influence 

the contaminants toxicity over the natural soils organisms, as well as their transport for 

other compartments. Amorim et al., (2005); Rooney et al., (2006) confirms the influence 

of soil proprieties in the toxicity of metals in plants and invertebrates of soil 

(respectively), when different soils were used. Thereby, if a great uncertainty associated 

with SSVs derivation, due to use of different soil types for their derivation, a multiplicity 

of SSVs be expected for a same species. Additionally, different countries, such the 

Netherlands, Germany, Canada, have derived these values based on scientific data for 

human and/or ecological receptors but also integrating societal values (O’Halloran, 2006). 

Assessment of contaminated sites using values indicatives of soil quality from other 

countries should therefore be discouraged. For these reasons, regulatory agencies both 

from the United Stated and European Union have been reinforcing the importance for 

each country using their own SSVs, so as to minimize, as much as possible, the variability 

sources. So, it is important that each country get their own SSVs from reference natural 

soils, representative of the main soil types from each region. The SSVs are usually 

determined through extrapolation methods from species sensitivity curves or by applying 

safety factors, using available published results from laboratory toxicity tests on single 

species or microbial mediated processes (Rooney et al., 2006; Vega et al., 1999). 

 

1.4. Use of natural reference soils in the ERA framework 

If from one hand, the use of reference natural soils become determining on obtaining the 

ecotoxicological data for the regional relevance SSV`s derivation, on the other hand, the 

use of this soil type in ecotoxicological essays with terrestrial organisms, has been gaining 

more and more relevance. The natural soils, when used in ecotoxicological tests, increase 
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the ecological importance of the ecotoxicological evaluations, leading to a reduction of 

the evaluation uncertainties, thus being highly recommended in this type of evaluation 

(Ardestani and van Gestel, 2013; Kuperman et al., 2006; Römbke et al., 2006; van Assche 

et al., 2002; Van Gestel and Weeks, 2004). Portugal, as well as in other European 

countries, where the characterization/use of natural soils is still quite premature, both 

the toxicity evaluation of chemical substances in the terrestrial compartment, as well as 

the contaminated soils evaluation, is often based in ecotoxicological tests made in OCDE 

artificial soil. This artificial soil consists of a mixture of sand (70%), kaolinite clay (20%) and 

ground peat (10%) with the addition of CaCO3 to maintain pH of 6±0.5. Organic matter 

corresponds to 6.17% and total nitrogen to 0.11% (giving C:N of 32.6) with the water 

holding capacity (WHC) of about 56% (OCDE, 1984).  

The use of this artificial soil is clearly advantageous for reasons of standardization 

and comparability of results throughout the world (Lokke et al., 2002), being commonly 

used in toxicity essays with a wide range of soil invertebrates (ISO, 2004, 1999) despite 

being developed for earthworms. There are however well known differences in terms of 

physical and chemical properties of these artificial soils and natural soils (Chelinho et al., 

2011a; Criel et al., 2008a; Rooney et al., 2007; van Gestel et al., 2011). Some recent 

studies have indicated that the use of artificial soils may not yield the same results as 

natural soils in ecotoxicological essays which evaluate the toxicity of different chemicals 

(Amorim et al., 2005; Domene et al., 2011; Lock and Janssen, 2001; Rhodes et al., 2008; 

Römbke et al., 2006). The disparities between the artificial and natural soil are particularly 

accentuated in relation to organic matter content, which in artificial soil OECD presents a 

percentage too high, due to the excessive content (10%) of peat, when compared with 

natural soils. The existence of a greater organic matter in soil, generally results in a 

greater contaminants absorption capacity and, thus, in their lower mobility and 

bioavailability to exercise toxic effects, for instance, a lower toxicity has been reported for 

many test species in the OCDE artificial soil in relation to the natural soil (Lock and 

Janssen, 2001) which can lead to a under- or overestimation of the toxicity (Amorim et al., 

2005). As a result, the data arising from studies using artificial soils may lead to wrong 

conclusions and mean that any risk assessment may be erroneous, and the data 
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extrapolation of chemical substances toxicity, obtained with artificial soils, for natural 

reference soils becomes difficult and not advisable (Hofman et. al., 2008). Additionally, 

several problematic issues relative to the OECD artificial soil have been recently revealed 

as a standard reference soil (Bielská et al., 2012; Hofman et al., 2009). A major criticism is 

related to inter-laboratory variability of toxicity results, even when the same chemical is 

tested, and the same standardized procedure is used (Bielská et al., 2012; Rombke and 

Moser, 2002). The absence of detailed specifications concerning the characteristics of the 

components constituting it leads to a great diversity of such soil, varying between 

manufacturers and countries  (Bielská et al., 2012). A greater consistency should exist in 

the soil preparation between different laboratories concerning the properties of used 

compounds and the final mixture, possibly specified by international standards (range of 

the total organic carbon content, the peat particles size etc.), in order to bridge these 

gaps.  

Thus, the use of natural soil continues to increasingly gain importance in 

ecotoxicological risk assessment of pollutants, being its integration into the ERA one of 

the major objectives of ecotoxicologists (Domene et al., 2010; Kuperman et al., 2009; 

Niemeyer et al., 2010; Rocheleau et al., 2010). Some attempts have emerged in order to 

increment the use of standardized natural soil, selected as German reference soil, the 

LUFA 2.2 natural soil (Agrarian Research center; Speyer / Germany), there are many 

studies, especially at European level, which has involved the use of this soil as reference 

soil in ecotoxicity tests (Gomes et al., 2011; Lourenço et al., 2012; Pereira et al., 2010; 

Vijver et al., 2001). Although widely used, this has not yet been recommended in 

international guidelines test, although it is a natural soil, is incapable of representing all 

natural European soils and therefore should not be considered exclusively a standard soil 

(Rombke and Amorim, 2004).  

In this sense, various European initiatives have been promoting the selection and 

characterization of reference natural soils, representatives of different lithologies of each 

country, which act as control and substrate for the dilution of contaminated soils in 

ecotoxicological assays performed to evaluate the ecotoxicity of contaminated soils, in 

tier 2 risk assessment frameworks (Jensen and Mesman, 2006). A set of reference soils 
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known as EUROSOILS was introduced by the European Commission in 1990, where the 

selected soils intended to be representatives of different European soils, in order to 

create a common basis for better comparison and quality control of soil sorption data 

(Kuhnt and Muntau, 1992). Therefore, six regionally representative soils aimed to cover a 

wide range of pH, organic matter and cation exchange capacity values were identified and 

characterized as reference soils for chemical testing in the EU (Gawlik et al., 2004, 2001; 

Kuhnt and Muntau, 1992). However, the use of those soils appears to not have been 

successful, not only due to the limited available soil, since for ecotoxicological essays, a 

large substrate quantity is needed, as also the lack of knowledge relatively to the 

behavior of some of those soils test species. Besides, upon the EUROSOILS proposal, no 

Portuguese soil was included, making Portugal keeping struggling with the lack of natural 

soils. As a result, Rombke and Amorim, (2004) suggested a natural soil type called  the  

SIM-SOILS,  having main properties, texture, organic matter content and C : N, similar to 

EUROSOILS, aimed  to  reflect  ecological  condition  for  soil  organisms and to control 

environmental availability of contaminants in soils. Other works have been developed 

with Portuguese soils, (Chelinho et al., 2011a) four soils from the Southern country region 

were tested to be validated as reference soils for the Mediterranean region, in a joint 

work with solid from Spain and Italy. Despite that work contribution in the identification 

of natural soils of reference for the national context, a gap exists between the northern 

and Southern country regions, which were not included in this characterization. Being 

Portugal a country with a wide lithological diversity and consequently high soil diversity, it 

makes perfect sense a characterization / validation of different natural soils 

representatives of the different country geological contexts, namely of the center zone, in 

which soils coming from granitic areas, the most abundant at a national level, prevails.   

 

1.5. Aim and scope of the thesis 

The final outcome of this thesis is to generate ecotoxicological data, for the derivation of 

Soil Screening Values (SSVs) with regional relevance, to be used in Ecological Risk 

Assessment frameworks aiming to protect the soil ecosystem, and ultimately the human 

health. For this purpose, natural reference soils will be used from the center of the 
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country, previously identified, characterized and shown in this paper, which can also to be 

used as substrate in future ecotoxicological evaluations. 

At national level, this study may provide an important contribution with regards to 

the identification/characterization of natural soils for later usage as a reference soil in 

ecotoxicological essays, made on the second tier of ERA frameworks, over contaminated 

sites. The use of these soils, will contribute to an increase on the ecological relevance of 

the risk analysis in Portuguese territory.  Besides, these soils will allow to define SSVs for 

some metals as Uranium, Copper and Cadmium, to be used in the first tier of ERA 

processes applied to contaminated sites, which will fill the gap of a serious lack of soil 

quality criteria that occurs at this level, in the national context. 

Thus, this thesis is structured into seven chapters, the first and seven chapters 

concern the general introduction and final remarks of the thesis, respectively, while the 

other five are related with research work. Below is a brief description of each chapter: 

[Chapter II]  The natural soil PTRS1, representing one of the dominant types of soil from a 

granitic region, was been contaminated with different Uranium concentrations and used 

as substrate for ecotoxicological tests, to obtain NOEC, LOEC, EC20 and EC50 for uranium, 

to be used in the derivation of SSVs for  national assessments of contaminated sites. For 

this purpose, the reproduction ecotoxicological tests of invertebrate (Eisenia andrei, 

Folsomia candida, Enchytraeus crypticus) and seed germination/grow of plants species 

(Avena sativa, Lycopersicon esculentum, Zea mays, Lycopersicon esculentum) was 

assessed. The effect of uranium on soil enzymatic activity was also tested. 

[Chapter III] In order to deriving SSVs cadmium, for national assessments of 

contaminated sites, and similarly to previous chapter, the performance of invertebrate 

and plant species commonly used in standard ecotoxicological assays, as well as the 

activity of soil enzymes  was tested, used as substrate the PTRS1 soil, contaminated with a 

different copper concentrations. 

[Chapter IV] This chapter intend to determine NOEC, LOEC, EC20 and EC50 values for 

copper, to be used in the derivation of SSVs, using a natural reference soil from the centre 

of Portugal. The same ecotoxicological assays described in both previous chapters was 
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performed, used as substrate the PTRS1 soil contaminated with different cadmium 

concentrations. 

[Chapter V] In this chapter, using toxicity data obtained in chapters II, III and IV applying 

appropriate extrapolation methods, SSV for  Uranium, Copper and Cadmium, and for a 

dominant type of soil from a granitic region, the PTRS1, was derived taking into 

consideration the total and the bioavailable concentrations of metals. 
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Abstract 

In order to regulate the management of contaminated land, many countries have been 

deriving soil screening values (SSV). However, the ecotoxicological data available for 

uranium in European countries is still insufficient and incapable to generate a SSVs. In this 

sense, and so as to make up for this shortcoming, a battery of ecotoxicological assays 

aimed in evaluating a wide range of endpoints (soil enzymes activity, reproduction of 

invertebrates, emergence/growth of plants) were carried out, in a natural soil artificially 

spiked with uranium. In terrestrial ecotoxicology, given the fact that soils have different 

properties that can influence the bioavailability and the toxicity of chemicals, which in 

turn may lead to unfeasible environmental risk assessment, the use of natural regional 

representative soils is of great importance. Thus, the Portuguese natural reference soil 

PTRS1, collected in a granitic region, was used as test substrate. This study allowed the 

determination of NOEC, LOEC, EC20 and EC50 values for uranium. Soil enzyme activities 

were the most sensitive parameters, followed by the reproduction of invertebrates and 

emergence/germination of plants. In particular, dehydrogenase and UR enzymes 

displayed the lowest EC20 values (34.9 and <134.5 mg U Kg-1 dw, respectively). E. andrei 

and E. crypticus revealed to be more sensitive to uranium than F. candida. EC50  values of 

631.00, 518.65 and 851.64 mg U Kg-1
dw, were recorded for the three species, respectively. 

Concerning plants, only L. sativa was affected by U at concentrations up to 1000 mg U 
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kg1. The outcomes of the study may be in part be constrained by physical and chemical 

characteristics of soils, hence contributing for the discrepancy between the data 

generated in this study and that available in the literature. A predicted no effect 

concentration (PNEC) value of 15.5 mg kg-1 of soil dry weight was obtained for U, 

following the assessment factor method.  

 
Key-words: uranium (uranyl ion) toxicity; natural reference soil; soil enzymes activity; 
Eisenia andrei; Enchytraeus crypticus; Folsomia candida; Avena sativa;  Zea mays; Lacuta 
sativa; Lycopersicon esculentum. 

 

2.1  Introduction  

Uranium (U) is a natural soil component, being originated from rocks in the Earth’s crust, 

where it mainly occurs in the form of oxides. Natural processes acting on rocks and soils, 

such as wind, water erosion, dissolution, precipitation and volcanic activity contribute for 

U dispersal in the environment (Gavrilescu et al., 2009). The use of U as fuel in nuclear 

power plants has driven to its large-scale exploration worldwide. The U exploration 

became significantly important in the world during the Second World War, and later on 

during the Cold War, in both cases to supply military needs of the greatest potencies. 

Recently, the World Nuclear Association estimated worldwide reserves of U at 5.4 million 

tons in 2009, of which Australia had about 31%, followed by Kazakhstan (12%), Canada 

and Russia with 9% (http://www.world-nuclear.org/info/inf75.html). The remarkable 

energy crisis that is currently faced worldwide due to the exhaustion of carbon based 

energy resources is demanding further extraction of U, as nuclear energy arises as a 

potential solution. Hence, it is expected that the mining and milling of U will increase in 

the next decades, contributing for its widespread in the environment (Malyshkina and 

Niemeier, 2010).  

 During the last century, Portugal has actively explored radioactive ores and was for 

some time ranked as one of the main U producers. The extraction  of  U  ore  in  Portugal  

started  in  1908, first driven by the interest in  radium (being U a by-product) and then by 

the interest in its military applications, till 2001 (Carvalho et al., 2009; Pereira et al., 
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2014). Most of the old U mines were located in the granitic regions of the Iberian Meseta, 

in the centre-north of Portugal (Beiras), (Carvalho et al., 2007). Nowadays, although the 

mining activities ceased, like in several other places in the world, the old U mines 

represent a serious environmental problem, due to waste accumulation (mainly tailings 

and sludge) and improper disposal of radioactive material, composed by U and its 

daughter radionuclides (Arogunjo et al., 2009; Carvalho, 2011; Carvalho et al., 2007; 

Figueiredo et al., 2011; Gavrilescu et al., 2009; Momčilović et al., 2010; Niemeyer et al., 

2010; Patra et al., 2011; Pereira et al., 2008, 2006; Scheele, 2011; Vandenhove et al., 

2006; Wang et al., 2007). Soils and water are the two major environmental matrices 

affected by U contamination.  

U has a long half-life, persisting in nature as different isotopes, with different chemical 

and radiological characteristics (ASTDR, 2011). The toxic effects induced by this metal are 

caused by both properties. However, since U isotopes mainly emit alpha particles, with 

little penetration capacity, the main radiation hazards only occur after ingestion or 

inhalation of these isotopes and daughter radionuclides (ASTDR, 2011). Once in the soil, U 

interacts with all the components of this matrix, such as clay minerals, aluminum and iron 

oxides, organic matter and microorganism, in a very complex system, where pH and 

organic matter seem to have the major role in controlling U mobility (pH ≥6) and leaching 

(pH <6), (Vandenhove et al., 2007a). The high mobility/availability of U, will in turn 

increase the ecological risks posed to soil and water compartments (Geng et al., 2011; 

Geras’kin et al., 2007; Gongalsky, 2003; Islam and Sar, 2011; Joner et al., 2007; Kenarova 

et al., 2010; Lourenço et al., 2012; Pereira et al., 2009)  

The soil has been recognized as an important compartment that provides crucial 

ecosystem services (e.g. filter of contaminants, reservoir of carbon and a bank of genes) 

and is the support of agro-sylvo-pastoral production (Lavelle et al., 2006; O’Halloran, 

2006) and of several other  human activities. The soil compartment offers raw materials 

(e.g., peat,  clay, ore) and contributes for climate regulation and biodiversity 

conservation, as well as other cultural services (Barrios, 2007; Dominati et al., 2010). The 

recognition of the importance for maintaining the provision of such services has increased 

the necessity to create appropriate legal tools to correctly and effectively protect this 
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resource. In this sense, the Soil Framework Directive proposed by the Commission of the 

European Communities (CEC), aims to establish a common strategy for the protection and 

sustainable use of soils (CEC, 2006c). For that end, this proposal defines measures for the 

identification of the main problems faced by soils, the adoption of strategies to prevent 

their degradation, as well as for the rehabilitation of contaminated or degraded soils 

(Bone et al., 2010). The Soil Framework Directive will fill in the gap regarding soil 

protection, since this compartment has never been a target of specific protection policies 

at the European Community level, (CEC, 2006c). Many countries, committed in regulating 

the management of contaminated land, have adopted generic quality standards, the soil 

screening values (SSVs), (Jensen and Mesman, 2006a). SSVs are concentration thresholds 

above which, more site-specific evaluations are required to assess the risks posed by soil 

contamination (Fishwick, 2004). The SSVs should provide a level of protection to 

terrestrial species and ecological functions of the soil (Carlon, 2007; Fishwick, 2004; 

USEPA, 2003). SSVs are particularly useful for the first tier of Ecological Risk Assessment 

(ERA) processes applied to contaminated sites, supporting the decision-making at this 

initial stage of assessment (Provoost et al., 2008), which at the end is aimed in setting 

priorities for remediation and risk reduction measures (van Gestel, 2012). In the case of 

Portugal, SSVs for soils have never been established for metals or organics. Only threshold 

concentrations of metals on sewage sludge were legally established to regulate the 

application of this solid waste on agricultural soils (MAOTDR, 2006). However, but they 

are not appropriate for soil ERA purposes, once they represent different matrices with 

unequal characteristics and uses.   

he use of natural reference soils in ecotoxicological tests has been recommended by 

several authors (Kuperman et al., 2006; Römbke et al., 2006; van Assche et al., 2002). This 

is because the properties of the OECD artificial soil besides varying between batches 

prepared in different laboratories, they are also not representative of the great majority 

of natural soils (Hofman et al., 2009). Different levels of toxicity, for each contaminant,  

can  be expected in soils with different properties (Domene et al., 2011; Rooney et al., 

2007; Song et al., 2006; van Gestel et al., 2011), hence it is important each country 

derives their own SSVs using natural reference soils representing the main types of soils 
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within their territories. In this context, the main aim of this work was to obtain 

ecotoxicological data for U, performing soil enzymes activity tests, invertebrates and 

plant tests, using for that a Portuguese natural reference soil (PTRS1), that represents one 

of the dominant types of soil from a granitic region (cambisol) of the country (Caetano et 

al., 2012), to make a first proposal of a SSV for this metal.  

 

 2.2 Material and methods  

2.2.1 Test soil 

The natural soil (PTRS1) used as test substrate in this study was collected in Ervas Tenras 

[Pinhel, Guarda, Portugal center; geographical coordinates: 40o44’4.27’’N and 

7o10’54.3’’W)], at 655m altitude, in a granitic region.  

A composite soil sample was collected and immediately brought to the laboratory 

where it was air dried. Another portion of the soil, was immediately sieved through a 2 

mm mesh size and the sieved fraction (<2 mm) was stored in polyethylene bags, at -20 °C, 

until further analysis of soil microbial parameters. For the tests with soil organisms and 

plants, the soil was passed through a 4 mm mesh sieve and the sieved fraction (<4 mm) 

and defaunated through two freeze–thawing cycles (48 h -20 °C followed by 48 h at 25 °C) 

for the ecotoxicological tests.  

The physical and chemical properties (including total metal contents) of the PTRS1 soil 

were presented in a preliminary study by Caetano et al., (2012), (c.f., table in annex) 

aimed in characterizing this soil as a reference substrate for ecotoxicological purposes. 

Nevertheless, the main properties of the PTRS1 are described in Table II.1, of the results 

section. 

 

2.2.2. Test substance 

For all the test organisms, the natural soil was spiked with a stock solution of uranyl 

nitrate 6-hydrate, UO2(NO3)26H2O, (98%, PANREAC) prepared with deionized water 

filtered in a Milli-Q equipment (hereinafter referred as deionized water), in order to 

obtain a range of concentrations, which were ascertained by range finding tests 

performed with the different test species. 
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For soil enzyme tests, the PTRS1 soil was spiked with the following concentrations: 0.0, 

134.6, 161.5, 193.8, 232.5, 279.0, 334.8, 401.8, 482.2, 578.7, 694.4, 833.3, 1000 mg U Kg-

1
dw. To obtain these concentrations, the stock solution of uranyl nitrate was diluted in the 

amount of water required to adjust the soil moisture at 80% of its maximum water 

holding capacity (WHCmax). 

The following U concentrations were used to expose the earthworms in the 

reproduction tests: 0.0, 113.1, 124.4, 136.9, 150.5, 165.6, 231.9, 324.6, 454.5, 500.0, 

550.0, 605.0, 665.5 mg U Kg-1
dw. For potworms, collembolans and terrestrial plant assays 

the same range of concentrations was tested: 0.0, 167.4, 192.5, 221.4, 254.6, 292.7, 

336.6, 420.8, 526.0, 657.5, 756.1, 869.6, 1000 mg U Kg-1
dw.  

The amount of water required to adjust the WHC of the soil to 45% of its maximum 

value was used to dilute the stock solution for these tests.  

 

2.2.3 Ecotoxicological assessment 

2.2.3.1 Soil microbial activity 

Ten grams of sieved PTRS1 soil per replicate and concentration were spiked with different 

U concentrations; a total of three replicates were used per treatment. Six replicates with 

the same amount of soil only moistened with deionized water were also prepared for the 

control. The soil was incubated for 30 days, at 20±2ºC, and a photoperiod of 8hL: 16hD. 

During the incubation period, the soil moisture was weekly monitored by weighing the 

pots, and whenever needed it was adjusted to 80% of its WHCmax by adding deionized 

water. After the incubation period, 1g of soil per replicate and concentration was 

weighted and placed in falcon tubes, and then frozen to -20ºC, until analysis. Thereby, a 

total of 9 sub-replicates were made for each concentration. The soil was thawed at 4oC 

before analysis. 

The activity of arylsulphatase (ARYL), dehydrogenase (DHA), urease (UR), and cellulase 

(CELL) enzymes and changes in the nitrogen mineralization (NMIN) and potential 

nitrification (PN) were measured in the soil samples spiked with the different uranium 

concentrations.  
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For the determination of ARYL activity, the method proposed by  Tabatabai and 

Bremner, (1970) and Schinner et al., (1996) was followed. After addition of p-

nitrophenylsulfate, soil sub-samples were incubated for one hour, at 37°C. The 

nitrophenyl liberated by the activity of ARYL was extracted and colored with sodium 

hydroxide and determined photometrically at 420 nm. The results were expressed as μg 

p-nitrophenylsulfate (p-NP) g−1 soil dw h−1. The method proposed by (Öhlinger, 1996) was 

used to assess the DHA. The samples were suspended in a solution of trifeniltetrazol 

chloride (TTC) and incubated, at 40°C, for 24 hours. The triphenyl formazan (TPF) 

produced was extracted with acetone and measured spectrophotometrically, at 546 nm, 

and the results were expressed as µg triphenylformazan (TPF) g –1 soil dw h –1. 

The CELL activity was tested according to the method proposed by Schinner et al., 

(1996) and Schinner and von Mersi, (1990). The reducing sugars produced during the 

incubation period causes the reduction of hexacyanoferrate (III) potassium to 

hexacyanoferrate (II) potassium in an alkaline solution. The complex ferric 

hexacyanoferrate (II) has a blue coloration and is formed by the reaction of potassium 

hexacyanoferrate (II) with ferric ammonium sulphate in acid solution. The activity of CELL 

was then measured colorimetrically at 690 nm and expressed as μg glucose g− 1 soil dw 24 

h−1. NMIN activity was measured according to Schinner et al., (1996). For this purpose, 

the soil samples were incubated for 7 days, at 40°C. During this period, the organic forms 

of nitrogen are converted in inorganic nitrogen (NH4
+), which is determined by a 

modification of the Berthelot reaction, after extraction with potassium chloride. The 

reaction of ammonia with sodium salicylate in the presence of sodium 

dichloroisocyanurate formed a green colored complex, in alkaline pH that was measured 

at 690 nm. NMIN was expressed as μg nitrogen (N) .g−1 soildw d−1.  The UR activity was 

assayed according to the method proposed by Kandeler and Gerber, (1988) and Schinner 

et al., (1996). The samples were incubated for 2h, at 37°C, after addition of a buffered 

solution of urea. The released ammonia was extracted with a solution of potassium 

chloride and determined by the Berthelot reaction modified. The determination was 

based on the reaction of sodium salicylate with ammonia in the presence of chlorinated 

water, producing a green colored complex in alkaline pH. UR was detected at 690 nm and 
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expressed as μg nitrogen (N) g−1 soildw 2 h−1. The quantification of potential nitrification 

was determined by the method of Kandeler, (1996), which is a modification of the 

technique proposed by Berg and Rosswall, (1985). The ammonium sulphate was used as 

substrate, and soil samples were incubated for 5h, at 25°C. Nitrate released during the 

incubation period was extracted with potassium chloride and determined colorimetrically 

at 520nm. This reaction was expressed as μg nitrite (N) g–1 soil dw h–1.  

 

2.2.3.2 Invertebrate and plant tests  

2.2.3.2.1 Test organisms and culture conditions  

The earthworm Eisenia andrei (Oligochaeta: Lumbricidae), the potworm Enchytraeus 

crypticus (Oligochaeta: Enchytraeidae) and the springtail Folsomia candida (Collembola: 

Isotomidae) were used as invertebrate test organisms.  All organisms were obtained from 

laboratorial cultures, kept under controlled environmental conditions (temperature: 

20±2ºC; photoperiod: 16hL: 8hD).  The earthworms (E. andrei) are maintained in plastic 

boxes (10 to 50 L) containing a substrate composed by peat, dry and defaunated horse 

manure (through two freeze–thawing (48h at -20 ºC followed by 48h at 65 ºC), and 

deionized water. The pH of the culture medium is adjusted to 6.0 - 7.0 with CaCO3. The 

organisms are fed, every 2 weeks, with six tablespoon oatmeal previously hydrated with 

deionized water and cooked for 5 min. The potworms (E. crypticus) are cultured in plastic 

containers (25.5 cm length; 17.4 cm width; 6.5 cm height), which are  filled with pot soil 

moistened to the nearest 60% of its WHCmax and with pH adjusted to 6.0 ± 0.5. The 

organisms are fed twice a week with a teaspoon of macerated oat. The collembolans (F. 

candida) are maintained in plastic containers filled with culture medium composed by 

moistened Plaster of Paris mixed with activated charcoal 8:1 (w:w). They are fed with 

granulated dry yeast, twice a week, which is added half a teaspoon small amounts to 

avoid spoilage by fungi.  

Seeds from four plant species (two dicotyledonous and two monocotyledoneous), 

purchased from a local supplier, were used for seed germination and growth tests: Avena 

sativa, Zea mays, Lacuta sativa and Lycopersicon esculentum.   
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2.2.3.2.2 Reproduction tests with invertebrates 

The reproduction tests with E.andrei, E. albidus and F. candida were carried out according 

to the ISO guidelines 11268-2 (ISO, 1998), 16387 (ISO, 2004) and 11267 (ISO, 1999), 

respectively. Each replicate of the invertebrate tests contained 10 individuals in a certain 

developmental stage: the earthworms had a fully developed clitellum and an individual 

fresh weight between 250 and 600 mg; the potworms were 12-mm size; and the 

springtails were 10–12 days old. Five hundred grams of dry soil were weighted per test 

vessel for earthworms. For the tests with potworms and collembolans 20 g and 30 g of 

soil were weighted per replicate, respectively. Following an ECx sampling design, which 

considers more concentrations and less number of replicates, two replicates per 

concentration and five replicates for the control were prepared in the reproduction tests 

with E. andrei. Adult earthworms were removed from the test containers after 28 days. 

The produced cocoons persisted in the soil until 56 days have been completed. After this 

period, the juveniles from each test container were counted. During the test, organisms 

were fed once a week, with 5 g per box of defaunated horse manure (using the same 

procedure above described), and the soil moisture content was weekly monitored 

(following the procedures outlined in ISO guideline (ISO, 1998).  

The E. albidus reproduction test was held for 28 days and the adults were left in the 

vessels until the end of the test. About 2mg of rolled oats were placed on the soil surface, 

weekly to feed the animals. At the end of the test, the potworms were killed with alcohol, 

colored with Bengal red and counted according to the Ludox Flotation Method, as 

described in ISO 16387 (ISO, 2004). The reproduction tests with F. candida took four 

weeks to be completed. The collembolans were fed with granulated dry yeast, obtained 

from a commercial supplier, being weekly added (about 2 mg of yeast per test glass vessel 

container) to the soil surface. At the end of the test, the containers were filled with water 

and the juveniles were counted after flotation. The addition of a few dark ink drops 

provided a higher contrast between the white individuals and the black background. The 

organisms were then counted through the use of the ImageJ software 

(http://imagej.nih.gov/ij/). The exposure was carried out at 20±2ºC and a photoperiod of 

16L: 8D. For both species five replicates of uncontaminated natural PTRS1 soil were 
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prepared for the control. The same ECx sampling design applied for earthworms was 

followed. However, in order to reduce the variability of the results, three replicates were 

prepared per test concentration (instead of two for the earthworms).  

 

2.2.3.2.3 Seed germination and plant growth tests 

Germination and growth tests with terrestrial plants were performed following standard 

procedures described by the ISO guideline 11269–2 (ISO, 2005). For this purpose, 200 gdw 

of the spiked soil with the concentrations described above were tested. In this case, the 

amount of water required to adjust the WHCmax of the soil to 45% was used to dilute the 

stock solution and to moist the soil at the beginning of the test. The soil was placed in the 

plastic pots (11.7 cm diameter, 6.2 cm height) and twenty seeds were added to each pot 

and gently covered with the spiked soil. In the bottom of each plastic pot a hole was 

previously made to let a rope passing through. This rope made the communication with a 

cup filled with deionized water and placed under the test pot. The level of water in the 

lower recipient was adjusted whenever needed, as to guarantee the necessary conditions 

of moisture according to, the recommendations specified in (ISO, 2005). Five replicates of 

uncontaminated natural PTRS1 soil were prepared for the control, while three replicates 

were tested per concentration, in order to minimize the variability of the results, and to 

follow the ECx sampling design, similarly used for the invertebrate tests. 

At the beginning of the test, nutrients (Substral® - Plants fertilizer using 1 bottle cap for 

2 L of water proportion according to the manufacturer recommendation; Fertilizer NPK: 

6-3-6; nitrogen (N): 6%; phosphate (P2O5 ):  3%; potassium  (K2O): 6%; iron (Fe): 0,03%; 

trace elements: Cu, Mn, Mo and Zn), were added in each  lower recipient containing the 

water. Pots were maintained at constant conditions of temperature (20 ± 2oC), 

photoperiod (16hL: 8hD) and light intensity (25.000 lux). The endpoints seed germination, 

and fresh and dry biomass, above soil, were assessed for each species at the end of the 

exposures according to the methods outlined in ISO, (2005). 

For this work, a battery of enzymes involved in different biogeochemical cycles [S 

(sulfur cycle), N (Nitrogen cycle), C (Carbon cycle)], as well as enzymes more indicative of 

the good physiological conditions of the whole microbial community (e.g. dehydrogenase) 
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were selected. The species of invertebrates and plants were selected based on the 

availability of standard protocols. Since we aimed to obtain data for the derivation of 

SSVs, for regulatory purposes, this procedure is recommended.  

 

2.2.4 Statistical Analysis  

A one-way analysis of variance (one-way ANOVA) was performed to test significant 

differences between the uranium concentrations tested for each endpoint analyzed: the 

activity of enzymes, the number of juveniles produced by potworms and collembolans, 

the number of emerged seeds, and the fresh and dry mass of the plants. The Kolmogorov-

Smirnov test was applied to check data normality, whereas homoscedasticity of variances 

was checked by the Levene’s test. When these two assumptions of the one-way ANOVAs 

were not met, a Kruskal-Wallis analysis was performed. The statistical analysis was run in 

the SigmaPlot 11.0 software for Windows. When statistical significant differences were 

recorded, the Dunnett's (for parametric one-way ANOVA) or the Dunn’s test (for non-

parametric ANOVA) was carried out to perceive which concentrations were significantly 

different from the respective control. Based on the outcomes of the multiple comparison 

tests the NOEC (no-observed-effect-concentration) and LOEC (low-observed-effect-

concentration) values were determined. The EC20 and EC50 values for each endpoint were 

calculated whenever possible, after fitting the data to a logistic model using the 

STATISTICA 7.0 software. 

 
2.3 Results and Discussion  

2.3.1 Soil microbial activity 

As far as authors are aware, this study gathers for the first time more extensive data 

regarding the ecotoxicity of spiked soils with U on soil microbial parameters. Only a study 

from Sheppard and Evenden, (1992) has analyzed the effect of uranium on soil 

phosphatase activity in eleven different Canadian soils (including an agricultural, a boreal 

forest and a garden soil). This study recorded a significantly depressed activity only at the 

highest concentration tested (1000 mg U/Kg-1
dw) for all the soils. These results suggested 

that probably, soil phosphatase activity was one of the less sensitive soil microbial 
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parameters to uranium. In fact Pereira et al., (2006) also reported the low sensitivity of 

this parameter in  mine soils contaminated with metals. 

The variation in soil enzyme activities, NMIN and PN in the PTRS1 soil, spiked with 

different U concentrations, is shown in Figure II.1, and the Table II.1 summarizes toxicity 

values obtained for each biochemical parameter. 

U had a clear inhibitory effect in almost all functional parameters tested. Overall, DHA 

and UR were the most affected soil enzymes by U, being their activity significantly 

inhibited at concentrations equal or lower than 134.5 mg U kg-1 (Table II.1). DHA have a 

relevant role in the oxidation of soil organic matter (SOM), being a good indicator of the 

active microbial biomass in the soil compartment (Taylor et al., 2002). As such, U (in the 

form of uranyl) strongly affected the normal microbial activity in PTRS1 soil. Indeed, the 

inhibition of UR activities indicates that U had a deleterious effect on soil N-cycle (Figure 

II.1, Table II.1). The reduction in the activity of this enzyme may have been caused by a 

negative effect of U on the overall microbial biomass, which in turn  was also translated in 

a reduction in the oxidation rate of organic N into ammonium (Kandeler, 1996; Wang et 

al., 2011). ARYL is regularly involved in the S-cycle by catalyzing hydrolysis reactions in the 

biogeochemical transformation of S (Taylor et al., 2002). This parameter was significantly 

affected by U, at a LOEC of 279.0 mg U kg-1. On its turn, the CELL activity was significantly 

inhibited at intermediate U concentrations. However in the highest concentrations the 

tendency was reversed and the activity increased, but not for levels significantly different 

from the control (Figure II.1). Thereby, we can conclude that the C-metabolism associated 

with the degradation of soil organic matter and catalyzed by these extracellular enzymes 

(Alvarenga et al., 2008) was constrained by U. NMIN and PN are indicators of the 

functioning of the N-cycle, hence providing an overview of the activity of specific 

microbial groups (nitrifying bacteria) directly involved in both processes (Winding et al., 

2005). The general pattern of response observed for these two parameters corresponded 

to stimulation at the lower U concentrations and inhibition under the highest ones (Figure 

II.1), leading to EC50 values of 347.0 and 610.0 mg U kg-1 (Table II.1), respectively. It has 

been stated that NMIN is normally less sensitive than potential nitrification, since the 
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former is carried out by a wider diversity of microorganisms (Winding et al., 2005). 

However, our data showed the opposite (Figure II.1).  

The sensitivity of soil microbial parameters to metals has already been demonstrated 

by several authors, either in metal-polluted or in artificially spiked soils (e.g., 

Coppolecchia et al., 2011; Hu et al., 2013; Khan et al., 2007; Lee et al., 2009, 2011; Papa et 

al., 2010; Pereira et al., 2013). DHA and UR had generally been referred as the most 

affected enzymes for different metals (e.g., Cu, Pb, Zn, Cd, Fe, Cr, Ni), (e.g. Gülser and 

Erdoğan, 2008; Khan et al., 2007; Lee et al., 2009; Thavamani et al., 2012). ARYL and CELL, 

however, have shown contradictory responses in different studies. Some authors 

observed negative correlations between ARYL and CELL activities and Zn (Coppolecchia et 

al., 2011) and Cu concentrations respectively e.g. (Alvarenga et al., 2012; Antunes et al., 

2011), ; while others observed positive correlations between ARYL and Cd (Antunes et al., 

2011), and no changes on CELL activities in the presence of metals in urban soils was 

observed (Sivakumar et al., 2012). Usually, PN is negatively influenced by the presence of 

metals and metalloids such as Pb, Cu and As (Antunes et al., 2011; Pereira et al., 2006). 

The inhibitory effect of some metals like Zn, Cd and Pb on NMIN was also observed by 

(Dai et al., 2004).  

However, there are no available studies on the toxicity of U on soil microbial enzymes, 

except one (Antunes et al., 2011) that evaluated the effect of soils from an abandoned U 

mine (presenting a mixture of metals) on these microbial parameters. These author’s 

found negative correlations (based on the Spearman coefficient) between U levels in soil 

and the activities of CELL enzymes. For DHA, PN and ARYL no significant correlations were 

detected. Nevertheless and as previously mentioned, this study analyzed mining 

contaminated soils, where the mixture of metals, may cause either synergistic or 

antagonistic effects, and where a well-adapted and functional microbial community was 

likely established, since a more active disturbance of soils has stopped for some decades. 

The inhibition of soil enzyme activities recorded could has been caused by toxicological 

effects of metals on soil microorganisms with subsequent decrease in their abundance 

and/or biomass; and/or by the direct inactivation of extracellular enzymes by metals 

(Kızılkaya and Bayraklı, 2005). Although the toxicological mechanisms of metals on 
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enzyme activities are yet to be unraveled, their effect may either occur through 

complexation with the substrate or with the active binding sites of enzymes, or by 

reaction with the enzyme–substrate complex (Hinojosa et al., 2004). Notwithstanding, the 

levels of metals may be not the sole effect on soil microbial activity. Soil properties (e.g. 

pH, organic matter content, nutrients and soil texture) may also interfere and modulate 

the bioavailability and, consequently, the influence  of metals on soil enzyme activities 

and mineralization processes (Papa et al., 2010a; Turner et al., 2002). According to the 

literature, clays can retain and protect extracellular hydrolases, namely UR (Lee et al., 

2009). But the low clay content, of the PTRS1 soil (3.32%) (Table II.1), could has been 

responsible for a high bioavailability of U, leading to the impairment of soil microbial 

community through cytotoxic effects, which reduced the metabolic activity of 

microorganisms. Other investigations also showed the same evidence (Antunes et al., 

2011). Additionally, the low pH of PTRS1 soil (Table II.1.) has likely increased the 

availability of U and subsequently its impact on enzyme processes, PN and NMIN, 

particularly at higher U concentrations. On the other hand Coppolecchia et al., (2011) 

suggested that a decrease in pH under higher Zn concentrations might have enhanced the 

inhibition of ARYL activity recorded on their study. Although the interaction between 

uranium and abiotic factors was not tested in our study, the acidic pH of PTRS1 probably 

had some influence on ARYL response to uranium concentrations. Nevertheless, the 

PTRS1 is a common type of soil in the Portuguese territory, thus the results obtained will 

allow the derivation of more adjusted and ecologically relevant risk levels. 

The above results illustrated well the effects of U in the performance of soil enzymes, 

reinforcing the importance of these parameters as bioindicators of soil quality. Indeed, 

the EC20 values calculated for DHA (34.9 mg U kg-1), UR (<135.5 mg U kg-1), NMIN (152.2 

mg U kg-1) and ARYL (155.3 mg U kg-1) are within the environmental concentrations 

quantified in soils from an abandoned U mine, following extractions with aqua regia or 

with rainwater (Pereira et al., 2008). In this sense, the data herein generated represent a 

great asset for the derivation of SSVs, since they have a great ecological 

representativeness. 
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 Figure II.1 Response of the arylsulphatase, dehydrogenase, cellulase urease, activity, N mineralization and potential nitrification to soils spiked with a 
range of uranium concentrations. The error bars indicate the standard deviation. The asterisks sign out significant differences relatively to the control (0 
mg U Kg-1

dw), (P < 0.05). 
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2.3.2 Uranium toxicity to the reproduction of soil invertebrates 

The reproduction tests with the three invertebrate species revealed that E. andrei, E. 

crypticus and F. candida were quite sensitive to U in the PTRS1 soil. Tests fulfilled the 

validity criteria established by the standard guidelines (ISO, 2004, 1999, 1998). The 

resulting NOEC, LOEC, EC20 and EC50 values obtained in this study and toxicity data 

available in the literature are summarized in the Table II.1. 

The effects of U in the reproduction of E. andrei were evident, since statistical 

significant differences were found between the control and the highest tested 

concentrations of U for this organism (F = 5.218, d.f. = 23, p = 0.002), (Figure II.2). The 

tested metal did not significantly affect the reproduction of E. andrei at concentrations 

up to 500.0 mg U Kg-1 (NOEC) but compromised this endpoint for concentrations above 

550.0 mg U Kg-1 (LOEC). EC20 and EC50 values of U for E. andrei reproduction were 474.83 

mg U Kg-1 and 631.00 mg U Kg-1, respectively (Table II.1). The results obtained in our 

study, did not support the conclusions from other works (Sheppard and Sheppard, 2005), 

in which most of the organisms were not affected by U concentrations lower than 1000 

mg U Kg-1. Likewise, Sheppard and Stephenson, (2012) recorded no toxic effects for E. 

andrei below the same concentration in basic soils (carbonated) (pH 7.5, 18% organic 

matter, 18% clay). However, in the same work, the production of juveniles was 

compromised when organisms were exposed to U in two soils with a low percentage of 

organic matter (2.2% and 1%) and with a pH of 7.5 and 6.2, respectively. According to 

the literature, the adsorption of metals to soil components is dependent on its physical 

and chemical properties. Several studies  demonstrated, that soil properties such as e.g. 

pH, cation exchange capacity (CEC), CaCO3, Fe, manganese oxides, clay and organic 

matter content can influence the bioavailability and therefore the toxicity of chemicals 

to soil organisms (Domene et al., 2011; Römbke et al., 2006; van Gestel et al., 2011). 

Equally important, is the potential influence of soil properties in the behavior and 

performance of the test species. In their study, Sheppard and Stephenson, (2012) 

attributed the reduced rate of reproduction of E. andrei to the low organic matter 

content of the test soils, as E. andrei is an epigeic species with a high preference for 

organic matter rich soils. Further, Chelinho et al., (2011), observed that soils with an 
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organic matter content below 4% reduced or completely inhibited earthworms 

reproduction. However, the PTRS1 natural soil, has a high organic matter content, 6.2% 

(according to the classification provided by Murphy et al., (2012). Besides, as previously 

checked, the intrinsic properties of this soil did not compromise the performance of 

earthworms (Caetano et al., 2012). A high organic matter content of soils is usually 

related with a decrease in the  toxicity of the contaminants for the organisms, due to the 

high adsorption of chemicals to this soil constituent, resulting in a low bioavailable 

fraction of the chemical (Kuperman et al., 2006; Natal-da-Luz et al., 2011; Römbke et al., 

2006). However, this was not the case in the study. In fact, Lourenço et al., (2011a) and  

Lourenço et al., (2011b) exposed E. andrei to a uranium mine contaminated soil with a 

concentration of uranium of 215.72±8.50 mg U Kg-1, a pH of 7.79±0.01, and 7.71±0.60% 

of organic matter and observed that the bioaccumulation of uranium and of daughter 

radionuclides was in tandem with loss of DNA integrity of coelomocyte cells, changes in 

the frequency of cells of immune system and also with histopathological changes 

(especially of the epidermis and chloragogenous tissue and intestinal epithelium). A high 

bioavailability of uranium and other metals was also not expected with such soil 

properties however the effects observed in the epidermis and in the intestinal tract of 

earthworms suggested that not only soil properties governed the exposure of the 

organisms and the uptake of metals. In fact, some other authors (Hobbelen et al., 2006) 

had also suggested that the direct dermal exposure of the earthworms to metals in the 

soil pore water, the ingestion of water, polluted food and/or soil particles may strongly 

favor the bioaccumulation of metals. Since pH is variable in the different compartments 

of gastrointestinal tract of earthworms, it can increase the mobilization of contaminants 

from soil after its ingestion (Li et al., 2009; Peijnenburg and Jager T, 2003). 

Although, other metals were present in the contaminated soil tested by Lourenço et 

al., (2011a) and  Lourenço et al., (2011b) uranium likely had a crucial role in the toxic 

effects observed, because it’s content in whole body of the earthworms has significantly 

increased after 14 days of exposure and persisted till 56 days. These authors also 

suggested that the changes observed in DNA integrity were likely early warning indicators 

of effects on the growth and reproduction of the organisms. And in fact, effects on 
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reproduction were observed in our study, in organisms exposed to high uranium 

concentrations, as previewed by these authors. Further, conclusions made in the studies 

of Lourenço et al., (2011a) and  Lourenço et al., (2011b) about the role of uranium in the 

biological effects recorded are reinforced by the work of Giovanetti et al., (2010). These 

authors exposed earthworms, from the species E. fetida, to a soil (no information 

provided about the soil) contaminated with both natural and depleted uranium for 7 and 

28 days. Regarding natural U no mortality or significant changes in weight were observed 

for both exposure periods at U concentrations up to 600 mg kg-1
dw. The chloragogeneous 

tissue, the main storage tissue of U, presented meaningful changes after 7 days of 

exposure for concentrations ≥ 300mg U Kg-1, while DNA strand breaks were recorded, 

increasing in a dose dependent manner for concentrations above 150  mg U Kg-1. These 

concentrations of U were both close to the one quantified in the soil tested by  Lourenço 

et al., (2011b) supporting the likely dominant role of U in the toxic effects observed in 

their study.  

Regarding to E. crypticus, significantly differences in reproduction were obtained (F = 

31.05, d.f.= 12, p < 0.05), (Figure II.2). The reproduction of potworms was not 

significantly affected at concentrations of U up to 420.8 mg U Kg-1 (NOEC), and was 

significantly reduced above 526.0 mg U Kg-1 (LOEC), (Table II.1). The EC20 value estimated 

was 469.7 mg U Kg-1 and a 50% reduction in the number of juveniles produced (EC50) was 

estimated at a concentration of 518.6 mg U Kg-1. Although no toxicity values are 

reported for the lowest concentrations tested, enchytraeids showed considerable 

sensitivity to U, since the number of juveniles were minimal or no juveniles were 

produced by E. crypticus at concentrations above 657.5 mg U Kg-1 (Figure II.2). Despite 

enchytraeids are commonly used in standardized toxicity tests, to the best of our 

knowledge, no data are available in the literature regarding the effects of U on the 

reproduction of this test species. The available information concerns only the toxic 

effects caused by others metals, or  by natural soil properties in the reproduction of this 

species (Amorim et al., 2005b; Domene et al., 2011; Kuperman, 2004; Kuperman et al., 

2006; Peijnenburg et al., 1999). Thus, taking into account this literature review pH and 

CEC were the most important parameters controlling the high sensitivity of enchytraeids 

62 
 



Chapter II - Contribution for the derivation of soil SSV for Uranium, using a natural reference soil  

 

to metals. Additionally, and according to Kuperman et al., (2006), adults survival and 

juveniles production by E. crypticus can be maximized in natural soils with properties 

within the following ranges: 4.4 – 8.2 pH; 1.2 – 42% OM; 1 – 29% clay. The PTRS1 natural 

soil used as test substrate fell into in these ranges (Table II.1), and similarly to E. andrei, 

the reproduction of this species was not compromised during the validation of the PTRS1 

natural soil as a reference soil (Caetano et al., 2012), meaning that the soil properties did 

not limit the performance of E. crypticus.  

Concerning to F. candida, U affected the production of juveniles, as shown by a 

significant decrease of this endpoint along the concentrations tested (F = 11.6, d.f. = 12, p 

< 0.05) (Figure II.2). The number of juveniles was not significantly affected up to a U 

concentration of 675.50 mg U Kg-1 (NOEC), but it was significantly decreased for U 

concentrations equal to or greater than 756.10 mg U Kg-1 (LOEC). The EC20 value 

estimated for reproduction in our study was 343.41 mg U Kg-1 which is considerably 

lower than the toxicity data reported by Sheppard and Sheppard, (2005), EC20 >710 mg U 

Kg-1 in two loam soils with pH 7.5. The low sensitivity of F. candida to U was also 

observed by Sheppard and Stephenson, (2012) which tested 3 soils amended with a 

range of uranium concentrations and aged for 10 years before testing. In this study, the 

lowest EC20 value obtained was 840 mg U kg-1 in a loam soil (pH 7.5, 24% clay, 2.2% OM). 

Despite this, F. candida was more sensitive in the study of Sheppard and Stephenson 

(since their EC20 value was similar to the EC50 recorded in our study 851.64 mg U Kg-1) but 

these authors did not discard the impact of soil properties in the performance of the 

species. When considering the number of juveniles produced, U was less toxic to F. 

candida comparatively to E. andrei and E. crypticus. The lower sensitivity of F. candida is 

also consistent with other studies, when the effects of other metals in the reproduction 

of the three species was investigated (Kuperman, 2004; Koen Lock and Janssen, 2001), or 

even when  other species of  collembolans are tested (Sheppard and Stephenson, 2012). 

Besides other reasons, the exposure of F. candida to chemicals in soil is apparently lower 

than for earthworms, which are exposed both by ingestion of contaminated soil (mineral 

particles, organic matter and chemicals in the soil solution) and also through direct 

dermal contact (Layinka et al., 2011). Despite the widely known influence of soil 
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parameters on the bioavailability of chemicals and their influence on the reproduction of 

soil organisms, less is known about the intrinsic effects of physicochemical parameters of 

the soils in the reproduction of F. candida. In generally, several authors have reported a 

high tolerance of F. candida reproduction, to a wide range of soil textural classes, organic 

matter contents and soil pH (M Amorim et al., 2005; Domene et al., 2011; Jänsch et al., 

2011). Once again the performance of this species was not compromised by the intrinsic 

properties of the PTRS1 soil, hence the effects observed can undoubtedly be attributed 

to uranium exposure.  

Figure II.2 Reproductive output of EisenIa andrei, Enchytraeus crypticus and Folsomia candida 
exposed the natural soil PTRS1 spiked with different concentrations of Cu. Error bars indicate the 
standard error and asterisks sign out significant differences between the treatment and the 
control (0 mg U kg-1

dw), (p<0.05). 
 

2.3.3. Phytotoxicity of uranium  

Relatively to terrestrial plants, tests fulfilled all the validity criteria as described by the 

standard guidelines (ISO, 2005). Data obtained showed no adverse effects on seed’s 

emergence of all species tested. No significant differences in seeds germination were 

recorded between treatments (p > 0.05) for all the species tested. In opposition, it was 

possible to observe a relatively high rate of germination, either in monocotyledonous and 

dicotyledonous species (Figure II.3). An apparent hormetic effect was also recorded for 

the other endpoints measured for almost all the species tested. Such occurrence was also 

recorded by other author’s and it was attributed to the use of uranyl nitrate, as uranium 

test compound, which corresponds to a supplementary dose of N given to plants 

(Sheppard and Sheppard, 2005). The lack of sensitivity of seeds emergence endpoint was 
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somewhat expectable, based on previous results from other studies (e.g. Pereira et al., 

2009); seed coats form a barrier which protects embryos from exposure to a wide range 

of contaminants, especially metals. Thus, the germination relies almost exclusively on the 

seed reserves making it a less sensitive endpoint to the toxicity of soil pollutants toxicity 

(Liu et al., 2007). 

 

Figure II.3 Average number of emerged seeds in monocotyledonous, Avena sativa and Zea mays, 
and dicotyledonous species, Lycopersicon esculentum and Lactuca sativa exposed to PTRS1 soil 
contaminated with Cu. Error bars  indicate  the  standard  error  and  asterisks  represent  
significant  differences between the treatments and the control (0 mg U kg-1

dw), (p <0.05).  
 

With regard to production of fresh and dry-mass, it was possible to perceive that the 

tested plants displayed different sensitivities to this metal. However, no significant 

differences were generally observed comparatively to the control with except for L. sativa 

dry mass (H = 22.8, d.f. = 12, p = 0.029). Thus, and according to Figure II.4, L. sativa was 

the most sensitive terrestrial plant to U comparatively with all the other tested species in 

terms of dry mass yield. The high sensitivity of L. sativa was also found by Hubálek et al., 

(2007) and Soudek et al., (2011). This was probably caused by the high capacity of this 

species to bioaccumulate high concentrations of metals, including uranium (Pereira et al., 

2009). 
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The exposure of plants to metals, was already extensively studied, showing that these 

contaminants can induce biological effects on germination, growth and development, as 

well as, alterations in the nutrient profile of plants (Gopal and Rizvi, 2008; Pereira et al., 

2009). However, only some studies (e.g. Sheppard and Evenden, 1992; Sheppard et al., 

1992) and others reviewed (Sheppard and Sheppard, 2005) have assessed the 

ecotoxicological effects of U on terrestrial plant species.  
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Figure II.4 Average values of fresh and dry mass measurements in monocotyledonous, Avena sativa and Zea mays, and dicotyledonous species, 
Lycopersicon esculentum and Lactuca sativa grown in PTRS1 soil artificially spiked with Cu. Error  bars  represent  the  standard  error  and  the asterisks  
indicate  significant  differences  between the treatments and the control (0 mg U kg-1

dw) (P<0.05). 
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Based on our study, once again was proved the diverse ecotoxicological outcomes for 

U effects on plant species, since no effects were observed, in the range of tested 

concentrations for the three evaluated endpoints (in three out of four species), in the 

PTRS1. Similar results were obtained by Sheppard and Stephenson, (2012) in acidic soils 

(Table II.1), when testing the emergence and growth of wheatgrass Elymus lanceolatus. 

Like in our study, these authors did not observe any effect on this species in 

concentrations up to 1000 mg U Kg-1, including. In opposition, Sheppard and Sheppard, 

(2005) revised data on U toxicity to terrestrial plants and reported concentration effects 

(EC25) ranging from 300 to 500 mg U Kg1, considering only the most reliable studies. 

Stojanović et al., (2009) also reported phytotoxic effects of U on Zea mays exposed, on 

different types of soils, to concentrations of 250, 500 and 1000 mg U kg-1, but especially 

at the highest concentration tested and in the most acidic soil. However, no statistical 

analysis of the data was performed in this study.  

Soil properties are also the factors that most strongly affect U uptake and phytotoxic 

effects, (Soudek et al., 2011; Tunney et al., 2009; Vandenhove et al., 2007b). Parameters 

like pH, organic matter, clay minerals, carbonates, as well as Fe, Al and Mn oxides 

contents in soil, affect the bioavailability and toxicity of U to plants (Bednar et al., 2007; 

Vandenhove et al., 2007a). The bivalent uranyl ion (UO2
2+) is sorbed to the negatively 

charged surfaces of clay minerals and organic compounds. In acidic soils, but with the 

increase of pH, more negatively charged binding sites are available on mineral surfaces 

due to the progressive reduction of protons occupying these binding sites. However, pH 

values close to 6, like the one of the PTRS1, tends to favor the availability of U, since the 

concentrations of carbonates tends to increase, and U is released to the soil solution in 

the form of U-carbonate complexes (Vandenhove et al., 2007a). The natural soil PTRS1 

besides being an acidic soil, had a lower clay content, which thus means lower adsorption 

binding sites for the bivalent uranyl ion (UO2
2+), hence constraining the bioavailability of U 

in the test soils.  

Despite the likely availability of U in the PTRS1, other soil properties and plant 

mechanisms may explain the reduced sensitivity of the plants in comparison with soil 

microbial parameters and invertebrates (except for lettuce). In a study published by 
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(Viehweger and Geipel, 2010) a substantial increase in U absorption by Arabidopsis 

halleri, was attributed to Fe deficiency in the medium of hydroponically grown plants. 

With respect to this metal, in the natural PTRS1 soil, the analyses done by Caetano et al., 

(2012) showed that Fe surpassed the soil benchmark values proposed by two EPA regions 

(http://rais.ornl.gov/tools/eco_search.php). In this sense, it is hypothesized that the high 

Fe content of the PTRS1 natural soil, may have also contributed for reducing the 

absorption of U by plants.  As far as plant mechanisms are considered, in several studies 

reviewed by Mitchell et al., (2013) the transport of uranium within plants was reduced 

and higher uranium concentrations were consistently found in the roots. Using X-ray 

absorption spectroscopy (XAS) and transmission electron microscopy (TEM), Laurette et 

al., (2012) observed that when plants are exposed to U and phosphates, needle-like U-

phosphates are formed and precipitate, both outside and inside the cells, or persist in the 

subsurface of root tissues. The precipitation of U-phosphate complexes acts as a 

protective mechanism preventing U translocation to the shoots and leaves. This can also 

occur when the culture medium of the plants has no phosphate, since some plants are 

able to exudate phosphates. Further, U may be also absorbed like UO2
2+ and linked to 

endogenous organophospate groups (Laurette et al., 2012). In opposition, when 

translocation occurs within plants, U has mainly formed U-carboxylated complexes. Plants 

can also exudate organic acids to the rhizosphere environment or UO2
2+ may form 

complexes with endogenous compounds like malic, citric, oxalic and acetic acid (Laurette 

et al., 2012). In summary, the different mechanisms described above could explain the 

lack of toxic effects observed for A. sativa, Z. mays and L. esculentum, in opposition to L. 

sativa. Most concerning is the fact that the majority of studies testing the phytotoxicity of 

uranium, including those performed by us, were made with the addition of nutrients 

solution, which increased the availability of phosphates to the test soil, likely decreasing 

the sensitivity of plants to U. Hence, to enhance the protection level of SSVs derived for 

plants, more assays with different plant species should be performed and the addition of 

nutrients should be prevented, or at least the tests may include replicates with and 

without nutrients. 
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Biota Endpoint Soil type pH OM WRC (%) Clay NOEC LOEC EC20 EC50 Reference 
Arylsulphatase 5.91±0.098 6.5±0.004 23.94±1.839 3.3 232.5 279 155.3 (84.76-255.87) 295.6 (216.09-375.17) present study
Dehydrogenase 5.91±0.098 6.5±0.004 23.94±1.839 3.3  <  134.5 ≤ 134.5 34.9 (20.52-59.35) 110.3 (83.25-137.47) present study
Nitrogen mineralization 5.91±0.098 6.5±0.004 23.94±1.839 3.3 694.4 833.3 152.2 (46.66-257.79) 347.0 (211.25-482.91) present study
Celulase enzim. act. natural soil 5.91±0.098 6.5±0.004 23.94±1.839 3.3  ≤134.5 ≥ 134.5 n.d. n.d. present study
Urease 5.91±0.098 6.5±0.004 23.94±1.839 3.3  < 134.5 ≤ 134.5  < 134.5  < 134.5 present study
Potencial nitrification 5.91±0.098 6.5±0.004 23.94±1.839 3.3  < 134.5 ≤ 134.5 429.5 (229.53-629.46) 610.0 (459.07-761.11) present study

Eisenia andrei 5.91±0.098 6.5±0.004 23.94±1.839 3.3 500.0 550.0 474.8 (391.47-558.04) 631.0 (532.78-699.21) present study

Eisenia fetida 6.2 1.0 n.d. 2.0 n.d. n.d. >1000 n.d. Sheppard and sheppard, 2012

Eisenia fetida rep. natural soil 6.2 1.0 n.d. 2.0 n.d. n.d. >1120 n.d. Sheppard and sheppard, 2012

Eisenia fetida 7.5 2.2 n.d. >838 n.d. n.d. n.d. Sheppard and sheppard, 2005
Eisenia fetida 7.5 18.4 n.d. >994 n.d. n.d. n.d. Sheppard and sheppard, 2005

Enchytraeids crypticus rep. natural soil 5.91±0.098 6.5±0.004 23.94±1.839 3.3 420.8 526.0 469.7 (355.47-584.04) 518.6 (480.40-556.90) present study

Folsomia candida 5.91±0.098 6.5±0.004 23.94±1.839 3.3 675.5 756.1 343.4 (172.23-514.60) 851.64 (606.10-1097.18) present study

Folsomia candida rep. natural soil 7.5 2.2 n.d. 24 n.d. n.d. 840.0 n.d. Sheppard and sheppard, 2012

Folsomia candida 7.5 n.d. n.d. n.d. n.d. n.d. >720 n.d. Sheppard and sheppard, 2005

Avena sativa 5.91±0.098 6.5±0.004 23.94±1.839 3.3 ≥1000 >1000 n.d. n.d. present study

Zea mays 5.91±0.098 6.5±0.004 23.94±1.839 3.3 ≥1000 >1000 n.d. n.d. present study

Lactuca sativa 5.91±0.098 6.5±0.004 23.94±1.839 3.3 ≥1000 >1000 n.d. n.d. present study

Lycopersicon esculentum germ. natural soil 5.91±0.098 6.5±0.004 23.94±1.839 3.3 ≥1000 >1000 n.d. n.d. present study

Elymus lanceolatus 6.2 1.0 n.d. 2.0 n.d. >1000 n.d. n.d. Sheppard and sheppard, 2012

Elymus lanceolatus 7.5 2.2 n.d. 24.0 n.d. >1001 n.d. n.d. Sheppard and sheppard, 2012

Avena sativa 5.91±0.098 6.5±0.004 23.94±1.839 3.3 ≥1000 >1000 n.d n.d. present study

Zea mays 5.91±0.098 6.5±0.004 23.94±1.839 3.3 ≥1000 >1000 n.d n.d. present study

Lactuca sativa f. m. natural soil 5.91±0.098 6.5±0.004 23.94±1.839 3.3 ≥1000 >1000 n.d n.d. present study

Lycopersicon esculentum 5.91±0.098 6.5±0.004 23.94±1.839 3.3 ≥1000 >1000 n.d n.d. present study

Avena sativa 5.91±0.098 6.5±0.004 23.94±1.839 3.3 ≥1000 >1000 n.d. n.d. present study

Zea mays 5.91±0.098 6.5±0.004 23.94±1.839 3.3 ≥1000 >1000 n.d. n.d. present study

Lactuca sativa d. m. natural soil 5.91±0.098 6.5±0.004 23.94±1.839 3.3  < 167.4 ≤ 167.4 n.d. n.d. present study

Lycopersicon esculentum 5.91±0.098 6.5±0.004 23.94±1.839 3.3 ≥1000 >1000 n.d. n.d. present study

Zea mays 5.2 2.5 n.d. n.d. n.d. >100 n.d. n.d. Stojanivic et al.,2009

Average ± STDEV: pH (H2O); OM-organic matter (%) and WHCmax – maximum water holding capacity (%); Clay %; rep.-reproduction; germ.-germination; f.m.- fresh mass; d.m- dry mass; Enz. act.- enzyme activity; n.d.-not determined. 

(mg U Kg-1
dw)

Table II.1 Toxicity data for microbial processes, soil invertebrates and plants with effect concentrations as mg U kg-1
dw soil, with indication of the 95% confidence intervals
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2.3.4. Derivation of a Soil Screening Value (SSV) for uranium applying assessment 
factors 

Following the approach suggested by the Technical Guidance Document published by the 

European Commission (EC, 2003) in support of the Commission Directive 93/67/EEC on 

Risk Assessment for new notified substances, of the Regulation nº 1488/94 on Risk 

Assessment for existing substances and Directive 98/8/EC of the European Parliament and 

the Council, concerning the placing of biocidal products on the market a predicted no 

effect concentration for U in the PTRS1 soil was determined, based on the endpoint for 

which both the lowest NOEC and EC20 values were obtained. These values corresponded 

to arylsulfatase activity. Further, since more than three NOEC values were obtained in this 

study for at least three species, an assessment factor of 10 was applied, giving a PNEC 

value changing between 15.5 (EC20 based) and 23.3 (NOEC based) mg Kg-1. This value was 

six to four times lower than the PNEC value suggested by  Sheppard and Sheppard  [81], 

which was 100 mg U kg-1. 

 

2.4 Conclusion 

With the present study it was possible to generate a set of important ecotoxicological 

data for the derivation of a SSV for U using a Portuguese natural soil representative of a 

granitic region, where this type of mine exploration occurred. 

Soil Enzyme activities were clearly inhibited by U, namely in the highest concentration 

tested. The obtained results depended not only on the concentrations of U but also on 

the properties of soil, which were likely responsible for the great bioavailability of U and 

by the effects in soil microbial population and, consequently, in their activity. With the 

exception of CELL activity, it was possible to calculate the effect concentration values for 

the remaining enzyme activities, some of which were particularly sensitive to U (namely 

DHA and UR). Further, and comparatively, to the remaining effect concentrations 

obtained/estimated for invertebrates and plants, the soil microbial parameters were 

more sensitive to U contamination. Regarding DHA and UR activities, no NOEC values 

were obtained, hence it is possible that EC20 could be even lower than 100 mg U kg-1
dw. 
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The toxic effects of U in soil invertebrates were also confirmed, but the tested species 

showed a variable sensitivity to this metal in soil. The increasing order of species 

sensitivity to U based on EC50 values for reproduction was E. crypticus > E. andrei > F. 

candida. However, if EC20 values are considered F. Candida is the most sensitive 

invertebrate, since its EC20 value was 343.41 mg U Kg-1, compared to 474.83 mg U Kg-1 and 

469.76 mg U Kg-1 EC20 values estimated for E. andrei and E. crypticus, respectively. The 

EC20 value showed to be much more protective for F. candida comparatively to the EC50 

value obtained for the same species. Additionally, the EC20 values estimated were lower 

than the NOEC values for E. andrei and F. candida. Thus, the EC20 values estimated using 

the logistic model should be selected for the derivation of more protective SSVs. 

Relatively to plants the tested species showed no adverse effects caused by U in soil, with 

the exception of L. sativa in terms of dry mass yield. Considering the results obtained, it 

was possible to verify a great variability between the ECx values estimated in this study 

and those reported in the scientific literature. Multiple factors can contribute to this 

discordance, but probably at least for some species, soils physical and chemical properties 

were the main factors responsible for such differences. Although, this reinforces, at least 

in part, the importance of using natural soils representatives of the main types of soil 

from each region in ecotoxicological evaluations and in their use in the derivation of SSVs, 

the data generated suggests that the SSV derived for uranium, for Portuguese regions 

with soils similar to the PTRS1, was six times lower than the PNEC value proposed by 

Sheppard and Sheppard, (2005), (without including soil microbial community data). 

Nevertheless, as mentioned previously, more data with other plant species should be 

obtained following standard protocols. This SSV value is near the background values 

found in non-contaminated soils (Caetano et al., 2012; Pereira et al., 2008), but not in 

some areas with naturally occurring uranium anomalies in soils, where concentrations 

ranging between 13-724 mg U Kg-1 can be found (Pereira and Neves, 2012) .  
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Abstract 

In order to generate a set of ecotoxicological data useful in derivation of cadmium SSVs, a 

battery of ecotoxicological tests was carried out, in a Portuguese natural soil 

contaminated with cadmium. The toxicity of this metal was studied for microbial 

parameters, reproduction of invertebrates, seed germination and growth of terrestrial 

plants. 

We observed that cadmium slightly compromises enzymatic activity, with the most 

enzymes being affected at concentrations above 100 mg Cd kg-1
dw. Only, acid 

phosphatase and N mineralization were less tolerant to Cd, reducing their activity at 

concentrations equal or greater than 13.4 mg Cd kg-1
dw. The production of juveniles by 

soil invertebrates was constrained at low Cd concentrations, with E. crypticus proving to 

be the most sensitive species to this metal. The EC50 values obtained for these organisms 

were 8.3, 76.4 and 64.8 mg Cd Kg-1
dw, respectively. Seed germination in A. sativa and Z. 

mays was not compromised by tested concentrations being the EC50 values obtained for 

L. sativa and L. esculentum, 460, 919.04 mg Cd kg-1
dw, respectively. Dry mass was the most 

sensitive endpoint analyzed, with values among 20.4 mg Cd kg-1
dw for L. sativa and 185.1 

mg Cd k-1
dw for Z. mays.  

With data obtained in this work, we propose PNEC values to be used as a SSVs for Cd 

changing between 3.7 (EC20 based) and 3.5 (NOEC based) mg Kg-1
dw. This work is a good 

contribution for the establishment of national soil quality guideline values. 
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3.1 Introduction   

Persistent contaminants like metals are present in many soils worldwide, affecting human 

health and ecosystems. The contamination of soils and the subsequent effects in their 

quality, led to a growing concern regarding the protection of the diversity and ecological 

functions of this environmental compartment (CEC 2006a; CEC 2006b). During the last 

decade in several European countries new regulations for soil protection and 

conservation have been developed, and the basis and emphasis of these regulations 

changed progressively from the simple quantification of pollutants, as a measure of soil 

quality, to ecologically risk-based limits (Frank et al., 2008). In this context, many 

countries developed soil screening values (SSVs) or other risk-based quality criteria to be 

used in the risk assessment of contaminated sites. SSVs are defined as threshold 

concentrations of chemicals in soils which, when attained, a more detailed analysis is 

needed (Fishwick, 2004; Carlon, 2007). SSV was not the designation used by all the 

countries, but such variation also reflects the variability in the assumptions and in the 

procedures followed for the derivation of such values. The Netherlands, for example, 

defined the Target Values which are the levels below which, the risks to the ecosystems 

are negligible and no further investigation was required (Swartjes, 1999). The Basque 

country on its turn named their risk-based soil quality values as Indicative Values for 

Assessment (IVAs), with three different levels (A, B and C), being the level B the one 

below which the risk is acceptable (Urzelaiet et al., 2000). Outside Europe, USEPA defined 

the Ecological Soil Screening Levels (ECO-SSLs) to identify the chemicals of potential 

concern (COPCs) in soils (USEPA, 2003). Despite the designation (herein in this paper the 

generic term SSVs will be used), all of these benchmark values are particularly useful for 

the screening phase of the ecological risk assessment (ERA), aimed in identifying the soils 

that require an additional evaluation, based on more site-specific ecotoxicological and 

ecological data. The clear advantages of using SSVs rely on the speed and ease of 

application and the clarity of the conclusions for regulators and non-specialist 
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stakeholders (Carlon, 2007). Such advantages make these values a very useful tool for the 

management of contaminated land, even economically, since they can help to screen out 

several sites from more time consuming and expensive evaluations.  

In the Portuguese context, and in opposition to what was done for water resources, 

especially now, enforced by the Water Framework Directive (EC, 2000) and daughter 

directives, no soil protection values or risk limits for metals or  other contaminants were 

defined or even legally established. Therefore, when the assessment of contaminated 

sites is performed, values from other countries have to be used (e.g. Pereira et al., 2006).  

In Europe the attainment of the final text of the soil framework directive and its final 

approval has been delayed, mainly due to the lack of agreement between member states 

regarding the best approach to identify risk areas and/or prior areas for intervention 

within their territories (ENDS Europe, 2007). In fact the lack of a national risk assessment 

framework, or at least of a common accepted procedure, and the lack of legally 

established SSVs at the European level or at each member state level, is also contributing 

for the inexistence of a more broad soil protection policy within the European Union.  

SSVs are determined based on toxicity data for plants, invertebrates, soil microbial 

processes (Swartjes, 1999; Sheppard and Sheppard, 2005; Kuperman, 2004) and 

sometimes data for mammals and birds, like the ECO-SSLs from USEPA (USEPA, 2003), or 

even based on background concentrations, like the Target Values from The Netherlands. 

These values were first defined based on ecotoxicological data, but later re-derived based 

on the 95% percentile of the background concentrations measured for 24 different 

contaminants on top soils, from agricultural areas and nature reserves from different 

regions of the country (Swartjes et al., 2012). Sometimes, they are also limited for soils 

falling within a given range of specific soil parameters (USEPA, 2003). In fact, knowing 

that soil properties influence metal partitioning and speciation and, therefore, their 

bioavailability and ecotoxicity (Amorim et al., 2005; Rooney et al., 2006; Criel et al., 2008; 

Domene et al., 2010; van Gestel et al., 2011) it is easy to accept that data acquisition for 

the derivation of SSVs should be conducted in natural soils, representatives of geological 

heterogeneity of each country, which is particularly high within the European Union 

(Rombke and Amorim, 2004). This will reduce the uncertainty associated with risk 
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characterization in the former tier of the ERA process which relies on these values. In fact, 

as  it was summarized by Bone et al., (2010)  there is a straight link between several soil 

properties and the ability of soils to act as a source of contaminants, affecting both water 

resources and the exposed biota. 

Cadmium was chosen for this study because, is one of the most toxic metals (van 

Gestel & Mol 2003) and is also one of the top pollutants associated with battery recycling 

sites, improper dumpsites, mining and smelter areas and chemical manufacturing areas 

all over the world (Blacksmith Institute and Green Cross, 2012). Soils may also be polluted 

with Cd by agricultural activities like soil applications of commercial phosphate fertilizers, 

sewage sludge, manure and lime (Adriano, 2001; Adams et al., 2004; Kidd et al., 2007; 

Monteiro et al., 2009; Nagajyoti et al., 2010). This metal, like the others, occurs 

naturally in the earth's crust, and may also enter the atmosphere due to the weathering 

of rocks, windblown soil, and volcanoes. However, more than 90% of Cd in the surface 

environment is from anthropogenic sources (Pan et al., 2010; Roca-Perez et al., 2010). As 

far as the mining activity is considered Cd usually occurs in association with Zn ore 

sphalerite and is recovered as byproduct of Zn mining. In the soil solution, Cd form  

complex  ions  with  chloride  (CdCl+, CdCl3-,  CdCl42-), hydroxyl groups CdOH+, Cd(OH)3-, 

Cd(OH)4
2-], and bicarbonate, as well as neutral soluble species such as cadmium sulphate 

(CdSO4) and cadmium chloride (CdCl2) (Alloway, 1995; Kabata-Pendias and Mukherjee, 

2007). 

Toxicity of Cd in soils has been assessed by several authors with several bioassays and 

different species (Lock and Janssen, 2001; An et al., 2004; Sagardoy et al., 2009; Bur et al., 

2010; Novais et al., 2011), and the behavior of this metal in the soil matrix could be 

explained mainly by variations in soil pH, organic matter content and by other soil 

properties (van Gestel and van Diepen, 1997; Sauvé et al., 2000; Barančíková et al., 2004; 

Kirkham, 2006). Therefore, the soils used to derive ecotoxicological data, may influence 

the bioavailability of Cd and subsequently its toxicity.  

In this context, the purpose of our study was to obtain ecotoxicological data for Cd, 

performing soil enzymes activity tests, invertebrates and plants tests, using a Portuguese 

natural reference soil (PTRS1) as test substrate.  
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3.2 Material and methods  

3.2.1 Test soil 

A Portuguese natural soil (PTRS1), already characterized as a reference substrate for 

ecotoxicological purposes by Caetano et al., (2012), (c.f., table in annex), was used in this 

study. This soil, whose physical and chemical properties (including total metal contents) 

was from a granitic region located in the center of the country, Ervas Tenras [(Pinhel, 

Guarda: 40o44’4.27’’N and 7o10’54.3’’W)]. The soil was collected and immediately 

brought to the laboratory. A portion of the soil, was immediately sieved through a 2 mm 

mesh size and the sieved fraction (<2 mm) was stored in polyethylene bags at -20°C until 

further use for soil enzymes activity measurements. For the tests with soil organisms and 

plants, the soil was air-dried and then passed through a 4 mm sieve and the sieved 

fraction (<4 mm), and defaunated through two freeze–thawing cycles (48 h -20 °C 

followed by 48 h at 25 °C) at room temperature.  

 

3.2.2. Test substance 

For all the tests, the natural soil was spiked with a stock solution of cadmium sulfate 

CdSO4, (99%, Sigma) prepared with Milli-Q water, in order to obtain the different ranges 

of concentrations tested which were ascertained by range finding tests performed with 

the different test species. 

For soil enzyme tests, the PTRS1 soil was spiked with the following concentrations: 0.0, 

13.4, 16.1, 19.3, 23.2, 27.9, 33.4, 40.1, 48.2, 57.8, 69.4, 83.3, 100.0 mg Cd kg-1
dw. The 

stock solution of cadmium sulfate was diluted in the amount of water required to adjust 

the WHC to 80% of its maximum value.  

The following Cd concentrations were used to expose the earthworms, collembolans 

and four terrestrial plant species: 0.0, 35.0, 42.0; 50.4, 60.4, 90.7, 136.0, 204.1, 306.1, 

459.2, 688.9, 826.6, 992.0 mg Cd kg-1
dw. In the case of potworms the following 

concentrations were used: 0.0, 7.0, 7.7, 8.4, 9.3, 1.6, 14.5, 18.2, 22.7, 28.4, 35.5, 39.1, 

43.0 mg Cd kg-1
dw. The amount of water required to adjust the WHC of the soil to 45% of 

its maximum value was used to dilute the stock solution for tests with invertebrates and 

plants.  
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3.2.3 Ecotoxicological assessment 

3.2.3.1 Soil microbial activity 

Three replicates per test concentration were prepared for each enzyme assay. For the 

control, six replicates, only spiked with deionized water filtered in a Milli-Q equipment 

(hereinafter referred as deionized water) were prepared. The replicates were incubated 

for 30 days, at 20±2°C; photoperiod: 16hL: 8hD. During the incubation period, the soil 

moisture was continuously monitored and adjusted to 80% of its WHCmax. After the 

incubation period, 1g of soil per replicate and concentration was weighted and placed in 

falcon tubes, and then frozen to -20ºC, until analysis. Thereby, a total of 9 sub-replicates 

were made for each concentration. The soil was thawed at 4oC before analysis. The 

activity of urease (UA), cellulase (CEL), dehydrogenase (DHA), and acid phosphatase (ACP) 

were tested, as well as changes in the nitrogen mineralization (NMIN). 

The UA activity was assayed according to the method proposed by Kandeler and 

Gerber, (1988) and Schinner et al., (1996) The samples were incubated for 2h, at 37°C, 

after the addition of a buffered solution of urea. Ammonia released was extracted with a 

solution of potassium chloride and determined by the modified Berthelot reaction. The 

determination was based on the reaction of sodium salicylate with ammonia in the 

presence of chlorinated water, producing a green colored complex in alkaline pH. UR was 

detected at 690nm and expressed as μg nitrogen g−1 soildw 2 h−1. The CELL activity was 

tested according to the method proposed by Schinner and von Mersi, (1990) and Schinner 

et al., (1996). The reducing sugars produced during the incubation period caused the 

reduction of hexacyanoferrate (III) potassium to hexacyanoferrate (II) potassium in an 

alkaline solution. This last compound reacts with with ferric ammonium sulphate in acid 

solution to form a ferric complex of hexacyanoferrate (II), of blue staining. The activity of 

CELL was measured colorimetrically, at 690 nm, and expressed as μg glucose g− 1 soil dw 24 

h−1. The method proposed by Öhlinger, (1996) was used in order to assess the DHA. The 

samples were suspended in a solution of trifeniltetrazol chloride (TTC) and incubated at 

40°C for 24 hours. The triphenyl formazan (TPF) produced was extracted with acetone 

and measured spectrophotometrically at 546 nm and the results were expressed as µg 

triphenylformazan (TPF) g–1 soildw h–1. The acid phosphomonoesterase activity was tested 
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according to, the method proposed by Schinner et al., (1996). After addition of the 

buffered solution of p-nitrophenyl phosphate soil samples were incubated for 2h, at 35°C. 

The p-nitrophenol released by the phosphomonoesterase activity was extracted with 

sodium hydroxide, producing a yellow color that was measured spectrophotometrically at 

405nm and expressed as μg nitrophenol (NP).g−1. NMIN activity was measured according 

to Schinner et al., (1996).The soil samples were incubated for 7 days, at 40°C. During this 

period, the organic forms of nitrogen led to nitrogen in inorganic form (mainly 

ammonium ion, NH4
+), which was determined by a modification of the Berthelot reaction 

after extraction with potassium chloride. The reaction of ammonia with sodium salicylate 

(NH3) in the presence of sodium dichloroisocyanurate formed a green colored complex 

with the addition of alkaline pH and it was measured at 690 nm. NMIN was expressed as 

μg nitrogen (N).g−1 soildw d−1 

 
3.2.3.2 Invertebrate and plant tests  

3.2.3.2.1 Test organisms and culture conditions  

The toxicity of Cd was assessed using the earthworm Eisenia andrei (Oligochaeta: 

Lumbricidae), the potworm Enchytraeus crypticus (Oligochaeta: Enchytraeidae) and the 

springtail Folsomia candida (Collembola: Isotomidae). All organisms were obtained from 

laboratorial cultures, kept under controlled environmental conditions (temperature: 

20±2ºC; photoperiod: 16hL: 8hD). The earthworms (E. andrei) were maintained in plastic 

boxes (10 to 50 L) containing a substrate composed by peat, dry and defaunated horse 

manure (through two freeze–thawing, 48h at -20 ºC followed by 48h at 65 ºC), water and 

CaCO3 to adjust the pH between 6 and 7. The organisms were fed every 2 weeks with six 

tablespoon oatmeal previously hydrated with deionized water filtered in a Milli-Q 

equipment (hereinafter referred as deionized water) and cooked for 5 minutes. The 

potworms (E. crypticus) were cultured in a box (25.5 cm length; 17.4 cm width; 6.5 cm 

height), which was filled with pot soil moistened to the nearest 60% of its water holding 

capacity (WHCmax) and with a pH adjusted to 6.0 ± 0.5. The organisms are fed twice a 

week with a teaspoon of macerated oat. The collembolans (F. candida) were maintained 

in plastic containers filled with a culture medium composed by moistened Plaster of Paris 
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mixed with activated charcoal 8:1 (w:w). They are fed with granulated dry yeast, twice a 

week, which is added half a teaspoon small amounts to avoid spoilage by fungi.  

Seeds from four plant species (two dicotyledonous and two mocotyledoneous) were 

purchased from a local supplier and used for seed germination and growth tests: Avena 

sativa, Zea mays, Lacuta sativa and Lycopersicon esculentum.   

 

3.2.3.2.2 Reproduction tests with invertebrates 

The reproduction tests with invertebrates were carried out according to the ISO 

guidelines 11268-2 (ISO, 1998)  for E. andrei, 16387 (ISO 2004) for E. crypticus and 11267 

(ISO 1999) in case of F. candida. Each replicate of invertebrate tests contained 10 

individuals in a certain developmental stage: the earthworms had a fully developed 

clitellum and an individual fresh weight between 250 and 600 mg, the potworms were of 

12-mm size and the springtails were 10–12 days old. Five hundred grams of dry soil was 

weighted per test vessel for earthworms. For the tests with potworms and collembolans 

20 and 30 g of soil were weighted per replicate, respectively. Following an ECx sampling 

design, which considers more concentrations and less number of replicates, two 

replicates per concentration and five replicates for the control were prepared in the 

reproduction tests with E. andrei. Adult earthworms were removed from the test 

containers after 28 days. The produced cocoons persisted in the soil until 56 days have 

been completed. After this period, the juveniles from each test container were counted. 

During the test, organisms were fed once a week, with 5 g per box of defaunated horse 

manure (following the same procedure above described), grounded and sieved horse 

manure and the soil moisture content was adjusted.  

The duration of the E. crypticus reproduction tests was 28 days and the adults were 

left in the vessels until the end of the test. About 2mg of rolled oats were placed on the 

soil surface weekly to feed the animals. At the end of the test, the potworms were 

sacrificed  with alcohol, colored with Bengal red and counted according to the Ludox 

Flotation Method, as described in 16387 (ISO, 2004). The reproduction tests with F. 

candida took four weeks to be completed. The collembolans were fed with granulated dry 

yeast, obtained from a commercial supplier, being weekly added about 2 mg of yeast per 
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test vessel. At the end of the test, the test containers were filled with water and the 

juveniles were counted after flotation. The addition of a few dark ink drops provided a 

higher contrast between the white individuals and the black background. Organisms were 

counted afterwards by using ImageJ software (online available, 

http://rsb.info.nih.gov/ij/download.html). The exposure was carried out at 20±2°C and a 

photoperiod of 16L: 8D. For both species five replicates of uncontaminated natural PTRS1 

soil were used as controls. The same ECx sampling design applied for earthworms was 

followed. However, in order to reduce the variability of the results, we prepared three 

replicates per test concentration. Controls in tests also included five replicates of calcium 

sulphate controls (CaSO4.2H2O), and the concentrations were based on the highest 

sulphate concentrations tested, namely 3380.70, 8.24 and 285.4 mg CaSO4.2H2O kg-1
dw 

for E. andrei, E. crypticus and F. candida, respectively.  

 

3.2.3.2.3 Seed germination and plant growth tests 

The standard procedure described by the ISO guideline 11269–2 (ISO 2005) was used to 

assess the effect of Cd in the germination and growth of four species of terrestrial plants. 

For this purpose, 200gdw of the spiked soil with the same concentrations previously 

mentioned were tested (cf. section 3.2.2). In this case, the amount of water required to 

adjust the WHCmax of the soil to 45% was used to dilute the stock solution and moist the 

soil at the beginning of the test. The soil was placed in the plastic pots (11.7 cm diameter, 

6.2 cm height) and twenty seeds were added to each test pot being afterwards gently 

covered with soil. In the bottom of each plastic pot a hole was previously made to let a 

rope passing through, hence allowing communication with the pot filled with distilled 

water and the test pot on it. The level of water in the lower recipient was adjusted 

whenever needed, to keep soil moisture constant. Five replicates of uncontaminated 

natural PTRS1 soil were used for the control, while three replicates were performed per 

concentration in order to minimize the variability of the results, and by following the 

same ECx sampling used for the invertebrates. For each plant test five replicates of 

calcium sulphate with 1913.6 mg of CaSO4.2H2O kg-1 were also included as an additional 

control. At the beginning of the test, nutrients (Substral® - Plants fertilizer using 1 bottle 
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cap for 2 L of water proportion according to the manufacturer recommendation; Fertilizer 

NPK: 6-3-6; nitrogen (N): 6%; phosphate (P2O5 ): 3%; potassium  (K2O): 6%; iron (Fe): 

0,03%; trace elements: Cu, Mn, Mo and Zn), were added to each  water containing 

recipient.. Pots were maintained at constant conditions of temperature (20 ± 2oC), 

photoperiod (16hL: 8hD) and luminosity (25.000 lux). Seed germination, fresh and, dry 

biomass above soil, were the endpoints assessed for each species at the end of the 

exposures.  

For this work, a battery of enzymes involved in different biogeochemical cycles, N 

(Nitrogen cycle), C (Carbon cycle)], as well as enzymes more indicative of the good 

physiological conditions of the whole microbial community (e.g. DHA) were selected. The 

species of invertebrates and plants were selected based on the availability of standard 

protocols. Since we aimed to obtain data for the derivation of SSVs, for regulatory 

purposes, this procedure is recommended.  

 

3.2.4 Statistical Analysis  

To determination of significant differences between treatments for each endpoint 

analysed (activity of enzymes, number of juveniles produced by potworms and 

collembolans, number of emerged seeds, the fresh and dry mass of the plants), a one-way 

analysis of variance (one-way ANOVA) was carried out. When ANOVA assumptions were 

not met a Kruskal-Wallis analysis was performed (SigmaPlot 11.0 for Windows). To assess 

significant differences between the control and spiked soils, Dunnet method was 

performed (SigmaPlot 11.0 for Windows). The NOEC (no-observed-effect-concentration) 

and LOEC (low-observed-effect-concentration) values were determined, based on the 

outcomes of the multiple comparison tests. The logistic model was used for calculate the 

ECx values of metal concentration producing a 20% (EC20) or 50% (EC50) reduction in the 

tested endpoints. The statistical analyses were performed using STATISTICA 7.0 software. 
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3.3 Results and discussion  

3.3.1 Soil microbial activity 

The variation in soil enzyme activities and NMIN in the PTRS1 soil, contaminated with a 

range of Cd concentrations, is given in Figure III.1. Table III.1 summarizes the toxicity 

values obtained for each biochemical parameter. 

Some of the functional parameters tested were clearly inhibited by Cd added to the 

soil being ACP activity and NMIN the less tolerant microbial parameters to Cd, (Table 

III.1). The general pattern of response observed for these parameters corresponded to an 

inhibition, starting on the lowest Cd concentrations (LOEC= 13.4 mg Cd kg-1
dw), (Figure 

III.1), and leading to an EC50 value of 40.2 mg Cd kg-1
dw in case of ACP (Table III.1). ACP is 

one of the many phosphatases in soils and it is an extracellular enzyme secreted by plants 

and microorganisms, being largely responsible for the mineralization of organic 

phosphate compounds to inorganic forms, in more acidic soils, which are the only forms 

taken up by plants and microorganisms (Rao et al., 2000; Huang and Shindo, 2000). 

Similarly, previous researches also showed a  significant  inhibition of ACP activity with an 

increasing concentration of Cd. Dar, (1996) also reported a significant decrease in activity 

of this enzyme at 50 mg Cd kg−1 in a sandy-loam soil (pH 7.9), while Khan et al., (2010) 

observed a 30.6 % inhibition for the highest Cd concentration tested (5 mg Cd kg-1) 2 

weeks after the contamination of a soil, with pH 7.9 and 9.3% of clay. Tejada et al., 

(2011), observed no significant inhibition of alkaline phosphatase activity for Cd 

concentrations up to 250 mg kg-1, in a soil with low organic matter content (4.1±0.8).  

The inhibition of enzymatic activity in soil could be explained either by metal induced 

changes in the expression of enzymes or with changes in the viability of soil 

microorganisms (Papa et al., 2010a). A combination of both factors is also possible. In our 

work, the decrease in ACP activity may be associated to Cd-promoted changes in the 

overall microbial community structure. This hypothesis is supported by a concomitant 

decrease in the mineralization of nitrogen compounds for all the concentrations tested, 

which was an indication of disturbances in specific microbial groups and subsequently on 

the N-cycle (Winding et al., 2005). Dai et al., (2004) also observed a negative correlation 
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between NMIN and Cd content of soil samples, which reinforces the sensitivity of the 

microorganisms specifically involved in N-cycle to this metal.  

The UA activity was affected by Cd in our study, although no significant differences 

between tested concentrations and control were recorded for this microbial parameter (p 

> 0.05). The response observed corresponded to a stimulation at the lowest Cd 

concentrations and an inhibition for the highest ones (Figure III.1). An EC20 of 47.8 mg Cd 

Kg-1
dw

 was calculated while the EC50 value calculated was greater than the highest tested 

concentration (Table III.1). Similar sensitivity for this soil microbial parameter was 

observed by Pan and Yu, (2011) that registered an inhibition of 23% in UA activity in a 

brown soil exposed to 50 mg kg-1
dw of Cd, for 10 days. Hassan et al., (2013) recorded the 

minimum UA activity at the utmost Cd level (200 mg kg-1), after 30 days of incubation of a 

sandy loam soil.  

UA is an extracellular enzyme closely related to the N-cycle since it is involved in the 

hydrolysis of urea to ammonium and carbon dioxide (Kandeler et al., 1996; Wang et al., 

2011) and their activity is mainly associated with soil clay, being well known the  

protective role of this soil component. This is reflected in the work of Dar, (1996) and 

Hassan et al., (2013) who found more prominent effect of Cd in sandy loam than in clay 

loam and loam soils. This  could be explained by the existence of more  cation-exchange  

sites  in  clay  loam  and  loam  textured  soils,  particularly due to the presence of clay 

minerals and organic complexes, which can bind the Cd2+ rendering it less available 

(Hassan et al., 2013). Accordingly, the physical-chemical characteristics of soils play a 

fundamental role in metal complexation and, subsequently, in their effects on the soil 

biochemical parameters (Papa et al., 2010; Tejada et al., 2011). Thus, soil enzyme 

activities and the mineralization process depend from both metal levels and soil 

properties. Thereby the combination of both, the low clay content of the PTRS1 soil 

(3.2%), and the high Cd concentrations tested may have been responsible for the 

impairment in the activity of this enzyme.  

DHA activity displayed highly variable results on available studies, probably due to 

differences in the tested soils in terms of physical and chemical properties and in the 

diversity of corresponding soil microbial communities (Moreno et al., 2009), the period of 
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incubation, as well as other factors. Pan and Yu, (2011) for example observed an 

inhibition of 37.8% in the DHA activity in a brown soil exposed to 100 mg kg-1 of Cd, for 10 

days. Tejada et al., (2011) only observed 26.2% of inhibition in the activity of DHA for the 

highest Cd concentration tested (250 mg kg-1), after 120 days of exposure of a Plagic 

Antrosol, with a very low organic matter percentage. Moreno et al., (2009) observed a 

highly significant inhibition, after 7 days of incubation, in the activity of DHA and UA 

activity in a forest and shrubland soil contaminated with 12.5 mg Kg-1 of Cd. In our study 

no significant inhibition of DHA activity was observed in comparison with the control, for 

all the Cd concentrations tested. The EC20 value obtained for this enzyme was greater 

than 100 mg Cd kg-1
dw, the highest tested concentration (Figure III.1). Since DHA is an 

intracellular enzyme, from the electron transport system, found in viable cells (Nielsen 

and Winding, 2002) it gives an indication of the impact on the viability of the soil 

microbial community (Taylor et al., 2002). Therefore, we can hypothesize that either 

concentrations of Cd up to 100 mg kg-1 did not affect the overall soil microbial community 

in the PRS1, or that after one month, the most affected taxa from the community, were 

replaced by more tolerant ones, mimicking the potential impairment on DHA activity. In 

fact, the second hypothesis seems more acceptable, especially when a joint analysis of 

the results, for all the biochemical parameters analysed, is made. This is also reinforced 

by previous studies which demonstrated more severe effects of Cd on the soil microbial 

activity of a forest soil, after 7 days of exposure, rather than after 60 days (Moreno et al., 

2009).  

CEL was lightly inhibited, but not significantly, at some intermediate Cd concentrations 

and no inhibition occurred at higher concentrations. The activity of this enzyme in our 

study may have been more related with fungi rather than soil bacteria. Besides bacteria, 

also fungi organisms are capable to produce cellulolytic enzymes (Baldrian and Valásková, 

2008). Additionally, several studies have shown that bacteria are more sensitive to metals 

than fungi (Stefanowicz et al., 2008), namely to Cd (Vig et al., 2003). Thereby, in case of 

soil contamination, it is hypothesized that the fungi community may have ensured the 

production of these enzymes due to their low sensitivity to soil contamination. 
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According to Hinojosa et al., (2004b) organic matter also modulates the nature and 

degree of inhibition of soil enzymes by metals. Low organic matter reduces the potential 

of the soil to inactivate metals via complexation or sorption reactions and increases the 

availability of metals and their impact on enzymatic processes (Speir et al., 1995). The 

PTRS1 soil used in our study has a high percentage of organic matter (6.2%), which can 

also contribute for explaining the low sensitivity of the majority of soil microbial 

parameters evaluated in this study, at least up to the concentration of 100 mg kg-1 of Cd, 

which can already be considered an extremely high concentration in an environmental 

perspective. 

In summary, as it was possible to perceive, with the analysis of published data, the 

sensitivity of the soil microbial parameters is quite variable, depending on the metal 

tested (e.g. Caetano et al., (a,b, c, submitted)) and the soil properties, therefore their 

integration in the derivation of soil screening values (SSVs) is a good justification for using 

natural soils for obtaining SSVs with more regional relevance. Nevertheless, doubts still 

persist about the best exposure period for enzyme assays. A general analysis of the 

results obtained by different authors, suggest that lower exposure periods may be 

overprotective, as they do not reflect possible adjustments of the soil microbial 

community that can overcome the former impacts on soil functions. 
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Figure III.1 Soil enzyme activities and N mineralization in PTRS1 soil spiked with a range of cooper 

concentrations. The error bars indicate the standard deviation. The asterisks sign out significant 

differences relatively to the control (0 mg Cd Kg-1
dw), (P < 0.05). 

 

3.3.2 Cadmium toxicity in soil invertebrate’s reproduction   

All the reproduction tests reported complied with the validity criteria for negative 

controls defined in the respective standard guidelines (ISO 11268, 1998, ISO 16387, 2004; 

and ISO 11267, 1999) for the three invertebrate species. The reproduction of all 

invertebrates was clearly compromised by Cd, being the number of juveniles significantly 

lower than the numbers recorded in the controls, even at the lowest concentrations 

tested (Figure III.2). Sulphate controls for all the tests showed no statistically significant 

effects on reproduction endpoints compared with distilled water controls (P > 0.05). 

Significantly differences in reproduction of E. andrey were obtained between control 

and the tested concentrations of (F = 68.2, d.f. = 12, p < 0.001). For this invertebrate, EC20 

and EC50 values calculated were 37.2 and 76.4 mg Cd kg-1
dw, respectively (Table III. 1). 

Comparison of effect concentrations determined in this study with literature values 

indicated that the sensitivity of E. andrei was in good agreement with previous studies 

reporting the toxicity of Cd for the close related E. fetida species, using natural soils. Lock 

and Janssen, (2001) investigated the toxicity of Cd in two natural soils using the 
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earthworm E. fetida and obtained EC50= 73.1 mg Cd kg-1
dw (Table III. 1), a value very 

similar to those obtained in this study (Table III. 1). It should be noted that this natural soil 

tested by Lock and Janssen, (2001) had a low pH (4.4), clay (1%), and a very high organic 

matter content (4.8%) closely resembling the PTRS1 soil. The same authors also recorded 

a lower EC50 value (EC50= 55.4 mg Cd kg-1), for a soil with low organic matter content 

(1.5%) and a high percentage of clay (17%) (Table III. 1). A higher EC50 value (108.01 mg Cd 

kg-1) was obtained by the same authors when using OCDE artificial soil. A similar response 

was reported by Spurgeon and Hopkin, (1995) in the OCDE soil, obtaining a EC50 value for 

E. fetida reproduction of 295.0 mg Cd Kg-1. Therefore, although the PTRS1 natural soil had 

a high organic matter content, 6.2% (Murphy et al., 2012), it was not sufficient to reduce 

the bioavailability of Cd and consequently its toxicity to the E. andrei reproduction.   

In addition to the influence of soil properties in the toxicity of chemicals to soil 

organisms (Adhami et al., 2008;  Domene et al., 2011; van Gestel et al., 2011), also 

species-specific regulation and detoxification mechanisms can influence the toxicity of 

metals to organisms. In opposition to essential metals, for which regulation mechanisms 

are available allowing organisms to maintain homeostasis, under variable environmental 

conditions, organisms also have to activate detoxification mechanisms for Cd as it is a 

non-essential element, (Lock and Janssen, 2001). Thus, fault in detoxification 

mechanisms, at the concentrations tested, were likely responsible by the effects of Cd on 

E. andrei. Cd can affect demography and reproduction, neurosecretory processes 

immunity and osmoregulation of earthworms (Reinecke and Reinecke, 2002; Siekierska, 

2003; Homa et al., 2003; Reinecke et al., 1999).  Further, strong DNA damage on 

earthworm E. fetida  was observed by Li et al., (2009) at 10 mg Cd kg−1.  Thus, we 

hypothesized that changes in DNA integrity of E. andrei may have led to effects on the 

growth and reproduction of the organisms, translated in a significant decrease in the 

number of juveniles, even for the lowest concentrations tested. This process may have 

been favored by the direct exposure of the earthworms to the metal through dermal 

contact in the soil solution and by soil ingestion, which strongly favors the 

bioaccumulation of Cd (Hobbelen et al., 2006; Vijver et al., 2005).  
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Concerning to E. crypticus this study showed very high levels of sensitivity of this 

species to different Cd concentrations, resulting in a significant reduction in the number 

of juveniles comparatively to the control (F = 50.9 d.f. = 12, p < 0.001), (Figure III.2). The 

number of juveniles was significantly affected for Cd concentrations above 7.7 mg Cd Kg-

1
dw (LOEC). The EC50 value for this species was estimated at the concentration 8.2 mg Cd 

Kg-1
dw, which is in agreement the value reported by Novais et al., (2011) of 6.2 mg Cd Kg-1, 

in the standard natural soil Lufa 2.2 (Table III.1). Lock and Janssen, (2001), obtained EC20 

and EC50 values for reproduction of 19.9 and 72.4 mg Cd Kg-1
dw, respectively, using a 

natural loamy soil (17% clay) for testing (Table III. 1). These authors also reported an even 

higher EC50 value for the OCDE artificial soil (10% organic matter), EC50= 158.0 mg Cd Kg-1.  

A joint analysis of all the results obtained by different authors suggest once again that 

differences in organic matter and clay content of the different test soils explained the 

differences in toxicity data gathered. Cd was reported as responsible by significant 

changes in the activity of antioxidant enzymes and subsequent increase in lipid 

peroxidation in Enchytraeus albidus at concentrations above 1 mg Cd kg-1 (Novais et al., 

2011). Thereby, cadmium may have induced oxidative stress and membrane damage 

above 7.7 mg Cd Kg-1
dw causing effects in the reproduction of E. crypticus, as observed in 

our study.  

 Regarding to F. candida, significantly differences in reproduction were obtained 

between control and the tested concentrations of Cd (F = 39.6, d.f. = 12, p < 0.001), 

(Figure 2). Cadmium has constrained the reproduction of organisms for concentrations 

above 42.0 mg Cd Kg-1 (LOEC). EC20 and EC50 values of Cd for F. candida reproduction were 

31.7 and 64.8 mg Cd Kg-1
dw, respectively (Table III. 1). Similarly, van Gestel and Mol, 

(2003) found EC50 values for the effect of Cd on reproduction of F. candida, in two natural 

soils, of 57.9 and 53.7 mg Cd Kg-1 (Table III. 1). The EC50 value (193.0 mg Cd Kg-1) obtained 

by the same authors when using the artificial OECD soil, showed a drastic decrease in 

toxicity of Cd, probably caused by the high OM content of this test soil (10.9 % organic 

matter). Bur et al., (2010) tested three natural soils with different pH (8.2, 4.5, 6.5) and 

organic matter contents (2, 16.5, 1.6 %) and also reported lower toxicity values for these 

soils, EC50= 182.0, 111.1 and 117.0 mg Cd Kg-1 respectively, compared to the result 
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obtained in our study (Table III.1). These results suggested that high organic matter 

content may compensate the potential effect of a low pH, and vice-versa, in the 

bioavailability of cadmium and subsequently in its toxicity to collembolans. Based on EC20 

and EC50 values for the effect of Cd on the reproduction of the three tested invertebrates, 

E. crypticus proved to be the most sensitive organism to Cd followed by F. candida and E. 

andrei, both with a very similar sensitivity to this metal (Table III. 1).  
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Figure III.2 Reproductive output of EisenIa andrei, Enchytraeus crypticus and Folsomia candida exposed the natural soil PTRS1 spiked with different 
concentrations of Cu. Error bars indicate the standard error and asterisks sign out significant differences between the treatment and the control (0 mg Cd 
kg-1

dw), (p<0.05). 
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3.3.3 Cadmium toxicity in seed germination and plant growth  

The physiological effects of Cd in plants were well evident in our study as can be seen in 

Figures III.3 and III.4 and in the data described in Table III.1. The effects of this metal in 

plants are well described in the literature and in fact it is one of the most concerning non-

essential metals since, as it was reviewed by Clemens (2006), it can be easily taken up by 

plants and in some species it can be translocate from roots to the upper plant tissues, 

posing serious risks to higher trophic levels. Therefore, ecotoxicological data for plant 

endpoints is of crucial relevance for the derivation of risk limits aimed in protecting the 

whole terrestrial ecosystems from Cd contamination. In our study, seed germination of 

Lactuca sativa and Lycopersicon esculentum was significantly inhibited by high 

concentrations of Cd (F = 39.1, d.f. = 12, p < 0.001 and F = 36.3, d.f. = 12, p < 0.001, 

respectively), (Figure III. 3) namely  for Cd concentrations equal to or greater than 459.2 

mg Cd Kg-1
dw and 826.9 mg Cd Kg-1

dw (LOEC), respectively (Table III. 1). The emergence of 

lettuce seeds was more sensitive, since an EC20 value of 279.3 mg Cd Kg-1
dw was recorded, 

while the EC20 value estimated for L. esculentum was 644.9 mg Cd Kg-1 EC50 (Table III.1). 

For maize and oat no significant differences were recorded for this endpoint (p > 0.05) for 

all the concentrations tested (Figure III.3). Indeed, negligible effects of Cd on seed 

germination were found in some previous studies, showing that seed germination is 

resistant to Cd in soils (An, 2004; Cao et al., 2007). The differences in the sensitivity of this 

endpoint to Cd contamination were expectable, since it is related with properties of the 

own seeds coating structure that protects the embryo from external hazards (Lin and 

Xing, 2007), which varies among plant species. In fact, seeds germination depends almost 

exclusively from internal food reserves for the supply of metabolites for respiration and 

other anabolic reactions (Liu et al., 2007; Lin and Xing, 2007). Therefore, only those 

coatings more permeable to water and water soluble contaminants can give less 

protection to their embryos. 
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 Figure III.3 Average number of emerged seeds in monocotyledonous, Avena sativa and Zea mays, 

and dicotyledonous species, Lycopersicon esculentum and Lactuca sativa exposed to PTRS1 soil 

contaminated with Cu. Error  bars  indicate  the  standard  error  and  asterisks  represent  

significant  differences between the treatments and the control (0 mg Cd kg-1
dw), (p <0.05).  

 
The toxicity of Cd resulted essentially in a significant inhibition in the growth (fresh and 

dry mass) of the plant species tested. Significant effects in both endpoints were found 

between the control and almost all tested concentrations ( fresh mass, F = 16.5, d.f. = 12, 

p < 0.001, F = 34.2, d.f. = 12, p < 0.001); F = 22.4, d.f. = 12, p < 0.001; F = 20.1, d.f. = 12, p 

< 0.001) and dry mass, F = 10.2, d.f. = 12, p < 0.001; F = 20.6, d.f. = 12, p < 0.001, F = 10.3, 

d.f. = 12, p < 0.001; F = 19.0, d.f. = 12, p < 0.001), A. sativa, Z. mays, L sativa and L. 

esculenteum, respectively. Dry biomass was the most sensitive endpoint to Cd, being the 

LOEC value for all the species 35 mg Cd Kg-1
dw. Lettuce was also the most sensitive species 

for this endpoint. The EC20 and EC50 values obtained for this species were lower than the 

lowest Cd concentration tested (35.0 mg Cd Kg-1
dw). The high sensitivity of Lactuca sativa 

comparatively to other plant species has been observed by other authors, both testing 

soils contaminated only with cadmium (da Rosa Corrêa et al., 2006; Lamb et al., 2010) or 

with a mixture of metals, with Cd included (e.g. Pereira et al., 2009). The high capacity of 

this species to bioaccumulate high concentrations of metals, including Cd is a good 
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explanation for such sensitivity (Pereira et al., 2009). In fact, it was already demonstrated 

that Cd2+ is easily taken up into cells by Fe2+, Zn2+ and Ca2+ transporters/ channels, with 

growth inhibition and leaf chlorosis as the most evident effects of exposure (Clemens, 

2006;  Kirkham, 2006; Rodríguez-Serrano et al., 2009). Due to the similarities among Cd2+ 

and Fe2+, Ca2+ and Zn2+ cations, the main mechanisms of toxicity are likely related with 

changes in the homeostasis of these essential cations or with their displacement from 

proteins (Verbruggen et al., 2009). Thereby, this metal is rapidly taken up by plant roots 

and can be loaded into the xylem for its transport into leaves. Once in plants cadmium 

alters the chloroplast ultrastructure, photosynthesis rate, disturbs the Calvin cycle, 

nitrogen, sulfur and antioxidant enzymes and the uptake and distribution of 

macronutrients and micronutrients (Mobin & Khan, 2007; Khan et al., 2007; Iqbalet al., 

2010; Márquez-García et al., 2011).  

The same mechanisms may explain the sensitivity, although lower, of the other tested 

plants. In case of L. esculentum, the EC20 values obtained for fresh mass and dry mass 

were 78.0 and 76.0 mg Cd Kg-1, respectively (Table III.1). Both monocotyledonous showed 

to be more sensitive than L. esculentum, since lower EC20 values were obtained: 4.7 mg Cd 

Kg-1 (fresh mass) for A. sativa and 37.5 and 24 mg Cd Kg-1
dw

 for Z. mays (fresh and dry 

mass, respectively).  

Similar to invertebrates, also distinct toxicity values were reported in the literature for 

terrestrial plants. The US EPA Draft Ecological Soil Screening Level (Eco-SSL) for Cadmium, 

Interim Final (USEPA, 2005) identified more than 700 papers on plant toxicity studies 

related to Cd exposures. For example, da Rosa Corrêa et al., (2006) studied the phytotoxic 

effects of cadmium in some crop terrestrial plants growing in natural loamy soil (pH=6.6, 

clay 26%) and found an EC50 value of 80 mg Cd Kg-1
dw for fresh mass of L. sativa (Table 

III.1). The same authors reported an EC50 value of 11.5 mg Cd Kg-1
dw for A. sativa (fresh 

mass), which is lower than the value obtained in our study for the same species EC50= 

36.5 mg Cd Kg-1
dw (Table III.1). Once again the great variability between toxicity data 

obtained for different soils, using the same test species (from plants to invertebrates), as 

can be observed on table (Table III.1), justify the definition of regional SSVs based on 

ecotoxicological data obtained for dominant types of natural soils. 
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Figure III.4 Average values of fresh and dry mass measurements in monocotyledonous, Avena sativa and Zea mays, and dicotyledonous species, 
Lycopersicon esculentum and Lactuca sativa grown in PTRS1 soil artificially spiked with Cu. Error  bars  represent  the  standard  error  and  the asterisks  
indicate  significant  differences  between the treatments and the control (0 mg Cd kg-1

dw) (P<0.05). 
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Biota Endpoint Soil type pH OM WRC (%) Clay NOEC LOEC EC20 EC50 Reference 
Urease 5.91±0.098 6.5±0.004 23.94±1.839 3.3 ≥100 >100 47.8 (15.67-80.04) > 100
Cellulase 5.91±0.098 6.5±0.004 23.94±1.839 3.3 ≥100 > 100 99.9 (75.17-124.67) > 100
Dehydrogenase enzim. act. natural soil 5.91±0.098 6.5±0.004 23.94±1.839 3.3 ≥100 > 100 ≥100 > 100 present study
Acid phasphatase 5.91±0.098 6.5±0.004 23.94±1.839 3.3 ≤13.4 13.4 < 13.4 40.2 (0.88-79.5)
Nitrogen mineralization 5.91±0.098 6.5±0.004 23.94±1.839 3.3 ≤13.4 13.4 n.d. n.d.
Eisenia andrei rep. natural soil 5.91±0.098 6.5±0.004 23.94±1.839 3.3 35 42 37.3 (26.60-47.95) 76.4 (62.69-90.12) present study
Eisenia fetida rep. (21 days) OCDE 6.3 10 n.d. 20 152 n.d. n.d. 295 (n.d) Spurgeon and Hopkin, 1995
Eisenia fetida rep. OCDE 6 10 n.d. 20 58 100 n.d. 108(92.1-121) Lock and Janssen, 2001
Eisenia fetida rep. natural soil 6.3 1.5 n.d. 17 32 56 n.d. 55.4 (43.5-67) Lock and Janssen, 2001
Eisenia fetida rep. natural soil 4.4 4.8 n.d. 1 32 56 n.d. 73.1 (67.8-78.8) Lock and Janssen, 2001
Enchytraeids crypticus natural soil 5.91±0.098 6.5±0.004 23.94±1.839 3.3 7.0 7.7 < 7 8.3 (7.54-8.87) present study
Enchytraeids albidus Lufa 2.2 soil 5.5 4.4 n.d. 6 1 3.2 n.d. 6.2 (n.d) Novais et al., 2011
Enchytraeids albidus rep. natural soil 6.3 1.5 n.d. 17 56 100 19.9 (14.50-25.30) 72.4 (61.9-83.3) Lock and Janssen, 2001
Enchytraeids albidus OCDE 6 10 n.d. 20 100 180 158.0 (140.0-174.0) Lock and Janssen, 2001
Folsomia Candida natural soil 5.91±0.098 6.5±0.004 23.94±1.839 3.3 35.0 42.0 < 35 64.8 (54.47-75.20) present study
Folsomia Candida OCDE 6 10 n.d. 20 32 56 158.0 (137.01-184.02) n.d. Lock and Janssen, 2001
Folsomia Candida OCDE 6.1 10.9 n.d. 5.2 n.d. n.d. n.d. 193.0 (101.0-369.0) van Gestel et al., 2003
Folsomia Candida Lufa 5.5 4.2 n.d. 3.6 n.d. n.d. n.d. 57.9 (38.2-87.6) van Gestel et al., 2003
Folsomia Candida rep. natural soil 6.1 3.0 n.d. 1.4 n.d. n.d. n.d. 53.7 (19.0-152.0) van Gestel et al., 2003
Folsomia Candida natural soil 8.2 2.0 n.d. 37.2 n.d. 400.0 n.d. 182.0 (134.0-254.0) Bur et al., 2010
Folsomia Candida natural soil 4.5 16.5 n.d. 19.4 n.d. 1.7 n.d. 111 (96.0-133.0) Bur et al., 2010
Folsomia Candida natural soil 6.1 1.6 n.d. 24.8 n.d. 100.0 n.d. 107.0 ( n.d) Bur et al., 2010
Avena sativa 5.91±0.098 6.5±0.004 23.94±1.839 3.3 ≥992.0 >992.0 n.d. n.d. present study
Zea mays 5.91±0.098 6.5±0.004 23.94±1.839 3.3 ≥992.0 >992.0 n.d. n.d. present study
Lactuca sativa 5.91±0.098 6.5±0.004 23.94±1.839 3.3 306.2 459.3 279.3 (202.24-356.46) 460.0 (386.36- 533.66) present study
Lycopersicon esculentum germ. natural soil 5.91±0.098 6.5±0.004 23.94±1.839 3.3 459.3 689.7 644 (547.74-742.07) 919.04 (8414.24-996.84) present study
Avena sativa 6.6 3.0 n.d. 26.0 n.d. 50.0 n.d. 400.0 (n.d) Corrêa et al., 2006
Lactuca sativa 6.6 3.0 n.d. 26.0 n.d. 25.0 n.d. 150.0 (n.d) Corrêa et al., 2006
Zea mays 4.3 3.0 n.d. 21.0 n.d. 640.0 n.d. n.d. An Y. 2004
Avena sativa 5.91±0.098 6.5±0.004 23.94±1.839 3.3 ≤35 35.0 < 35 36.5 (19.40-53.63) present study
Zea mays 5.91±0.098 6.5±0.004 23.94±1.839 3.3 50.4 60.5 37.5 (22.20-52.87) 135.1 (101.52-168.80) present study
Lactuca sativa 5.91±0.098 6.5±0.004 23.94±1.839 3.3 ≤35 35.0 < 35 < 35 present study
Lycopersicon esculentum f. m. natural soil 5.91±0.098 6.5±0.004 23.94±1.839 3.3 90.7 161.0 78.03 (46.03-110.03) 145.5 (111.17- 179.85) present study
Avena sativa 6.6 3.0 n.d. 26.0 n.d. 12.5 n.d. 11.5  (n.d) Corrêa et al., 2006
Lactuca sativa 6.6 3.0 n.d. 26.0 n.d. 6.25 n.d. 80.0  (n.d) Corrêa et al., 2006
Avena sativa 5.91±0.098 6.5±0.004 23.94±1.839 3.3 ≤35 35.0 n.d. < 35
Zea mays 5.91±0.098 6.5±0.004 23.94±1.839 3.3 ≤35 35.0 < 35 185.1 (100.30-269.90)
Lactuca sativa d. m. natural soil 5.91±0.098 6.5±0.004 23.94±1.839 3.3 ≤35 35.0 < 35 < 35 present study
Lycopersicon esculentum 5.91±0.098 6.5±0.004 23.94±1.839 3.3 90.7 161.0 76.0 (43.88-108.06) 137.4 (102.74-172.07)

Average ± STDEV: pH (H2O); OM-organic matter (%) and WHCmax – maximum water holding capacity (%); Clay %; rep.-reproduction; germ.-germination; f.m.- fresh mass; d.m- dry mass; Enz. act.- enzyme activity; n.d.-not determined. 

(mg Cd Kg-1)

Table III.1 Toxicity data for microbial processes, soil invertebrates and plants with effect concentrations as mg U kg-1dw soil, with indication of the 95% confidence interval. 
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3.3.4. Derivation of a Soil Screening Level (SSV) for cadmium applying assessment 

factors 

A former attempt to derive a risk limit for Cd, for a dominant Portuguese soil was made 

following the approach suggested by the Technical Guidance Document published by the 

European Commission (EC, 2003), in support of the Commission Directive 93/67/EEC on 

Risk Assessment for new notified substances, of the Regulation nº 1488/94 on Risk 

Assessment for existing substances and Directive 98/8/EC of the European Parliament and 

the Council. This value was determined based on the endpoint, for which, both the lowest 

NOEC and EC20 values were obtained, which was the average number of juveniles 

produced by E. andrei. For this purpose and given that more than three NOEC and EC20 

values were obtained for at least three different species, an assessment factor of 10 was 

applied. The PNEC (predicted no effect concentration) obtained changed between 3.7 

(EC20 based) and 3.5 (NOEC based) mg Cd Kg-1
dw.  Both values are higher than background 

values found in non-contaminated soils by André et al.,(2009) and Caetano et al.,(2012), 

which are usually below 1 mg Cd kg-1
dw.  Hence they can be accepted as former SSVs for 

Portuguese natural soils similar to PTRS1. 

 
3.4 Conclusion 

This study confirmed the high sensitivity of the great majority of tested organisms to Cd in 

the PTRS1 soil. ACP activity and NMIN were the less tolerant microbial parameters to Cd, 

(Table III.1), being their activity inhibited at Cd concentrations equal or greater than 13.4 

mg Cd kg-1
dw. The remaining microbial parameters were significantly affected at 

concentrations above 100 mg Cd kg-1
dw. However, we cannot discard the hypothesis that 

changes in the soil microbial community structure may have masked the effects of Cd on 

these functional microbial parameters, after one month of exposure. 

Soil invertebrates were apparently more sensitive to Cd than the soil microbial 

parameters evaluated. E. andrei and F. candida showed very similar sensitivities to this 

metal presenting EC50 values of 76.4 and 64.8 mg Cd Kg-1 respectively, whereas E. 

crypticus was the most sensitive invertebrate species showing an EC50 value of 8.3 mg Cd 

Kg-1
dw.   
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Growth of terrestrial plants analyzed by dry mass yield was the most sensitive 

endpoint, showing NOECS values lower than the lowest Cd concentration tested, for all 

the test species. L. sativa was the most sensitive plant tested for all the endpoints.  

Data generated in this study were used to calculate a PNEC value for Cd, based on the 

application of assessment factors. The PNEC values obtained indicate that terrestrial 

organisms will only be affected at concentrations that are higher than background 

concentrations. This value is much lower than the Eco-SSL value suggested by USEPA 

(2005) for cadmium, that range from 32 mg Cd kg-1
dw for plants and 140 mg Cd kg-1

dw for 

soil invertebrates. Comparing with the Canadian Soil Quality Guideline for Cd, our values 

are between the guideline value for agricultural and residential parkland soils (1.4 and 10 

mg.Kg-1), (CCME, 1999a). These last values have been suggested by national authorities 

for national evaluations, therefore they were defined for both human health and 

ecosystems protection, usually assuming the lowest value obtained. Considering, only 

ecosystems protection the same values changed between 3.8 and 10 mg.Kg-1Cd, which 

are now in perfect agreement with our values. 

The present work represents an important contribution for the establishment of 

national soil quality guidelines and for the processes of ecotoxicological risk assessment in 

the Portuguese context. 
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Abstract 

The risk assessment of potential pollutants is conventionally done resorting to soil 

screening values (SSVs) which define threshold levels above which further action should 

be taken. Since SSVs are still unavailable for the Portuguese context, standardized toxicity 

tests should be urgently undertaken to fill the data gaps used in their derivation. Thus, 

the present study intended to evaluate the toxicity of copper for terrestrial species, using 

a Portuguese natural reference soil (PTRS1), in order to generate toxicity values to be 

used in the derivation of Cu SSVs. The soil biochemical parameters and reproduction of 

invertebrates were tested, as well as the seed germination and growth of terrestrial plant 

species. Cu was responsible for the reduction in some enzyme activities, invertebrate 

reproduction and growth of plants. We found significant negative relationships between 

Cu and urease, cellulase and nitrogen mineralization activity (P < 0.01). The EC50 values 

calculated for the reproduction of invertebrates were 130.9, 165.1 and 191.6 mg Cu kg-1
dw 

for E. andrei, E. crypticus and F. Candida, respectively. Only the seed germination of L. 

sativa was conditioned by copper in soil; whilst the growth of all plants was compromised 

by this metal to an EC50 for fresh mass within the range of 89 and 236.3 mg Cu kg-1, and 

for dry mass within the range of 93.1 and 290.5 mg Cu kg-1
dw. The overall results and their 

comparison with previous data confirmed the direct influence of soil properties on copper 

toxicity, which underline the importance of using regional natural soils in the  
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derivation of screening values. A predicted no effect concentration (PNEC) obtained for 

Cu when a factor of 10 was used varied between 6.5 (EC20-based) and 7.9 (NOEC-based) 

mg Cu Kg-1
dw,  which are lower than background Cu concentration quantified in 

Portuguese soils. Thus, we suggest a PNEC value of 65 mg Cu Kg-1
dw, obtained without 

application of any factor. 

This study also describes the procedure that could be easily followed by other countries 

for the derivation of SSVs adjusted to their soils. 

Key-words: Copper, natural soil, toxicity values, soil enzymes activity; Eisenia andrei; 
Enchytraeus crypticus; Folsomia candida; Avena sativa;  Zea mays; Lacuta sativa; 
Lycopersicon esculentum. 
 

4.1 Introduction  

The overuse of metals in diverse activities and their extraction processes to supply many 

needs, has been leading to their overspread and accumulation in different environmental 

compartments, particularly in the terrestrial ecosystems (Kakkar and Jaffery, 2005; 

Mackie et al., 2012). As a consequence, several adverse effects on terrestrial species, and 

ecosystem functions and services have been reported (Anderson et al., 2009; Pereira et 

al., 2009; Lourenço et al., 2011b; Macdonald et al., 2011). In response to the recognized 

need to deal with metal-contaminated sites, many countries have been committed with 

the development and regulation of benchmarks for metals, in order to facilitate the 

evaluation and the management of contaminated land (Carlon, 2007; Crommentuijn et 

al., 2000b; Fishwick, 2004; O’Halloran, 2006). These benchmarks are designated as soil 

screening values (SSVs), which should guarantee the protection of terrestrial elements 

and ecosystem functioning (Fishwick, 2004). By definition SSVs are the highest 

concentrations of a given contaminant (e.g., metal) in the soil, above which an additional 

evaluation or risk remediation measure is mandatory (Fishwick, 2004; Carlon, 2007). 

These values are strongly needed in the Tier 1 screening phase of Ecological Risk 

Assessment (ERA) frameworks (Jensen and Mesman, 2006; Merrington  et al., 2006; 

Weeks and Comber, 2005), as a reference basis to compare with the content of chemical 
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residues in the soil, and thus provide the first evaluation of risks, based on a chemical line 

of evidence. 

In general, the current procedures for the derivation of SSVs are based on toxicity data 

obtained from several standard ecotoxicological tests performed with different terrestrial 

species and targeting a wide range of biological responses (e.g., soil microbial activity and 

diversity, growth and reproduction of invertebrates, emergence and growth of plants). If 

possible, it would be important to derive SSVs from data obtained with natural reference 

soils defined in each country (Kuperman et al., 2006). The physical and chemical 

properties of natural soils have been widely referred as constraining factors of the 

bioavailability of metals, what in turn influences the responses of organisms (Criel et al., 

2008; Römbke et al., 2006; van Gestel et al., 2011; Chelinho et al., 2011). Thereby, the use 

of a limited number of soils, like the artificial (OCDE, 1984) or the natural LUFA soils, with 

a limited range of properties, in the derivation of SSVs can lead to under or over 

estimations of risks for metal-contaminated areas and corresponding nearby terrestrial 

ecosystems, which soils can present clearly distinct properties. As a result, inappropriate 

risk management decisions might be taken (Jänsch et al., 2007; Vijver et al., 2001).  

Metals are meaningful environmental pollutants, since their toxicity is a problem of 

increasing significance for ecological, evolutionary, nutritional and environmental reasons 

(Nagajyoti et al., 2010). The derivation of SSVs for metals is especially important when 

assessing the environmental risks of essential metals such as Cu, for which not only 

toxicity but also possible deficiency effects should be considered (Janssen et al., 2000). In 

fact, Cu is directly involved in a wide range of physiological processes in soil organisms 

(Pavel et al., 2013). This metal can be found in soils under many forms, but it is mainly 

available as a free cation (Cu2+) on the surface of clay particles or in association with 

organic matter (Schulte and Kelling, 2004). The free form Cu2+ is responsible for Cu 

activity and bioavailability (Sauvé et al., 1996), which is in turn mostly influenced by soil 

organic matter content and pH (Schulte and Kelling, 2004). Notwithstanding, the 

increased concentration of Cu2 +in soils, essentially triggered by industrial (Kabata-

Pendias, 2010; Halim et al., 2003) and agricultural wastes (Horswell et al., 2003; Giller et 

al., 1998), together with its toxicity for soil organisms (An, 2006; Criel et al., 2008; 
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Wyszkowska et al., 2009), reinforces the relevance of evaluating its effects in natural soils, 

in order to obtain ecotoxicological data for the future derivation of SSVs. Furthermore, 

considering the heterogeneity of soil properties within and between geographical areas, it 

is quite relevant to derive SSVs for natural reference soils representative of the main soil 

types in each territory. In the case of Portugal, SSVs were not derived yet for dominant 

natural soils, which should be legally enforced to comply with soil protection policies (e.g. 

CEC, 2006). Hence, with the intention of facilitating site-specific ecological and 

ecotoxicological evaluations in the Portuguese context, the main objective of the present 

work was to assess the effects of Cu toxicity in terrestrial species and functions, using a 

Portuguese natural soil. For this purpose, a battery of sub-lethal ecotoxicological tests 

was performed in a Portuguese reference soil (PTRS1) to test the influence of Cu on soil 

biochemical parameters, reproduction of invertebrates, seed germination, and growth of 

terrestrial plants. The dataset generated in this study was used to derive PNECs for Cu 

based on assessment factors.  

 

4.2 Material and methods  

4.2.1 Soil sampling and processing 

The soil used in this study was collected from the top 20 cms of a field in Ervas Tenras 

[(Pinhel, Guarda: 40o44’4.27’’N and 7o10’54.3’’W)], center of Portugal. This soil is 

representative of a granitic region, and was previously characterized selected as a natural 

reference soil, after being validated and characterized for this ecotoxicological purposes 

(Caetano et al., 2012), (c.f., table in annex). The main properties of the PTRS1 are 

described in Table IV.2, of the results section. After sampling, the batch of soil was 

immediately brought to the laboratory, sieved through a 2mm mesh size and the sieved 

fraction (< 2 mm) was stored in polyethylene bags, at -20 °C, until further use for soil 

enzymatic activity measurements. For the tests with soil invertebrates and plants, the soil 

was air-dried and then sieved through a 4 mm sieve, and the < 4 mm fraction was 

defaunated through two freeze–thawing cycles (48 h -20 °C followed by 48 h at 25 °C), 

until the beginning of the tests.  
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4.2.2. Test substance and concentration ranges 

For all the tests the natural soil was spiked with a stock solution of copper (II) sulfate 

pentahydrate (CuO4S.5H2O; Merck Ensure) prepared with deionized water filtered in a 

Milli-Q equipment (hereinafter referred as deionized water), in order to obtain the 

different ranges of concentrations. These concentrations were defined based on the 

results of range finding tests performed with all test species and are presented in Table 

IV.1. The amount of water required to adjust the WHC of the soil to 45% of its maximum 

value was used to dilute the stock solution for tests with invertebrates and plants and 

80% of its maximum value in case of enzymes. In order to discard the potential effect of 

sulfate on the highest concentrations of copper sulfate, controls with calcium sulfate 

(CaSO4.2H2O) were additionally performed at 2303.2, 366.3 and 182.4 mg CaSO4.2H2O Kg-

1
dw for E. andrei, E. crypticus and F. candida, respectively. In case of plants, the calcium 

sulfate was added in the following concentrations, 1314.3, 1546.7, 1256 and 808.6 mg 

CaSO4.2H2O Kg-1
dw for A. sativa, Z. mays, L. sativa and L. esculentum, respectively. The 

calcium sulphate concentrations mentioned above corresponded to the highest sulphate 

concentrations added to soils through the spiking with Cu sulphate. 

 

 
 

Microorganisms
Biochemical parameters E. andrei E. crypticus F. candida A. Sativa Z. mays L. sativa L.esculentum

80.8 35 150.0 46.3 168.0 235.3 64.3 20.0
96.9 40.3 172.5 53.2 184.8 258.8 77.2 25.0

116.2 46.3 198.4 61.2 203.2 284.7 92.6 31.2
139.5 60.2 238.1 79.6 243.9 341.7 120.4 43.8
167.5 78.2 285.7 103.5 292.7 410.0 156.5 61.3
200.9 101.7 342.8 134.5 351.3 492.0 203.4 85.8
241.1 132.2 411.4 174.8 421.5 590.4 264.5 120.1
289.4 171.9 493.6 227.3 505.8 649.4 343.8 168.1
347.2 223.4 592.3 295.5 607.0 714.4 446.9 235.3
416.7 256.9 681.2 339.8 667.7 785.8 536.3 294.1
500.0 295.5 783.4 390.8 734.5 864.4 643.6 382.4
600.0 339.8 900.9 449.4 807.9 950.8 772.3 497.1

Table IV 1.   Copper concentrations used in ecotoxicological tests (mg Cu kg-1
dw)

Invertebrates Plants
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4.2.3 Ecotoxicological assessment 

4.2.3.1 Soil microbial activity 

Three replicates per test concentration were prepared for each soil microbial parameter. 

For the control, six replicates were prepared with deionized water filtered in a Milli-Q 

equipment (hereinafter referred as deionized water). The replicates were incubated for 

30 days at 20±2°C, under the photoperiod 16hL: 8hD. During the incubation period, the 

soil moisture was weekly monitored by weighing the pots, and  

whenever needed it was adjusted to 80% of its WHCmax by adding deionized water. After 

the incubation period, 1g of soil per replicate and concentration was weighted and placed 

in falcon tubes, and then frozen to -20ºC, until analysis. Thereby, a total of 9 sub-

replicates were made for each concentration. The soil was thawed at 4oC before analysis.  

The activities of urease (UR), cellulase (CELL), acid phosphatase (ACP), dehydrogenase 

(DHA) and nitrogen mineralization (NMIN) were tested. The UR activity was assayed 

according to the method proposed by Kandeler and Gerber, (1988) and, Schinner et al., 

(1996). The samples were incubated for 2h, at 37°C, after the addition of a buffered 

solution of urea. The ammonia released was extracted with a solution of potassium 

chloride and determined by the modified Berthelot reaction. The quantification was 

based on the reaction of sodium salicylate with ammonia in the presence of chlorinated 

water, producing a green complex in alkaline pH. UR was detected at 690 nm and 

expressed as μg nitrogen (N) g−1 soildw 2 h−1. The CELL activity was tested according to, the 

method proposed by Schinner and von Mersi, (1990) and, Schinner et al., (1996). The 

reducing sugars produced during the incubation period caused the reduction of 

hexacyanoferrate (III) potassium to hexacyanoferrate (II) potassium in an alkaline 

solution. This last compound reacts with ferric ammonium sulphate in acid solution to 

form a ferric complex of hexacyanoferrate (II), of blue staining, which is measured 

colorimetrically, at 690 nm, and expressed as μg glucose g− 1 soil dw 24 h−1.  

NMIN activity was measured according to Schinner et al., (1996). The soil samples 

were incubated for 7 days, at 40°C. During this period, the organic forms of nitrogen were 

converted to inorganic forms (mainly ammonium ion, NH4
+), which were determined by a 

modification of the Berthelot reaction, after extraction with potassium chloride. The 
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reaction of ammonia with sodium salicylate (NH3) in the presence of sodium 

dichloroisocyanurate formed a green complex at an alkaline pH and it was measured at 

690 nm and expressed as μg nitrogen (N).g−1 soildw d−1. 

The acid phosphomonoesterase activity was tested according to the method proposed 

by Schinner et al., (1996). After addition of the buffered solution of p-nitrophenyl 

phosphate, soil samples were incubated for 2h, at 35°C. The p-nitrophenol released by 

the phosphomonoesterase activity was extracted with sodium hydroxide, producing a 

yellow color that was measured spectrophotometrically at 405 nm and expressed as μg 

nitrophenol (NP).g−1. 

The method proposed by Öhlinger, (1996) was used in order to assess DHA. The 

samples were suspended in a solution of trifeniltetrazol chloride (TTC) and incubated at 

40°C, for 24 hours. The triphenylformazan (TPF) produced was extracted with acetone 

and measured spectrophotometrically at 546 nm and the results were expressed as µg 

triphenylformazan (TPF) g –1 soil dw h –1. 

 

4.2.3.2 Invertebrate and plant tests  

4.2.3.2.1 Test organisms and culture conditions  

The earthworm Eisenia andrei (Oligochaeta: Lumbricidae), the potworm Enchytraeus 

crypticus (Oligochaeta: Enchytraeidae) and the springtail Folsomia candida (Collembola: 

Isotomidae) were used to assessed the toxicity of Cu.  All the organisms used for this 

study were age-synchronized from a culture kept in the laboratory, under controlled 

environmental conditions (temperature: 20±2ºC; photoperiod: 16hL: 8hD). The 

earthworms (E. andrei) were maintained in plastic boxes (10 to 50 L) containing a 

substrate composed by peat, dry and defaunated horse manure (through two freeze–

thawing, 48h at -20 ºC followed by 48h at 65 ºC), water and CaCO3 to adjust the pH, 

between 6 and 7. The earthworms were fed every 2 weeks with about six tablespoon 

oatmeal previously hydrated with deionized water filtered in Milli-Q equipment 

(hereinafter referred as deionized water) and cooked for 5 minutes. The potworms (E. 

crypticus) were cultured in boxes (25.5 cm length,17.4 cm width, 6.5 cm height), filled 

with pot soil moistened to the nearest 60% of its water holding capacity (WHCmax) and 
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with a pH adjusted to 6.0 ± 0.5. The organisms are fed twice a week with a teaspoon of 

macerated oat. The collembolans (F. candida) were maintained in plastic containers filled 

with a culture medium composed by moistened Plaster of Paris mixed with activated 

charcoal 8:1 (w:w). They are fed with granulated dry yeast, twice a week, which is added 

half a teaspoon small amounts to avoid spoilage by fungi.  

Seeds from four plant species (two dicotyledonous and two monocotyledoneous), 

purchased from a local supplier, were used for seed germination and growth tests: Avena 

sativa, Zea mays, Lactuca sativa and Lycopersicon esculentum.   

 

4.2.3.2.2 Reproduction tests with invertebrates 

The standard protocols ISO 11268-2 (ISO 1996), 16387 (ISO 2004) and 11267 (ISO 1999) 

were followed for performing the reproduction tests with E. andrei, E. crypticus and F. 

candida, respectively. Ten earthworms with a developed clitellum and an individual fresh 

weight between 250 and 600 mg were introduced into each container with 500 g of dry 

soil. Worms were fed weekly with 5 g of defaunated horse manure (following the same 

procedure above described) grounded and sieved per box and the soil moisture content 

was adjusted. Adult earthworms were removed from the test containers after 28 days. 

The produced cocoons were left in the soil until 56 days have been completed. After this 

period, the juveniles from each test container were counted. Ten potworms with 12-mm 

size were introduced in each test vessel containing 20 g of dry soil. The adults were left in 

the vessels during 28 days, until the end of the test. About 2mg of rolled oats were placed 

on the soil surface weekly to feed the animals. At the end of the test, the potworms were 

sacrificed with alcohol, colored with Bengal red and counted according to the Ludox 

Flotation Method, as described in ISO 16387 (ISO, 2004). Ten 10–12 days old springtails 

were placed per test container previously filled with 30 g of soil. The collembolans were 

fed with about 2 mg of granulated dry yeast that was weekly added to the soil surface. 

The reproduction tests with F. candida took four weeks to be completed. At the end of 

the experiment, the test containers were filled with water and the juveniles were counted 

after flotation. The addition of a few dark ink drops provided a higher contrast between 

the white individuals and the black background. Organisms were counted afterwards by 
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using the ImageJ software. All invertebrates were kept under a 16hL: 8hD photoperiod and 

at 20±2ºC. Following an ECx sampling design, two replicates per concentration and five 

replicates for the control were prepared in the reproduction tests with E. andrei. For 

potworms and collembolans assays, three replicates were prepared per concentration.  

 

4.2.3.2.3 Seed germination and plant growth tests 

The effect of Cu in germination and growth of terrestrial plants was assessed in 

accordance to the ISO 11269–2 protocol (ISO, 2005). For this purpose, 200 gdw of 

uncontaminated (control) and spiked soil (test treatments; cf. section 3.2.2) were used 

per replicate, in a total of five replicates for the control and three for each Cu 

concentration. As such, the same ECx sampling design used for the invertebrates was 

followed in the plant tests.  

The amount of water required to adjust the WHCmax of the soil to 45% was used to 

dilute the stock solution and moist the soil at the beginning of the test. The soil was 

placed in the plastic pots (11.7 cm diameter, 6.2 cm height) and twenty seeds were added 

to each test pot and gently covered with soil. In the bottom of each pot a hole was 

previously made to let a rope passing through, hence allowing communication with 

another pot placed below and filled with distilled water. The level of water in this latter 

recipient was adjusted whenever needed to guarantee a continuously supply of water to 

the soil above by capillarity. 

At the beginning of the tests, nutrients (Substral® - Plants Fertilizer; using 1 bottle cap 

for 2 L of water proportion, according to the manufacturer recommendation; Fertilizer 

NPK: 6-3-6 with 6% nitrogen (N), 3% phosphate (P2O5 ), 6% potassium  (K2O), 0.03% iron 

(Fe) and trace elements as Cu, Mn, Mo, Zn) were supplied. Pots were maintained at 

constant conditions of temperature (20 ± 2oC), photoperiod (16hL: 8hD) and light intensity 

(25.000 lux). The endpoints seed germination, and fresh and dry biomass, above soil, 

were assessed for each species at the end of the exposures according to the methods 

outlined in ISO, (2005). 

For this work, a battery of enzymes involved in different biogeochemical cycles [S 

(sulfur cycle), N (Nitrogen cycle), C (Carbon cycle)], as well as enzymes more indicative of 
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the good physiological conditions of the whole microbial community (e.g. dehydrogenase) 

were selected. The species of invertebrates and plants were selected based on the 

availability of standard protocols. Since we aimed to obtain data for the derivation of 

SSVs, for regulatory purposes, this procedure is recommended.  

 

4.2.4 Statistical Analysis  

The soil microbial parameters, number of juveniles produced by potworms and 

collembolans, number of emerged seeds, fresh and dry mass of plants were compared to 

that of the respective controls by a one-way ANOVA, (SigmaPlot 11.0 for Windows). 

When statistical significant differences were recorded, the Dunnett's (for parametric one-

way ANOVA) or the Dunn’s test (for non-parametric ANOVA) was carried out to perceive 

which concentrations were significantly different from the respective control. The 

Kolmogorov-Smirnov test was applied to check data normality, whereas homoscedasticity 

of variances was checked by the Levene’s test. Whenever the ANOVA assumptions were 

not met, a Kruskal-Wallis analysis was performed (SigmaPlot 11.0 for Windows). The 

NOEC (no-observed-effect-concentration) and LOEC (low-observed-effect-concentration) 

values were determined based on the outcomes of the multiple comparison tests. The 

metal concentration producing a 20% (EC20) and a 50% (EC50) reduction in the tested 

endpoints was calculated after fitting the data to a logistic model. The ECx determinations 

were performed using the STATISTICA version 7.0 software. 

 

4.3 Results and discussion  

4.3.1 Soil biochemical parameters 

The enzyme activities and N mineralization determined in PTRS1 soil artificially spiked 

with Cu are shown in Figure IV.1. Table IV.2 presents the toxicity values calculated for 

each parameter.  

Overall, the N and C cycles were the most affected ones under Cu toxicity. For the 

activity of UR, which is an extracellular enzyme involved in the N-cycle, it was observed a 

negative relationship with increasing Cu concentrations. A LOEC of 167.4 mg Cu Kg-1
dw and 
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an EC50 of 171.8 mg Cu Kg-1

dw were determined. This finding is in accordance with previous 

studies, which also reported a negative correlation between Cu levels and UR activity 

(e.g., Wyszkowska et al., 2005, 2006; Alvarenga et al., 2008; Gülser and Erdoğan, 2008; 

Lee et al., 2009; Zeng et al., 2011). Hu et al., (2013) observed that UR was one of the most 

sensitive soil enzymes to Cu, for which they calculated EC50 values of 505 mg total Cu Kg-

1
dw and 64 mg available Cu Kg-1

dw, in a soil presenting a higher pH (7.95) and clay content 

(39.5%), and lower organic matter content  (16.33 mg Kg-1
dw) comparatively to PTRS1 soil. 

Indeed, Wightwick et al., (2013) had also obtained a significant reduction in UR activity in 

vineyard soils (pH 8.2, 1.3% of total organic C and 16.0 % of clay) containing around 60 mg 

Cu Kg-1
dw; whilst Ge and Zhang, (2011) verified that different soils (pH between 6.85-7.77 

and organic C between 23.8-25.8 g Kg-1
dw) with increasing concentrations of Cu (67.5 – 

2712.1 mg Kg-1
dw) evidenced successively lower UA activities (45.5 – 10.3 mg NH4

+ Kg-1 soil 

h-1). UA is mainly synthesized by microorganisms and is implied in the catalysis  of organic 

N oxidation into ammonia (Kandeler et al., 1996; Wang et al., 2011). Thus, the decrease of 

UA activity in our study may be due to a negative effect of Cu on specific microbial 

biomass pool (Kandeler et al., 1996; Wang et al., 2011).  

Besides UA, another parameter that is also an indicator of N-cycle functioning – NMIN 

- was severely affected under Cu exposure. The lowest concentration at which was 

observed a significant inhibition on NMIN (80.7 mg Cu Kg-1
dw) was not considered the 

LOEC due to the high variability recorded between replicates.  As such, the LOEC 

considered for NMIN was 139.5 mg Cu Kg-1
dw; while the EC20 and EC50 values calculated for 

this enzyme were of 90.7 and 146.5 mg Cu Kg-1
dw, respectively. The behavior of NMIN in 

the presence of metals has not been very coherent across the studies. Dai et al., (2004) 

determined non-significant negative correlations between this parameter and Cu in 

metal-polluted soils. On the contrary, Płaza et al., (2010) attained increased levels of N 

mineralization (15 – 2 μg NH4
+) under metal-polluted soils presenting 26 – 39 mg Cu Kg-

1
dw, respectively. Still, Hassen et al., (1998) did not identify considerable changes in NMIN 

of clayey loamy soils artificially-spiked with 50 and 250 mM Cu. This parameter provides 

an overview of the biomass of specific microbial groups (nitrifying bacteria), which are 

directly involved in the mineralization of organic N into ammonia (Winding et al., 2005). 
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Although it does not usually provide the most accurate and sensitive outcome 

comparatively to other N-cycle indicators (Winding et al., 2005), in our study it was 

achieved a clear negative dose-response relationship between NMIN and Cu levels in 

PTRS1 soil.  

The activity of soil CELL was significantly depleted at 500 mg Cu kg-1
dw, being calculated 

EC20 and EC50 values of 457.6 and 571.4 mg Cu Kg-1
dw, respectively (Table IV.2). Thus, the 

C-metabolism associated with the degradation of soil organic matter  including cellulosic 

constituents that are specifically catalyzed by these extracellular enzymes (Alvarenga et 

al., 2008) was compromised under the highest Cu concentrations. Some authors reported 

negative correlations between CELL activity and Cu concentrations quantified in mine 

soils (Alvarenga et al., 2008; Antunes et al., 2011), while others (e.g., Sivakumar et al., 

2012) did not observe changes in its normal activity in urban soils contaminated with Cu.  

Both ACP and DHA were not significantly impaired by Cu despite the decreasing trend 

observed for the DHA along increasing concentrations of the metal. Previous research has 

shown that ACP is the least affected enzyme by metals (Alvarenga et al., 2008; Kandeler 

et al., 1996; Pereira et al., 2006), such as Cu (Wyszkowska et al., 2005; Santiago-Martín et 

al., 2013). However, other authors observed a significant negative correlation between 

phosphatase and Cu levels in urban soils (24-36.7 mg Cu Kg-1
dw; Papa et al., 2010) and 

polymetallic mine soils (0.14 – 1.88 mg Cu Kg-1
dw; Antunes et al., 2011). Unlike our 

outcome, Wyszkowska et al., (2005) obtained near to 50% inhibition of ACP activity under 

600 mg Cu Kg-1
dw in heavy loamy sand and silt light loam soils (pH 6.9). In our study, 

however, this extracellular enzyme involved in the mineralization of organic P was not 

considerably constrained.  

Likewise, DHA proved to be very tolerant to Cu in PTRS1 soil, although its response 

allowed the calculation of an EC20 of 425.9 mg Cu Kg-1
dw. Dehydrogenases DHA are 

intracellular enzymes that are involved in soil organic matter oxidation, and their 

degradation in soil occurs immediately after cell death (Pereira et al., 2006). Thereby, 

their activity has been pointed out as a valuable indirect indicator of soil microbial activity 

and cell viability (Taylor et al., 2002; Wyszkowska et al., 2005). Contrary to the profile 

obtained in this study, it has been broadly stated that DHA is highly sensitive to soil metal 
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pollution (e.g., Lee et al., 2009; Wyszkowska et al., 2005; de Santiago-Martín et al., 2013). 

Nevertheless, some authors pointed out that an increased activity of dehydrogenase may 

be forged by high soil Cu concentrations (e.g., Rossel et al., 1996; Taylor et al., 2002), 

which can explain our results. This could be associated to Cu reduction of the TPF 

produced upon dehydrogenase catalysis, what would consequently interfere with the 

spectrophotometer measurement of TPF (Trasar-Cepeda and Gil-Sotres, 1988).  

Additionally, the absence of effects in the activity of this enzymes was also reported in 

previous study by Caetano et al., b), (submited) when tested the effects of cadmium. 

Taking in account that dehydrogenase are an enzymes of lower specificity, an apparent 

lack of effect can be related with the time of exposure. In both works, the time of 

exposure was of one month, which could be too long allowing an adaptation of affected 

microbial community being replaced by more tolerant ones, mimicking the potential 

impairment on activity of this enzyme. In this sense, we can conclude that for risk 

assessment procedures, aimed in defining risk limits for chemicals, erroneous conclusions 

can be drawn about the effects of soil microbial community, if a reduced number of 

parameters are tested. Further, if f on the one hand, too long exposure times can mask 

the effects in the overall microbial community on the other hand, short exposures can 

falsely magnify the effects in the microorganisms. Therefore, exposure time should be the 

targeted in future studies, aimed in standardizing the use of soil enzyme activities for risk 

assessment purposes. 

 The mode of action of Cu, as well as its toxicity, may vary depending on the targeted 

enzyme (Papa et al., 2010; Ge and Zhang, 2011 ). Although the interaction mechanisms 

between metals and enzymes were not unraveled yet, the inhibition of enzymatic 

reactions by metals can be explained by a direct (i.e., inhibition or inactivation of enzymes 

by metal reaction with their sulphydral groups; reaction with the substrate or the 

substrate-enzyme complex) and/or an indirect effect (i.e., the changing of microbial 

community that synthesizes the enzymes), or still a combination of both (Kızılkaya and 

Bayraklı, 2005; Lee et al., 2009; Papa et al., 2010). 

Besides, soil properties such as pH, soil texture, organic matter and nutrient contents may 

often interfere and modulate the bioavailability and, consequently, the toxicity of metals 
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on soil enzymes and mineralization processes (Turner et al., 2002; Papa et al., 2010). 

According to the literature, the extracellular hydrolases such as UR, CELL and ACP may be 

retained and protected by organic matter, humic colloids and clays (e.g., Trasar-Cepeda et 

al., 2008; Lee et al., 2009), thereby preventing conspicuous inhibitions of enzyme 

activities. On the other hand, those soil properties may indeed decrease metal 

bioavailability by complexation, and consequently reduce its toxicity to the enzymes 

(Papa et al., 2010; Tejada et al., 2011). Hence, we can hypothesize that the low clay 

content in PTRS1 soil (3.32%; cf. Table IV.2) together with its acidic pH may be responsible 

for a higher bioavailability and toxicity of Cu to UR and CELL activities and N 

mineralization.  

Copper induced negative effects in some biochemical parameters of PTRS1 soil. 

Nevertheless, it is quite remarkable how contradictory the profiles of these parameters 

may be throughout different studies, despite being mentioned as good bioindicators of 

soil quality (Trasar-Cepeda et al., 2000; Shen et al., 2005). Trasar-Cepeda  et al., (2008) 

pointed out some explanations for such occurrence, which may be linked to the lack of 

standard protocols, to the spatio-temporal changes in soil biochemical and intrinsic 

geochemical properties, and to the absence of reference soils that may represent optimal 

quality conditions and help defining threshold values. Focusing the study of Cu toxicity on 

the biochemical parameters of a reference Portuguese natural soil (Caetano et al., 2012) 

will enlarge the knowledge of their response under different soil properties. Ultimately, it 

may serve as a comparison mean between studies, and also help in the future definition 

of ecotoxicological thresholds for these parameters based on certain properties or types 

of natural reference soils.  
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Figure IV.1 Soil enzyme activities and N mineralization in PTRS1 soil spiked with a range of cooper concentrations. The error bars indicate the standard 
deviation. The asterisks sign out significant differences relatively to the control (0 mg Cu Kg-1

dw), (P < 0.05). 
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4.3.2 Reproduction of soil invertebrates   

The values of NOEC, LOEC, EC20 and EC50 determined for the reproduction of 

invertebrates under Cu exposures are summarized in Table IV.2. The validity criteria 

outlined in the respective guidelines were fulfilled in all experiments. Besides, the 

sulphate control treatments showed no statistically significant (P > 0.05) effects on the 

reproductive output of the three invertebrates relatively to the negative controls.  

A significant impairment on the reproduction of all invertebrates was recorded, under 

Cu exposure, (F = 11.3, d.f. = 12, p < 0.05), (F = 15.9, d.f. = 12, p < 0.05) and (F = 29.6, d.f. = 

12, p < 0.05), for E. andrei, E. crypticus and F. candida, respectively (Figure IV.2). The 

reproduction of three invertebrates, and was significantly decreased for Cu 

concentrations of 132.2 mg Cu Kg-1
dw for E. andrei, 150.0 mg Cu Kg-1

dw for E. crypticus and 

103.5 mg Cu Kg-1
dw in case of F. candida. Moreover, potworms exposed to Cu above 681.1 

mg Cu Kg-1
dw did not produce any juvenile (Figure IV.2; Table IV.2). Through the 

concentration-effect relationships, estimated by fitting a logistic model to the data, 20% 

effect on the reproduction rate (EC20) of invertebrates was obtained at concentrations of 

73.0, 89.9 and 65.8 mg Cu kg-1
dw for E. andrei, E. crypticus and F. candida, respectively 

(Table IV.2). The EC50 values obtained for E. andrei indicated, as well, that this species was 

slightly more sensitive to the metal (130.9 mg Cu kg-1
dw) in comparison to E. crypticus and 

F. candida, for which were derived the respective EC50 values of 165.1 and 191.6 mg Cu 

kg-1
dw (Table IV.2).  

The results obtained in our study for the three soil invertebrates, in general, were 

partially supported by the ones reported in the literature (Table IV.2). Criel et al., (2008) 

tested Cu toxicity in the reproduction of E. fetida and F. candida in various European 

natural soils and found different toxicity values between samples. The authors reported 

28-day EC50 values for E. fetida cocoon production that ranged between 349 and 778 mg 

Cu kg-1
dw in soils with high clay content (20 – 24%), and between 72 and 192 mg Cu kg-1

dw 

in soils presenting low clay content (7.0 – 9.0%), irrespective of the acidic pH (3.0 – 6.5) 

and organic matter load (0.8 – 51%) of the natural soils. Spurgeon and Hopkin, (1995) 

determined a 21-day EC50 for E. fetida reproduction in OCDE artificial soil of 716 mg Cu kg-

1
dw, while others observed a 28-day an EC50 of 309 mg Cu kg-1

dw (Owojori et al., 2009) in 
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the same soil, being both however above the toxicity value herein determined for E. 

andrei. Although most of the soils are European, their great spatial heterogeneity justifies 

the great variability among Cu toxicity data obtained for different samples. It is widely 

accepted that the toxicity of metals may be increased when they are under more 

bioavailable forms (Lock and Janssen, 2003). In turn, this is favored by low soil pH, as well 

as reduced organic matter and clay contents, which may complex with metals and retain 

them (Amorim et al., 2005). PTRS1 soil presents a reduced percentage of clay and a low 

pH that may enhance the bioavailability of Cu and, hence, increase its toxicity along 56 

days of E. andrei exposure (EC50 = 130.9 mg Cu kg-1
dw; Table IV.2).  

Concerning  enchytraeid’s reproduction, Amorim et al., (2005) reported a higher toxicity  

of Cu for the E. luxuriosus and obtained EC50 values of 91 and 48 mg Cu kg-1
dw in natural 

European soils (EUROSoil), and an EC50 of 97 mg Cu kg-1
dw for E. albidus in the standard 

natural soil LUFA 2.2. Notwithstanding, the same authors observed that the effect of Cu 

on the reproduction of that species was lower when using the OCDE artificial soil as a 

substrate (EC50 > 320 mg Cu kg-1
dw; Table IV.2).  

For F. candida it was determined a LOEC of 103.5 and an EC50 of 191.6 mg Cu kg-1
dw. In the 

literature, both lower and higher EC50 values were obtained for the same species. Criel et 

al., (2008) found EC50 values of 50.6 and 12.6 mg Cu kg-1
dw in two natural soils with a low 

pH and organic matter content comparatively to PTRS1 soil (Table IV.2), while lower toxic 

effects (418 and 863 mg Cu kg-1
dw) were observed for F. candida reproduction when 

tested in natural soils with a pH of 4.2 and 7.5, respectively, both presenting higher 

organic matter and/or clay contents than our tested soil (Table IV.2). Amorim et al., 

(2005) also determinate, lower Cu toxicity (EC50s of 262 and 948 mg Cu kg-1
dw) for the 

same species in natural European soils with more organic matter than the PTRS1 soil. On 

the other hand, Sandifer and Hopkin, (1996)  tested the effect of OECD artificial soil pH (4, 

5, 6) on Cu toxicity for F. candida reproduction and concluded that lower pH values 

strongly impair F. candida reproductive output (EC50 of 1480, 710, 700 and mg Cu kg-1
dw, 

respectively). In our study, although the high organic matter percentage may have 

contributed to decrease the bioavailable fraction of the metal, due to the great sensitivity 
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of these organisms to Cu, reproduction was still affected. Thus, both soil organic matter 

and pH are interfering factors for Cu effects on F. candida. 
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Figure IV.2- Reproductive output of EisenIa andrei, Enchytraeus crypticus and Folsomia candida exposed the natural soil PTRS1 spiked with different 
concentrations of Cu. Error bars indicate the standard error and asterisks sign out significant differences between the treatment and the control (0 mg Cu 
kg-1

dw), (p<0.05). 
 

 

0 35
40

.2
46

.2
60

.1
78

.2
10

1.
6

13
2.

2
17

1.
8

22
3.

4
25

6.
9

29
5.

4
33

9.
7

0

50

100

150

200

250

300

Concentration mg Cu Kg-1

0
15

0
17

2.
5

19
8.

3
23

8
28

5.
6

34
2.

7
41

1.
3

49
3.

6
59

2.
3

68
1.

1
78

3.
3

90
0.

8

0

100

200

300

400

0
46

.2
53

.2
61

.2
79

.5
10

3.
4

13
4.

4
17

4.
8

22
7.

3
29

5.
4

33
9.

8
39

0.
7

44
9.

4

0

50

100

150

200

250

300

350

*

*

*
* * *

*

* *
* *

* *
* * * * *

* *
* * *

* *
*Av

er
ag

e 
ju

ve
ni

le
s 

E. andrei F. candida E. crypticus 

141 
 



Chapter IV – Copper toxicity in a natural reference soil – ecotoxicological data for the future 
derivation of soil screening levels 

4.3.3 Seed germination and plant growth  

Seed germination was not severely constrained for most of the plant species exposed to 

Cu in PTRS1 soil (Figure IV.3, Table IV.2), except for L. sativa. The LOEC value calculated 

for this species was ≤ 64.3 mg Cu Kg-1
dw, and the Cu concentrations causing a 20% (EC20) 

and 50% (EC50) inhibitory effect on lettuce germination were 83.3 mg Cu Kg-1
dw

 and 179.1 

mg Cu Kg-1
dw, respectively. Z. mays germination was only slightly affected at a LOEC of 

864.4 mg Cu Kg-1
dw, being the  EC20 of 868.2 mg Cu kg-1

dw and the EC50 > 950.8 4 mg Cu Kg-

1
dw (Table IV.2). On the other hand, Cu was not toxic for the germination of A. sativa and 

L. esculentum. Previous studies had already observed that germination is a less sensitive 

endpoint for a range of soil pollutants (An, 2004a,b; An, 2006b; Lamb et al., 2010). The 

effects of metals on seed germination are related with their ability to reach embryonic 

tissues across physical and physiological barriers, such as the seed coats (Munzuroglu and 

Geckil, 2002). This ability is directly dependent on the structure of seeds coat, which 

varies according to the plant species, and the physical and chemical properties of the 

metal ions themselves (Munzuroglu and Geckil, 2002; Seregin and Kozhevnikova, 2005; 

Lin and Xing, 2007; Liu et al., 2007). In this way, the high toxicity of Cu to L. sativa 

germination can be linked to the high seed coat permeability to this metal, thereby 

leading to the accumulation of Cu in seeds and consequent inhibition of their 

germination.  

 

 

 

 

 

 

 

 

 

 

 

142 
 



Chapter IV – Copper toxicity in a natural reference soil – ecotoxicological data for the future 
derivation of soil screening levels 

 

 
 

Figure IV.3- Average number of emerged seeds in monocotyledonous, Avena sativa and Zea 
mays, and dicotyledonous species, Lycopersicon esculentum and Lactuca sativa exposed to PTRS1 
soil contaminated with Cu. Error  bars  indicate  the  standard  error  and  asterisks  represent  
significant  differences between the treatments and the control (0 mg Cu kg-1

dw), (p <0.05).  
 

Contrary to germination, plants growth was strongly inhibited by Cu (Figure IV.4, Table 

IV.2). Dose-response relationships were clearly obtained for the fresh and dry mass of 

both monocotyledonous and dicotyledonous species subjected to increasing Cu 

concentrations (Figure IV.4). This outcome was not influenced by the amount of sulphate 

as far as no statistically significant differences were measured between sulphate controls 

and the negative control with water (P > 0.05), for all the recorded endpoints.  

The toxicity data presented in Table IV.2 suggests slight differences in the tolerance of 

plant species to free-metal concentrations. Most of all, dicotyledonous species were more 

sensitive than monocotyledonous, irrespective of the endpoint. The fresh and dry mass 

endpoints of monocotyledonous were significantly decreased for Cu concentrations of 

203.2 and 292 mg Cu kg-1
dw, respectively, for A. sativa; whereas for Z. mays the LOEC 

value for both endpoints was 235.3 mg Cu kg-1
dw. In the case of dicotyledonous, the fresh 

and dry masses of L. sativa were significantly decreased for Cu concentrations ≤64.3 mg 
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Cu kg-1
dw, while for L. esculentum the LOEC was = 120.0 mg Cu kg-1

dw (Figure IV.4; Table 

IV.2). Based on the EC50 values the plant species can be arranged in the following 

decreasing order of sensitivity for both measuring endpoints: L. sativa > L. esculentum ≥ Z. 

mays > A. sativa (cf. Table IV.2). 

Copper is an essential element for plant growth and plays a significant role in many 

physiological processes, such as photosynthesis, respiration, carbohydrate distribution, N 

reduction and fixation, protein metabolism (Chatterjee et al., 2006; Xu et al., 2006; 

Nagajyoti et al., 2010). However, for the growth of the four species considered in this 

study, Cu was generally very toxic, even at low concentrations. The great toxicity of Cu for 

plants is in agreement with other studies, according to which shoot and root growth of 

maize and lettuce was more sensitive to Cu than to other metals like Pb, Zn or Cd (An, 

2006; Lamb et al., 2010). Excess of Cu in soil plays cytotoxic role, induces stress and can 

unfavorably cause injury and symptoms to plant including growth retardation and leaf 

chlorosis  (Verma et al., 2011; Thounaojam et al., 2012). 
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Figure IV.4- Average values of fresh and dry mass measurements in monocotyledonous, Avena sativa and Zea mays, and dicotyledonous species, 
Lycopersicon esculentum and Lactuca sativa grown in PTRS1 soil artificially spiked with Cu. Error  bars  represent  the  standard  error  and  the asterisks  
indicate  significant  differences  between the treatments and the control (0 mg Cu kg-1

dw) (P<0.05). 
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The uptake of metals by plants strongly depends on their physiology, nutritional status, 

capacity for regulation of internal metal concentrations, as well as of the ability of roots 

to interfere with local soil chemical conditions through the release of protons and organic 

acids (Ginocchio et al., 2002). However, soil physical and chemical properties, such as 

texture, pH, and organic matter content, are known to be important factors in 

determining the mobility of metals in soils, such as Cu, hence affecting their phytotoxicity 

(Alva et al., 2000; Daoust et al., 2006; Rooney et al., 2006). In particular, organic matter 

supplies organic chemicals to the soil solution, which may serve as chelators and increase 

metal availability to plants (Vega et al., 2004; McCauley et al., 2009; Schaub et al., 2007; 

Laing et al., 2009). This can partially explain the results obtained in our study, since the 

PTRS1 soil contain an elevated percentage of this constituent 6.5% according to the 

classification provided by Murphy et al., (2012). And such organic matter can provide 

components that can increase Cu bioavailability to plants. On the other hand, the pH of 

PTRS1 soil was hardly interfering with Cu phytotoxicity. Soil pH was referred as the most 

important factor influencing metal speciation, solubility from mineral surfaces, mobility, 

and bioavailability (Muehlbachova et al., 2005; Zhao et al., 2010). A negative correlation 

between soil pH and metal mobility and bioavailability to plants has been well 

documented in numerous studies, (Badawy et al., 2002; Wang et al., 2006; Du Laing et al., 

2007). An increase in pH usually reduces the ion activity in solution by complexation 

(Römkens et al., 1999). This occurs especially with metals like Cu, which are known to 

have a great ability to form very stable metal–organic complexes (Stevenson, 1994), 

thereby reducing its toxic effect on plants. Considering that PTRS1 is an acidic soil, this 

might have enhanced Cu bioavailability, and therefore the high toxicity for plants. On 

other hand, the addition of nutrients in test containers may promote their uptake by 

plants and stimulate soil microbial activity, what may in turn contribute to soil 

acidification and the consequent metal toxicity (Römkens et al., 1999).  
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Biota Endpoint Soil type pH OM WRC Clay NOEC LOEC EC20 EC50 Reference 
Urease 5.91±0.098 6.5±0.004 (65.3 g/Kg)  23.94±1.839 3.3 139.5 167.4 124.8 (104.08 - 145.59) 171.8 (156.18-187.57)
Cellulase 5.91±0.098 6.5±0.004 (65.3 g/Kg)  23.94±1.839 3.3 500.0 600.0 429.9 (-19.90-871.9) 571.4 (485.17-657.76)
Acid fosfatase enzim. act. natural soil 5.91±0.098 6.5±0.004 (65.3 g/Kg)  23.94±1.839 3.3 n.d. n.d.
Dehydrogenase 5.91±0.098 6.5±0.004 (65.3 g/Kg)  23.94±1.839 3.3 ≥ 600 >600 425.9 (-19.9- 871.9) n.d. present study
Nitrogen mineralization 5.91±0.098 6.5±0.004 (65.3 g/Kg)  23.94±1.839 3.3 116.2 139.5 90.7 (28.39-153.15) 146.5 (87.00-206.02)
Eisenia andrei rep.(56 days) natural soil 5.91±0.098 6.5±0.004 (65.3 g/Kg)  23.94±1.839 3.3 101.6 132.2 73.0 (34.94- 111.14) 130.9 (91.69-170.14) present study
Eisenia fetida rep.(21 days) natural soil 4.7 23.3 24.0 119.0 162.0 n.d. 778.0 (497.0-1.2) Criel et al. 2008
Eisenia fetida rep.(21 days) natural soil 5.2 0.8 9.0 58.4 99.4 n.d. 72.0 (105.0-171.0) Criel et al. 2008
Eisenia fetida rep.(21 days) natural soil 3.0 51.0 7.0 179.0 245.0 n.d. 192.0 (154.0-238.0) Criel et al. 2008
Eisenia fetida rep.(21 days) Lufa 2.2 5.0 2.1 7.9 87.5 159.0 n.d. 155.0 (130.0-184.0) Criel et al. 2008
Eisenia fetida rep.(21 days) OCDE 6.5 4.7 20.0 188.0 363.0 n.d. 349.0 (301.0-406.0) Criel et al. 2008
Eisenia fetida rep.(21 days) OCDE 6.0 10.0 20.0 n.d. n.d. 309.0 (224.0-400.0) Oeojori et al. 2008
Eisenia fetida rep.(21days) OCDE 6.3 10.0 20.0 29.0 n.d. n.d. 716.0 n.d Spurgeon and Hokin 1995
Enchytraeids crypticus natural soil 5.91±0.098 6.5±0.004 (65.3 g/Kg)  23.94±1.839 3.3  < 150 150.0  < 150 165.1(146.84-183.27) present study
Enchytraeids albidus OCDE 6.2 8.0 10.0 > 320 n.d. n.d. > 320.0 Amorim et al. 2005
Enchytraeids albidus rep. Lufa 2.2 5.8 4.4 6.0 100.0 n.d. n.d. 97.0 n.d. Amorim et al. 2005
Enchytraeids albidus natural soil 5.4 4.1 23.0 10.0 n.d. n.d. 48.0 Amorim et al. 2005
Enchytraeids albidus natural soil 6.7 6.5 26.0 32.0 n.d. n.d. 91.0 n.d. Amorim et al. 2005
Folsomia Candida natural soil 5.91±0.098 6.5±0.004 (65.3 g/Kg)  23.94±1.839 3.3 79.6 103.5 65.8 (36.87-94.84) 191.6 (147.12-236.12) present study
Folsomia Candida natural soil 3.0 5.1 7.0  < 32 n.d. n.d. 50.6 36.6- 70.0 Criel et al. 2008
Folsomia Candida natural soil 4.2 12.9 13.0 290.0 544.0 n.d. 418 (235.0-745.0) Criel et al. 2008
Folsomia Candida natural soil 3.4 1.9 0.0 30.1 51.9 n.d. 12.6 (4.07-38.7) Criel et al. 2008
Folsomia Candida rep. natural soil 7.5 1.3 26.0 472.0 725.0 n.d. 863.0 (752.0-990.0) Criel et al. 2008
Folsomia Candida natural soil 3.2 9.2 10.0 100.0 n.d. n.d. 262.0 n.d.
Folsomia Candida natural soil 6.2 12.9 6.0 320.0 n.d. n.d. 948.0  n.d. Amorim et al. 2005
Folsomia Candida natural soil 4.0 10.0 20.0 n.d. n.d. n.d. 1480.0  n.d. Sandifer et al 1996
Folsomia Candida OCDE 5.0 10.0 20.0 n.d. n.d. n.d. 710.0  n.d. Sandifer et al 1996
Folsomia Candida OCDE 6.0 10.0 20.0 n.d. n.d. n.d. 700.0  n.d. Sandifer et al 1996
Avena sativa 5.91±0.098 6.5±0.004 (65.3 g/Kg)  23.94±1.839 3.3 ≥  807.9 > 807.9 n.d. n.d.
Zea mays germ. natural soil 5.91±0.098 6.5±0.004 (65.3 g/Kg)  23.94±1.839 3.3 785.8 864.4 868.2 (811.17-925.28) >1000 present study
Lactuca sativa 5.91±0.098 6.5±0.004 (65.3 g/Kg)  23.94±1.839 3.3 ≤ 64.3 64.3 83.3 (59.11-110.58) 179.1 (144.53-213.74)
Lycopersicon esculentum 5.91±0.098 6.5±0.004 (65.3 g/Kg)  23.94±1.839 3.3 ≥ 497.7 > 497.7 n.d. n.d.
Avena sativa 5.91±0.098 6.5±0.004 (65.3 g/Kg)  23.94±1.839 3.3 184.8 203.2   < 168 236.3 (191.86-280.82)
Zea mays f.m. natural soil 5.91±0.098 6.5±0.004 (65.3 g/Kg)  23.94±1.839 3.3 ≤ 235.3 235.3   < 235.5   < 235.5 present study
Lactuca sativa 5.91±0.098 6.5±0.004 (65.3 g/Kg)  23.94±1.839 3.3 ≤ 64.3 64.3   < 64.3 89.0 (58.89-119.10)
Lycopersicon esculentum 5.91±0.098 6.5±0.004 (65.3 g/Kg)  23.94±1.839 3.3 85.7 120.0 78.8 (50.57-107.65) 135.0 (106.70-163.34)
Avena sativa 5.91±0.098 6.5±0.004 (65.3 g/Kg)  23.94±1.839 3.3 243.9 292.7   < 168 290.5 (197.03-384.04)
Zea mays d. m. natural soil 5.91±0.098 6.5±0.004 (65.3 g/Kg)  23.94±1.839 3.3 ≤ 235.3 235.3   < 235.5 285.4 (213.34-357.40) present study
Lactuca sativa 5.91±0.098 6.5±0.004 (65.3 g/Kg)  23.94±1.839 3.3 ≤ 64.3 64.3   < 64.3 93.1 (71.30-115.03)
Lycopersicon esculentum 5.91±0.098 6.5±0.004 (65.3 g/Kg)  23.94±1.839 3.3 85.7 120.0 70.4 (35.37-105.46) 151.1 (109.86-192.36)

Average ± STDEV: pH (H2O), OM-organic matter(%), WHCmax – maximum water holding capaci ty (%); Clay %; rep.-reproduction; germ.-germination; f.m.- fresh mass ; d.m- dry mass ; Enz. act.- enzyme activi ty; n.d.-not determined.

(mg Cu Kg-1)

Table IV.1 Toxicity data for microbial processes, soil invertebrates and plants with effect concentrations as mg U kg-1dw soil, with indication of the 95% confidence intervals
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 4.3.4. Derivation of Soil Screening Values (SSV) for copper applying assessment 
factors 

The predicted no effect concentration (PNEC) value for Cu was derived based on the data 

obtained in this work. A risk limit for Cu in a dominant Portuguese soil was defined 

following the approach suggested by the Technical Guidance Document published by the 

European Commission (EC, 2003), in support of the Commission Directive 93/67/EEC on 

Risk Assessment for new notified substances, of the Regulation nº 1488/94 on Risk 

Assessment for existing substances and Directive 98/8/EC of the European Parliament and 

the Council. The toxicity values selected for PNEC derivation corresponded to the lowest 

NOEC and EC20 values obtained across all endpoints, which in this case occurred for the 

average number of juveniles produced by F. candida. An assessment factor of 10 was 

applied, since more than three NOEC values were used for at least three different test 

species. However, the PNEC values obtained for Cu when this factor was applied, varied 

between 6.5 (EC20-based) and 7.9 (NOEC-based) mg Cu Kg-1
dw, which  were lower than the 

background concentrations reported by Inacio et al. (2008) for the national context (18.6 

mg Cu Kg-1
dw), or even lower than the background Cu concentration quantified in PTRS1 

soil (9 mg Cu Kg-1
dw; Caetano et al., 2012). However, and as verified during the validation 

of PTRS1 soil by the same authors, the combined background concentrations of metals 

found in this soil did not compromise its habitat function for terrestrial species.  

Besides, the PNEC values were much lower than the Eco-SSL values suggested by 

USEPA (2007) for Cu, which ranged between 70 mg Cd kg-1
dw for plants and 80 mg Cd kg-

1
dw for soil invertebrates. Comparing with the Canadian Soil Quality Guideline values for 

ecosystems protection (63 mg Kg-1Cu; CCME, 1999), the PNEC herein derived was also 

considerably lower. However, if any factor is applied and based in EC20 value we obtain a 

PNEC value of 65 mg Cu Kg-1
dw, which is in perfect agreement with Canadian values 

proposed for this metal. Due to the nonexistence of screening values at national level, the 

Canadian values are recommended in assessment of contaminated soils, though they 

never had been validated prior for any Portuguese soil. In this way, the value proposed by 

Canadian Soil Quality Guideline for Cu is validated in this work for soils with similar 

characteristics to PTRS1 soil. Thereby, we propose a PNEC of 65 mg Kg-1
dw for Cu.    
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4.4 Conclusion 

At the light of the results herein generated it was reinforced the toxicity of Cu to different 

soil constituents. This metal produced negative impairments on soil biochemical traits 

given by a significant reduction in the activity of UR and CELL enzymes and on NMIN. The 

high inhibitory effects of Cu were also verified on the reproduction of soil invertebrates 

following the increasing order of sensitivity: E. andrei < F. candida < E. crypticus. 

Although seed germination was not severely constrained by this metal, except for L. 

sativa, plant growth measured as fresh and dry mass showed to be the most sensitive 

endpoint to Cu phytotoxicity. In general, the growth of dicotyledonous species (L. 

escolentum and L. sativa) was more affected than that of monocotyledonous plants (A. 

sativa and Z. mays).  

Unequivocally, the large variation in toxicity values obtained with invertebrates and 

plants in literature clearly demonstrates the influence of soil properties on the 

bioavailability of Cu and consequent toxicity to soil organisms.  

From the ecotoxicological data obtained in this study, and applied an Assessment 

Factor approach with a factor of 10, it was possible to calculate a PNEC value for Cu, 

which was lower than the background concentrations already reported for the national 

context. The Assessment Factors proved to be excessively protective when the objective 

is the derivation of screening values of copper for soils.  

The data obtained in the present study represent an important breakthrough in the 

definition of national soil quality guidelines that are extremely useful for the screening of 

soil contamination and its protection within the national context. 
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Abstract  

Ecotoxicological data for uranium (U), cadmium (Cd) and copper (Cu), was obtained for 

soil invertebrates and plants and for soil microbial parameters, following standard 

protocols and well known protocols from the literature. The obtained sensitivity values 

(EC20 and EC50s) were used to derive generic soil screening values (SSVs) for these metals. 

The SSVs were derived following the species sensitive distribution (SSD) approach and 

HCp values (HC5 or HC50) for each metal were estimated. The selection of the best HCp to 

support the derivation of SSVs was discussed, based on the statistical confidence of the 

estimations, the sensitivity data in left side of the curves, below the HCps selected, and 

on available data for field and laboratorial studies with Portuguese natural contaminated 

soils. All the criteria was considered with the aim of preventing the selection of over-

protective HCp values. The, following SSVs were proposed: uranium 151.4 mg U kg-1
dw, 

cadmium 5.6 mg Cd kg-1
dw, copper and 58.5 mg Cu kg-1

dw.   

A comparative analysis with other European and international soil quality guideline values 

was made. The present work represents an important contribution for setting a national 

approach for deriving soil screening values for a generic use, but soil type-based, for the 

environmental risk assessment of contaminated areas. The approach proposed will take 

benefit from the tools and methodologies developed by North European countries with 

great expertise in the area, thus contributing for the harmonization of procedures within 

Europe.  

Keywords: Soil screening values, uranium, cadmium, cooper, natural soil.  
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5.1 Introduction  

Formerly developed, in The Netherlands, in 1983, to protect human health, from 

groundwater contamination caused by the leaching of buried wastes, (Nason et al., 2003), 

soil screening values (SSVs) are more recently defined as threshold concentrations below 

which communities of organisms can be chronically exposed without adverse 

consequences, or, when exceeded, additional risk assessment procedures are 

recommended for a detailed site-specific assessment (Fishwick, 2004; Carlon, 2007). The 

SSVs have a remarkable importance at a screening level of Ecological Risk Assessment 

(ERA) procedures aimed in assessing  contaminated areas, as they allow to screen out 

rapidly and with minimal costs those sites (or at least sub-areas within the areas) for 

which risks are too low and a deep evaluation can be discarded (Provoost et al., 2008). 

SSVs should therefore be distinguished from soil guideline values, which represent a limit 

above which an intervention is required, or from limit values for emissions more adjusted 

to regulate sludge deposition (Ferguson et al., 1998). 

The comparison of SSVs with the total measurable concentrations of contaminants, 

helps to infer whether these contaminants are present at concentrations that can pose a 

risk to the ecological receptors both, individually or combined, through the calculation of 

the toxic pressure of the mixtures by applying the multi-substance potentially affected 

fraction ms-PAF method (De Zwart and Posthuma, 2005; Jensen and Mesman, 2006a; 

Weeks and Comber, 2005). These comparisons, performed for each chemical, present at a 

contaminated site, are also useful to identify the most likely contaminants responsible by 

the effects observed (Jensen and Pedersen, 2006).  

Although, ecological risk assessment tends to be relegated to a second plan it is 

extremely important to support remediation plans and future uses of the sites (Ferguson 

et al., 1998; Moreno-Jiménez et al., 2011). In this context, the derivation of SSVs has 

become a critical need in recent years, due to the generalized and recognized problem of 

soil contamination in Europe, as expressed in the text of the Thematic Strategy for Soil 

Protection published by the European Community (CEC, 2006a). Panoply of contaminants 

released from diverse human activities, are harmful to biota, ecosystems, and in the last 

instance to human health, both directly and indirectly (by affecting several ecosystem 
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services), and have attained concerning concentrations in the soil compartment, 

preventing the use of meaningful areas of soil for other uses. In this sense, SSVs are an 

extremely important component of ERA Frameworks, and for the application of present 

and future soil protection policies, aimed in dealing with contaminated areas, as they can 

be more comprehensible for all the professionals’ involved, stakeholders and general 

public. For this reason several European countries such as Austria, Flanders, Finland, 

France, Norway, The Switzerland, Denmark, Germany, The Netherlands, UK, The Basque 

Country and Spain (Carlon, 2007; Crommentuijn et al., 2000a; Fishwick, 2004; O’Halloran, 

2006) have already derived their own SSVs. 

The SSVs are derived based on ecotoxicological data obtained from laboratorial tests, 

with different species relevant to soil ecosystems, and whenever as possible following 

standard protocols. And, for this purpose, three widely recognized methods have been 

applied, depending on data available, and were adopted by many countries already 

applying  risk assessment frameworks: i) the assessment factor (AF) method; ii) the 

statistical distribution method, as the species sensitivity distributions (SSDs) and, iii) the 

equilibrium partitioning method (Ferguson et al., 1998; Posthuma et al., 2002; Fishwick, 

2004). Although transparent, easy-to-use and applicable to small data sets, the  AF 

approach, is based on the lowest available toxicity value, usually obtained from single 

species-laboratorial test, which is divided by a given assessment factor ranging from 1000 

to 1, depending of the amount and type (acute versus chronic) of available toxicity data 

(Fishwick, 2004). The AF method is advisable for a former definition of toxicity-based SSVs 

based on the precautionary principle, and they should be revised as soon as more 

ecotoxicological data is obtained (Fishwick, 2004). Further they should not be confounded 

with uncertainty factors which are used to extrapolate from acute to chronic data, from 

laboratorial to field data etc., (Smrchek et al., 1993). But for more detail, Chapman et al., 

(1998) has made a critical evaluation of the application of both, assessment and 

uncertainty factors in the ERA process. In contrast, the SSDs, when used correctly, they 

can introduce greater statistical confidence into risk assessment processes when 

compared to the assessment factor approach (EC, 2003). This methodology is based on 

the recognition that species are not equally susceptible to toxicants, thus representing 
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the variation in sensitivity of species toward certain contaminant by a statistical or 

empirical distribution function of responses, for a set of species (Posthuma et al., 2002). 

For this purpose toxicity data,  of a given number of selected species, or  from a natural 

community  is fitted to a cumulative distribution function (e.g. lognormal or log-logistic) 

that can be then used, in an “inverse mode”, to determine the hazard concentration for a 

given percentage of species (HCp), depending of the level of protection required 

(Posthuma et al., 2002). Usually, a point estimate or a cut-off known as the HC5 

(hazardous concentration for 5% of species), or the 95% protection level is extrapolated 

from the curve (Forbes & Calow, 2002; Wheeler et al., 2002; Domene et al., 2008), i.e. the 

concentration for which no more than 5% of the species will be affected. However, some 

authors suggest that when all of this data (from species, to communities and functions) is 

available and is used, a new definition for HCp should be proposed, since measures are no 

more at species level (Wheeler et al., 2002). This new definition was already introduced 

(e.g. Jänsch, et al., 2007) and SSVs can in fact be developed for several receptors such as 

soil-dwelling invertebrates, soil functions, the microbial community, terrestrial plants and 

even wildlife (Nason et al., 2003).  

There are cases where hazardous concentration affecting 50% of the species (HC50) are  

also used (Rutgers et al., 2008). Both HC5 or HC50 values are normally derived from a 

dataset of NOEC (chronic no observed effect concentrations) values for soil organisms, 

EC20 or EC50 values can also be used, depending again on the protection level required 

(Kapustka, et al., 2006; Jänsch et al., 2007), which in turn may depend from present and 

future soil uses. However, and as far as NOEC values are considered several 

recommendations pointed out for their replacement by low EC values (EC5 or EC10), which 

requires the adoption of the ECx sampling design in standard tests (Chapman et al., 1996; 

OCDE, 1998; Warne and Dam, 2008).  Further, although some authors argue that the p 

percentage of species is frequently a policy decision (Fishwick, 2004) the more protective 

5th percentile should be selected especially when optimal sample sizes (number of species 

sensitivity values) are low (Newman et al., 2000) Despite the advantages of the SSD 

approach, highlighted by Fishwick, (2004), several disadvantages were also pointed out, 

as for example the exclusion of interactions between species, which may compromise the 
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use of HCp values derived from single species toxicity data to protect ecosystems. A 

criticism that was minimized by the results of Maltby et al., (2005) which showed that the 

SSDs were similar for both laboratorial and field exposures, and that the lowest HC5 

estimate (95% protection with 95% confidence) was protective of the freshwater 

ecosystems, for the pesticides under evaluation, when single applications were 

considered 

The equilibrium partitioning method (Eq-P method) formally developed for sediments, 

could also  be used to compensate the lack of toxicity data for terrestrial species of 

certain compounds, by converting a PNEC (Predicted No Effect Concentration) value for 

the aquatic compartment (usually derived using SSDs) in a PNEC for soil, by using a 

soil/water partition coefficient (Fishwick, 2004). However, and as showed by  van Beelen 

et al., (2003) , the Eq-P method can lead both to over- and underestimation of terrestrial 

HC5, being preferable to use terrestrial toxicity data to derive HC5 values for soil, when 

more than four values are available.  

In Europe, risk assessment methods for new and existing chemicals are described in 

the technical guidance document (TGD) developed by the European Commission (EC, 

2003) and the inclusion of statistical extrapolation methods using SSDs is increasingly 

recommended (Posthuma et al., 2002; Fishwick, 2004; Wheeler et al., 2002) for the soil 

compartment and for regulatory purposes, despite some of the disadvantages pointed 

out like the accuracy-dependency from the amount and quality of data available and 

model used (Newman et al., 2000; Wheeler et al., 2002). Some countries like Portugal, are 

making temporary use of foreign values (Ferguson, 1999; Pereira et al., 2008), however is 

widely recognized the great variability of soils within the European territory, since at least 

320 main types of soils were identified, with great differences in terms of their physical, 

chemical and biological properties (CEC, 2006a). Such differences are expected to account 

for differences in the behavior of chemicals in the soil and consequently it’s toxicity will 

also be constrained by different soil types (Semenzin et al., 2007; Rombke & Amorim, 

2004). Thereby, the main objective of this work was the derivation of Portuguese SSVs for 

Uranium (U), Cadmium (Cd) and Copper (Cu) using a set of ecotoxicological data 

previously obtained for the soil microbial community, invertebrates and plants using a 
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Portuguese natural reference soil, representative of dominant soils within the continental 

territory, by the application of the SSD method, following the criteria and procedures 

outlined in the European Union (EU) Technical Guidance Document (EC, 2003). HCp 

values estimated from SSDs for U, Cd and Cu  will be compared with the SSVs values 

previously determined by the assessment factor (AF) approach by Caetano et al., (a,b, c, 

submitted). Further, HCp values estimated from SSDs, based on EC20 and EC50 values, will 

be discussed in terms of their degree of protection, after comparison with soil 

background values for the three metals as well as with the SSVs obtained for other 

countries. The values estimated by the SSD method will also be compared with previous 

SSVs determined by using the assessment factor (AF) (Caetano et al., (a,b, c, submitted)) 

for each metal. Portuguese SSVs for uranium, copper and cadmium will be suggested for 

regulatory purposes. 

 

5.2 Material and methods 

5.2.1 Toxicity data of U, Cd and Cu 

Uranium (U), cadmium (Cd) and copper (Cu) were selected to derive SSVs as they are 

some of the top pollutants associated with industrial and agricultural activities, with 

consequent relevant toxicity in the soil compartment (van Gestel & Mol 2003; Pereira et 

al., 2008; Kabata-Pendias, 2010). Additionally, in case of uranium it represents a serious 

environmental problem in Portugal, due to the accumulation of uranium mining wastes 

for several decades of exploration of radioactive ore, in the last century (Carvalho, 2011; 

Pereira et al., 2013). Further, the definition of SSVs for this metal is extremely important, 

since to the best of our knowledge any other European country has made such attempt. 

Copper and cadmium are also found in several other mining contaminated areas (Pereira 

et al., 2006; Pereira et al., 2008) and copper containing fungicides have been widely over-

applied in agriculture, especially in vineyards, for more than one century (Ruyters et al., 

2013) being a problem for wine producing countries like Portugal. A finding that led the 

European Commission to restrict the annual application of copper (EC, 2002). 

Ecotoxicological data generated in previous studies for the concerned metals by Caetano 

et al., (a,b, c, submitted) were used to derive SSVs for these elements, using a Portuguese 
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natural soil. Data was gathered from ecotoxicological tests, performed according to 

internationally standardized guidelines to assess sub-lethal effects on invertebrates and 

plants such as the reproduction of Eisenia andrei (ISO, 1998), Folsomia candida (ISO, 

1999) and Enchytraeus crypticus (ISO, 2004), and the emergence/growth of terrestrial 

plants (Avena sativa, Lycopersicon esculentum, Zea mays, Lycopersicon esculentum), (ISO, 

2005). Soil microbial activity was also tested measuring a range of soil enzyme activities 

(arylsulphatase, dehydrogenase, urease, and cellulase) as well as changes in the nitrogen 

mineralization and potential nitrification, on soils spiked with a range of metal 

concentrations, after one month of exposure Caetano et al., (a,b, c, submitted for more 

details). Although no standard protocols are available for these parameters, the protocols 

used are clearly published in the literature (e.g. Schinner et al., 1996) and have been used 

in several studies, including some studies published by our team (Pereira et al., 2006; 

Antunes et al., 2011). All tests were conducted using a Portuguese natural reference soil 

PTRS1, as test substrate, previously characterized and validated by Caetano et al. (2012) 

as a natural reference soil.  

Although NOEC values are recommended when SSD approach is applied for the 

derivation of SSVs (Fishwick, 2004), these values have been widely criticized because they 

depend from the range of concentrations tested,  the variability of the data, the selected 

significance level and the sample size (OCDE, 1998; Warne & Dam, 2008; Meng et al., 

2010)  

Therefore, the model used in this study was applied both to EC20 and EC50 values  

(Table V.1) since they are statistical estimated toxicity concentrations and therefore more 

reliable (Jänsch et al., 2007). The authors decided not to use EC10 values (advised to 

replace NOEC values), (OCDE, 1998) because it will be possible to perceive they would 

give rise to extremely overprotective values, which in turn could result in several false 

positives, reducing the importance of the tier 1 of risk assessment procedures for 

contaminated lands. 
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5.2.2 Development of SSVs values 

5.2.2.1 SSVs calculated using species sensitivity distributions (SSD) 

The SSDs were obtained using two recognized tools for SSDs generation : (1) Microsoft 

Excel template for SSD generator applied by USEPA 

(http://www.epa.gov/caddis/da_software_ssdmacro.html); (2) ETX 2.0 program (Van 

Vlaardingen et al., 2003) internationally applied (e.g. in the Netherlands (VROM, 2002) 

and Denmark (Scott-Fordsmand & Pedersen, 1995), 

(http://www.rivm.nl/rvs/Risicobeoordeling/Modellen_voor_risicobeoordeling/ETX_2_0). Both 

software’s were used in this work in order to compare and confirm the output data 

obtained. The concentration affecting a given proportion of species and microbial 

functions (HCp) was estimated, after fitting a linearized log-normal distribution to ECx 

values, by the SSD generators. Therefore, for each metal we generated SSDs based in EC20 

to estimate both HC5 and HC50 cut-offs (i.e. hazardous concentration affecting 5 and 50% 

of the species and microbial processes at their EC20 effect level, respectively) and EC50-

based HC5 values (i.e. hazardous concentration affecting 5% of the species and microbial 

processes at their EC50 effect level). Since both tools used the same statistical model to fit 

the data, HCp values and graphs generated by the SSD generator from USEPA are 

presented, because this tool was more user-friendly for this purpose. 

 

5.3 Results and discussion  

5.3.1 Data set used for U, Cd and Cu 

The datasets used in this study include a total of 6, 8, 10 EC20 values and 6, 14, 15 EC50 

values for the effects of U, Cd and Cu, respectively, on three different trophic levels 

(microorganisms, invertebrates and plants) (Table V.1, Table V.2). All the toxicity data 

reported in this study are expressed in terms of soil dry mass. Both 5th (HC5) and 50th 

(HC50) percentiles of a chronic toxicity distribution were chosen assuming that at these 

metal concentrations no more than 5% and 50% respectively,  of all species and microbial 

processes will show a detrimental effect.  
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Metals Biota Endpoint EC20 EC50

Arylsulphatase 155.3 (84.76-255.87) 295.6 (216.09-375.17)
Nitrogen mineralization 152.2 (46.66-257.79) 347.0 (211.25-482.91)
Potencial nitrification 429.5 (229.53-629.46) 610 (459-761.1)
Eisenia andrei 474.8 (391.47-558.04) 631 (532.78-699.21)
Enchytraeids crypticus 469.7 (355.4-584.0) 518.6 (480.40-556.90)
Folsomia candida 343.4 (172.23-514.60) 851.64 (606.10-1097.18)
Celulase 47.8 (15.67-80.04) -
Urease 99.9 (75.17-124.67) -
Acid phasphatase - 40.2 (0.88-79.5)
Eisenia andrei 37.3 (26.60-47.95) 76.4 (62.69-90.12)
Enchytraeids crypticus - 8.3 (7.54-8.87)
Folsomia candida - 64.8 (54.47-75.20)
Lactuca sativa 279.3 (202.24-356.46) 460.0 (386.36- 533.66)
Lycopersicon esculentum 644 (547.74-742.07) 919.04 (8414.24-996.84)
Avena sativa - 36.5 (19.40-53.63)
Zea mays 37.5 (22.20-52.87) 135.1 (101.52-168.80)
Lactuca sativa - 20.2 (10.11-10.60)
Lycopersicon esculentum 78.03 (46.03-110.03) 145.5 (111.17- 179.85)
Avena sativa - 27.48 (1.70-53.25)
Zea mays - 185.1 (100.30-269.90)
Lactuca sativa - 20.4 (5.32-35.48)
Lycopersicon esculentum 76.0 (43.88-108.06) 137.4 (102.74-172.07)
Dehydrogenase 124.8 (104.0 - 145.5) -
Nitrogen mineralization 90.7 (28.39-153.15) 146.5 (87.00-206.02)
Celulase 429.9 (-19.90-871.9) 571.4 (485.17-657.76)
Urease 124.8 (104.08 - 145.59) 171.8 (156.18-187.57)
Eisenia andrei 73.0 (34.94- 111.14) 130.9 (91.69-170.14)
Enchytraeids crypticus - 165.1(146.84-183.27)
Folsomia candida 65.8 (36.87-94.84) 191.6 (147.12-236.12)
Zea mays 868.2 (811.17-925.28) -
Lactuca sativa 83.3 (59.11-110.58) 179.1 (144.53-213.74)
Avena sativa - 236.3 (191.86-280.82)
Zea mays - 126.1 (56.22-195.99)
Lactuca sativa - 89.0 (58.89-119.10)
Lycopersicon esculentum 78.8 (50.57-107.65) 135.0 (106.70-163.34)
Avena sativa - 290.5 (197.03-384.04)
Zea mays - 285.4 (213.34-357.40)
Lactuca sativa - 93.1 (71.30-115.03)
Lycopersicon esculentum 70.4 (35.37-105.46) 151.1 (109.86-192.36)

Table V.1 Toxicity data for soil enzymes activity, reproduction of invertebrates, seed germination and growth of terrestrial plants with 
effect concentrations of U, Cd and Cu (mg.kg-1

dw), (Caetano et al., a,b,c submited), with indication of the 95% confidence between 
brackets.

rep.-reproduction; germ.-germination; f.m.- fresh mass; d.m- dry mass; enz. act.- enzyme activity; (n.d)-not determined.

Cadmium
(mg Cd Kg-1)

enz. act.

rep.

germ.

f.m.

d.m. 

Plants 

Invertebrates 

Microbial processes 

Copper
(mg Cu Kg-1)

Plants 

germ.

f.m.

d.m. 

Uranium 
(mg U Kg-1)

enz.act.

rep.

enz.act.

rep.

Microbial processes 

Invertebrates 

Microbial processes 

Invertebrates 
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Metals Total number EC20s Total number EC50s Microbial processes Animal processes Plant species N

Uranium 6 6 3 3 0 6
Cadmium 8 14 3 3 4 10
Copper 10 15 4 3 4 11

Table V.2 Summary table of the distribution of toxicity data, per throphic level; N = Total number of species/microbial
processes.
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5.3.1 SSDs generation and HCps estimation and selection 

For all the metals, the number of toxicity values available were above the minimum of 

four, recommended by van Beelen et al. (2003), but below the recommended number of 

data points (10-15) required to stabilize log-logistic models,  (Table V.2). According to 

Table V.3 the model fitted better to EC20 values, rather than to EC50 values, except for 

copper. Further, HC5 values derived from EC50 values were 2.5 greater (the maximum 

recorded for copper) than the HC5 values derived from EC20. But, as far as uranium is 

considered all the EC20 and EC50 values recorded for this metal were above these HC5s, 

suggesting that both values will have the same degree of protection. However, since both 

HC5s fall in the lower limit of the cumulative curve, where no more toxicity data exists 

below them, on a statistical point of view they are a less strong estimation. The same was 

not true for the HC50 based on EC20 values (Figure V.1c and Table V.3), suggesting that it 

could be a more confident estimation to be proposed as a SSV for uranium. Nevertheless, 

if selected, an effect level of about 50% should be expected in some important microbial 

parameters, related with the nitrogen cycle on soils at concentrations close to this cut-off. 

In fact, and looking for the SSD for uranium, the soil microbial enzymes were the most 

sensitive parameter to U, as they are located in left part of the SSD-curve. Hence it is 

important to guarantee that soil contamination with U will not compromise nutrient’s 

cycling to a level that will result in the subsequent limitation of the net primary 

productivity.  

Furthermore, and comparing the different HCp values obtained for uranium in this 

study, with field ecotoxicological data or with data from Portuguese natural soils 

contaminated with uranium reported in literature, we can notice the occurrence of 

effects at both higher and lower environmental concentrations of U. For example, effects 

in the feeding activity of soil fauna, measured by the bait lamina assay, were recorded by 

André et al., (2009), in soils containing 210.6 mg U kg-1. Antunes et al., (2011) observed 

the inhibition of several soil enzyme activities in soils with concentrations of U ranging 

between 99.2 and 289.10 mg U kg-1. A concentration of U of 215.7 mg U kg-1 was present 

in soils that caused effects in reproduction, growth reduction, DNA damages, cytotoxicity, 

and changes in the populations of cells from the immunity system (Lourenço et al., 2011). 
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Further, the avoidance of natural soils by E. andrei was also recorded for concentrations 

above 103 mg U kg-1 (Antunes et al., 2008). Pereira et al., (2009) observed an inhibition in 

the growth of Lactuca sativa (measured in terms of wet mass) in natural soils from mining 

area with U concentrations ranging between 103.3 and 1408.0 mg U kg-1. In fact some of 

the reported toxic effects on soil microbial enzymes activity, invertebrates and plants 

occurred at concentrations of U below the HC50 (based on EC20 values) estimated in this 

study, i.e. below 303.2 mg U Kg-1. Nevertheless, all the effects were recorded on soils 

contaminated with complex mixtures of metals, and the effects observed cannot be 

exclusively attributed to uranium. This was reinforced by Lourenço et al., (2011), which 

observed that earthworms from the species E. andrei exposed to the contaminated soil 

have significantly accumulated not only uranium, but all the metals analysed (Be, Al, Mn, 

Fe, Ni, Zn. Se, Sr, Cd, Ba and Pb) as well as radionuclides like 226Ra, after 14 and 56 days of 

exposure. In summary and based on all of these evidences the HC50 EC20-based for 

uranium of 303.2 mg U kg-1 (Table V.4), seemed to be the most appropriate cut-off to 

support the definition of a SSV for this metal. The intention is not to accept the 

impairment of these important processes for the biogeochemical cycles, as only a 20% of 

effect is accepted, but rather to prevent many false positives in the screening step of the 

risk assessment procedure. This estimation was also selected based on two main aspects: 

i) the uranium toxicity data fitted better to EC20 values (r2=0.904) and, ii) the best 95% 

confidence intervals were obtained for both the HC50 EC20-based and the HC5 EC50-based 

estimations (which span for a factor of about 4). However, more data should be collected 

for other species and endpoints to confirm the estimation of the SSV for U. While   that 

data is not available the lower limit of the 95% confidence interval of the HC50 EC20-based 

estimation (151 mg U kg-1) is suggested as a SSV for uranium and for soils similar to the 

PTRS1. 

As far as cadmium is considered, and following the above described rationale for 

selecting the HCp for this metal based on the statistical confidence of the estimate, the 

HC50 EC20-based should be selected (Figure V.2 c; Table V.3). However, selecting a risk 

limit of 95.8 mg Cd kg-1 all the invertebrate species will be seriously under protected, as 

well as several microbial functions, as can be perceived from Table (V.I). Further, although 
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the EC20 data for cadmium fitted better to the log-normal distribution (r2=0.777), the 

estimation of the HC50 EC20-based did not show the best 95% confidence interval. In 

alternative we propose to select the HC5 EC50-based corresponding to a Cd concentration 

of 8.4 mg kg-1 of soil, since at this level a 50% inhibitory effect on reproduction was 

recorded only for enchytraeids. This HCp was also lower and upper bounded by the 

toxicity data used to generate the SSD cumulative distribution, in opposition to the HC5 

EC20-based cut-off (Figure V.2 a; Table V.3). Comparing with field data and with data 

obtained for Portuguese soils, André et al., (2009) observed the impairment soil fauna 

feeding activity at a maximum Cd concentrations of 4.3 mg Cd kg-1. Alvarenga et al., 

(2012) found effects in the growth of Avena sativa in a natural soil, coming from one 

mining area, with 3.38 mg Cd kg-1. Effects in the activity of soil dehydrogenases and 

changes in potential nitrification were observed by Pereira et al., (2006), in soils from a 

mining area with concentrations of Cd equal to 2 and < 1 mg Cd kg-1 for dehydrogenase 

and  < 1 mg Cd kg-1 for potential nitrification. Although from a mining area explored in the 

past for cupreous pyrites, the Cd concentrations recorded by these authors were always 

below 3 mg Cd kg-1. In turn, Natal da Luz et al., (2004) observed that the invertebrates E. 

andrei and F. candida avoided soils with 0.01 and 0.07 mg Cd kg-1, respectively, from the 

same abandoned mining area referred above. (Table V.3). Once again data obtained from 

Portuguese natural contaminated soils pointed for Cd toxicity, always occurring at 

concentrations lower than the HC5 EC50-based estimated, but once again these effects 

were observed on soils contaminated with cadmium mixed with several other metals. 

Hence, the lower limit of the 95% confidence interval of this cut-off corresponding to 5.6 

mg Cd kg1, seems to be appropriate as a trigger value for more site-specific assessments 

of soils similar to the PTRS1 (Table V.4 ). In this case we also considered better to be 

overprotective, since the mathematical model did not fitted so well to both EC20 and EC50 

values. 

Concerning to Cu,  the HC5 EC20-based (Figure V.3a; Table V.3), can be immediately 

eliminated, since it could be an over-protective cut-off, because all the ecotoxicological 

data obtained for this metal (Caetano et al., (c, submitted)), (Table V.1) were above the 

concentration of 23.4 mg Cu kg-1, and even the lowest EC20 obtained was 2.8 times higher 
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than the HC5 EC20-based.  As far as the other HCp values are considered, the EC50 values 

for copper fitted better to the statistical model (Table V.3), and selecting the HC50 EC20-

based (145 mg Cu kg-1) we are accepting a 20% level of effect on some soil microbial 

parameters, invertebrates and plants, and in some cases, especially for plants, we are also 

accepting a 50% level of effect (Table V.1), since some toxicity data recorded were below 

this concentration.  

The comparison of these values with data, on Portuguese natural soils, can help us to 

decide which value is wiser to propose. Alvarenga et al., (2012) observed the mortality of 

E. andrei exposed to a natural soil with 434 mg Cu kg-1. The same invertebrate species 

avoided a mining soil, with 6.31 mg Cu kg-1 in a study carried by Natal da Luz et al., (2004). 

F. candida avoided a soil from the same area with 0.81 mg Cu kg-1 in the same study. As 

far as soil microbial processes are considered, Pereira et al., (2006) reported effects in 

activity of soil dehydrogenase in natural soils from a  cupreous pyrite mining area with 30, 

55 and 80 mg Cu kg-1. Likewise, Antunes et al., (2011), verified a significant negative 

correlation between phosphatase activity and Cu levels in polymetallic mine soils with 

concentrations of copper ranging between 0.14 and 1.88 mg Cu Kg-1. In summary, and 

once again, data available are from soils contaminated with a complex mixture of metals, 

and they support the choice of the HC5 EC50-based for being used as a SSV for copper, 

since although effects were sometimes recorded at very low concentrations of copper, 

this metal was not the sole element exerting toxic effects in the soils under evaluation. In 

this case, the selection of the lower limit of the 95% confidence interval was not 

necessary, since it was very close to the cut-off estimated. Thereby the proposed SSV for 

copper and for soils similar to the PTRS1 is 58.5 mg kg-1. No toxicity data obtained by 

Caetano et al., (c, submitted)) fell below this concentration. 

The SSVs proposed for each metal, are summarized in table V.4. All the values were 

above background values known for these metals. Regarding uranium background values 

of 6.1 and 7.8 mg U kg-1 were recorded by André et al., (2009) and Caetano et al., (2012), 

respectively, in reference soils, including the PTRS1. Similarly, lower background values 

for Cd were obtained by the same authors, which were usually below 1 mg Cd kg-1
dw in 

soils and also by Pereira et al. (2006) that found a background level of Cd of 2 mg kg-1 for 
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a natural reference soil. The background concentrations reported for Cu in Portuguese 

soils changed between 9 mg Cu kg-1 reported by Caetano et al., (2012), 18.6 mg Cu kg-1 

reported by Inácio et al., (2008) and 30 mg kg-1 (Pereira et al., 2006), which are also lower 

than the cut-off selected for this metal.  

The HCps selected in this study varied according to, the metal, from HC5 EC50 based (Cd 

and Cu) to HC50 EC20 based (U). Although, some authors argue that the selection of cut-

off should be a political decision, we have shown that in fact, we cannot always select the 

same cut-off, and that the decision has to be based on the statistical confidence of the 

data, a critical analysis of the main groups of organisms and functions affected, the level 

of effect considered admissible, and the comparative analysis with data from natural 

soils. Furthermore, the analysis of field or laboratorial data and of all the toxicity values 

produced to generate the SSDs could help us to prevent the selection of an extremely 

overprotective limit that will lead to false positives. Nevertheless, data available for 

Portugal related with natural soils is limited, and is also impossible to find a natural soil, 

with only one metal at environmental concerning concentrations. In the case, of the HCps 

selected in this study to derive SSV values we clearly assumed that a high level of effect 

(50%) can be accepted for only 5% of the species, while for a high percentage of species 

only 20% level of effect, should be accepted. This decision could be made in a more 

generic basis i.e. for all the soils independently of their use. We also consider these cut-

offs and these argumentation will also be better accepted by policy makers, rather than 

presenting the extremely overprotective HC5 EC20 based cut-off. However, more toxicity 

data for other species and endpoints is clearly needed to increase the confidence in the 

estimation of the HCp value selected for uranium. As suggested by Boekhold, (2008)  soil 

ecological parameters should also be integrated in SSDs. Endpoints like litter 

decomposition or changes in soil microbial structural and functional diversity, could be 

additional endpoints to be considered in the future, as well as data obtained from 

mesocosm studies. However, some of these parameters will make the application of the 

SSD-method more laborious and time consuming, limiting our ability to apply this method 

to a wide array of contaminants. It will also be important to discuss in the future, the use 

of toxicity data obtained for soil elutriates, tested with aquatic organisms. As far as Cd 
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SSV derived in this study is considered, new models can be tested to fit the data already 

available. Nevertheless, we can assume that the SSVs proposed in this study are 

conservative, since they were derived from spiked soils, where the ageing process did not 

occur. Hence they can be used safely.   

The comparison of the SSVs derived in this study with previous SSVs based on PNECs 

(predicted no effect concentrations) estimations (Caetano et al., (a,b, c, submitted)), 

through the application of the assessment factor’s method (Table V.4), (EC, 2003), shows 

that the PNEC values were several times lower than the SSVs estimated on this study, and 

almost similar, or even lower than the soil background concentrations. Therefore, 

although the AF method can in fact be used when almost no data exists about the toxicity 

of a given compound, efforts must be done for collecting more data as soon as possible, 

for replacing the trigger limits obtained by this method, as they will reduce the utility of 

the screening step of the risk assessment process. For this reason, and also considering 

that SSDs demands more and superior quality data, when the aim is the derivation of 

SSVs this approach must be definitely considered for this purpose (Wheeler et al., 2002). 

Further, and as it was perceived by the analysis of HC5EC20 values made above, the 

approach recommended by the European Technical Guidance Document (EC, 2003) for 

the derivation of PNEC values, which considers the quotient between the lower limit of 

the 50% confidence interval of the 5th percentile of the SSD (based on NOEC values) and 

an assessment factor ranging between 1 and 5 (depending the overall quality of the data) 

it will be extremely overprotective, at least based on data generated in this study, and for 

the purpose of obtaining SSVs, to trigger more detailed evaluations of contaminated soils. 

Therefore a new approach is proposed and discussed in this study, also based on SSD 

distributions. 
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Figure V.1 SSDs for uranium based on EC20 values (a,c) and EC50 values (b) for different microbial processes, invertebrates and plants and 
used to estimate HC5 (a,b) and HC50cut-offs. 

Metals  HC5 EC20 r 2  HC5 EC50 r2 HC50 EC20 r 2

Uranium 110.5 (45.93-266.02) 0.904 122.2 (61.79-242.00) 0.874 303.2 (151.44-606.99) 0.904
Cadmium 15.8 (5.08-43.34) 0.777 8.4 (5.59-12.76) 0.716 95.8 (41.03-223.89) 0.777
Copper 24.3 (7.42-75.58) 0.778 58.5 (58.57-101.78) 0.931 145.4 (52.5-403.12) 0.778

Table V. 3 HCp values obtained from SSD method for  U, Cd and Cu using EC20 and EC50 values (mg.kg-1
dw), 95% 

confidence intervals between brackets.
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Figure V.2 SSDs for cadmium based on EC20 values (a,c) and5 EC50 values (b) for different microbial processes, invertebrates and plants and 
used to estimate HC5 (a,b) and HC50 HC50cut-offs. 
 

 
Figure V.3 SSDs for copper based on EC20 values (a,c) and5 EC50 values (b) for different microbial processes, invertebrates and plants and used 
to estimate HC5 (a,b) and HC50cut-offs.  
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5.4  Comparison of Portuguese SSVs with other European and International values  

The SSVs obtained in this study, for a given type of Portuguese natural soil, and for Cd, Cu 

and U, were compiled together with SSVs available for other European countries (e.g., 

Denmark, Germany, The Netherlands, Italy, France, Belgium, Poland, Finland, Austria and 

Sweeden) as well as with Soil Quality Guideline (SQG) Values for Canada and ECO-SSLs for 

USEPA. Table V.5. shows the great variation among SSVs available as well as of the criteria 

used in their definition (e.g. soil type, land use). An exhaustive analysis and discussion of 

the reasons underlying such variation was already made by Carlon and Swartjes, (2007) 

and Provoost et al., (2008), which include: i) the legal frameworks supporting the 

derivation of SSVs; ii) the scientific basis; iii) the transparency in the methodology applied; 

iv) revisions already made to previous derived SSVs; v) receptors included (human and/or 

non-human receptors); vi) the integration of economic and social factors; vii) 

toxicological/ecotoxicological data expressed in terms of total versus leaching/extractable 

concentrations; viii) background concentrations taken into account or not in the 

derivation of SSVs; ix) soil type, soil fraction and soil depth used; x) data sources; xi) 

normalization of ecotoxicological data for a standard soil; xii) the use of terrestrial versus 

aquatic toxicity data; xiii) application of SSDs versus AF methods; xiv) level of protection 

of the SSD application; xv) the probabilistic model selected; xvii) applied assessment 

factors etc. Acting together, and with different levels of influence all these factors 

determine the differences recorded in table V.5. The great variability in physical and 

chemical properties of test soils used for the derivation of SSVs, was probably one the 

meaningful factors responsible for such differences between countries. This was in fact 

confirmed by several studies, demonstrating the influence of soil properties in the 

Method/ 
SSV (mg.kg-1

dw)

SSD
distribution method

Assessment Factor (AF)

Uranium 151.4 15.2
Cadmium 5.6 3.7
Copper 58.5 6.5

Table V.4 Summary table of SSV obtained for U, Cd and Cu using the SSD 
method  and the AF approach.
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bioavailability of contaminants and hence in their capacity to promote different toxic 

effects on soils organisms (Criel et al., 2008; Domene et al., 2010; van Gestel et al., 2011). 

An aspect that reinforces the need of deriving such values based on different types of 

natural soils. The variation recorded in this study was greater for Cd, whose values varied 

by a factor of 33.3 (i.e. 0.3 and 10mg Cd kg-1), while for Cu values varied by a factor of 6.6 

(i.e. 30 and 200 mg Cu kg-1). Moreover, as it is possible to verify, and to the best of our 

knowledge, any European country derived till now a SSV for U, probably because this 

metal was not perceived as a problem in their countries. Only SQG values are available for 

Canada, which is the world’s leading producer of U (for more details please see: 

http://www.nrcan.gc.ca/energy/uranium-nuclear/7693). In Portugal, although the 

exploration of this metal finished, and the most concerning uranium mines are already 

suffering remediation works, several other abandoned mines require a risk evaluation 

(Pereira et al., 2014), for which the SSV derived in this study will be of crucial importance. 

In all the cases, our values fell within the ranges of available values, except for U, since 

our SSV for U  was about 4.5 times higher than the Canadian Soil Quality Guideline 

proposed for both, the protection of the environment and human health (Table V.5). 

Canada develops their guideline values based on land use, assuming that lands don’t need 

the same level of protection (e.g. an industrial soil use does not require the same level of 

protection as an agricultural use), (CCME, 1997). Nevertheless, Canadian values are 

usually determined for human health and the environment, and usually the most 

protective value is selected as the generic SQG, and this was the case of U, since the 

values for human health were lower than the environmental values, as showed by table 

V.5. However, one environmental SQG values (the SQGEnviron based on residential parkland 

soil) was significantly higher than the SSVs proposed in this study, something that is 

apparently contradictory.  The SSV for uranium derived in our study is similar to the PNEC 

value derived by Sheppard and Sheppard, (2005) of 100 mg U kg-1, (Table V.5), which is 

based on data obtained for several invertebrate and plant species, and soils, but no soil 

microbial data was included. However, as it was possible to perceive from table V.1 the 

inclusion of data from the soil microbial community is of particular importance, since it 

has shown to be more sensitive than invertebrates and plants, to this metal. Although 
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apparently less protective, our SSV has taken into account soil microbial data, accepting a 

20% level of effect, but in spiked soils where the soil microbial community was exposed to 

the uranyl ion which is one the most soluble and toxic forms of uranium (ASTDR, 2011). 

Hence once again, we considered that the SSV proposed is conservative value. 

As far as Cd and Cu SSVs are considered, and has previously mentioned our values fell 

within the range of available values for other countries, and this is really demonstrative 

how problematic could be the selection of SSVs from other countries, when a country 

does not have their own values to be used in risk assessment procedures. Clearly an over 

or an underestimation of risks can occur depending on the choice. Within this scenario 

several authors are discussing for several years the economic implications and the 

inequalities generated by the existence of different SSVs between countries (Provoost et 

al., 2008; Sauvé et al., 1996) 

The costs of risk assessment processes and of cleaning up contaminated areas have a 

significant impact in national economies; hence it is important to have SSVs that can 

discriminate soils that really require a deeper evaluation, from those that are relatively 

safe. But using Portugal as an example, Canadian Soil Quality Guidelines have been 

recommended by public authorities for being used (Inácio et al., 2008). For two, out of 

three, of the metals analysed in this study (U and Cd) Canadian values are highly 

conservative comparing to our SSVs, and then if used in the evaluation of national 

scenarios will likely conduct to an overestimation of risks, especially for those areas 

located far away from human populations, but that cannot be neglected because of that, 

and kept without any evaluation.  In this case the costs of using such values seemed to be 

clearly high than those of using SSVs derive based on similar types of natural soils, even if 

our SSVs are in some cases more conservative than other’s available for other countries 

(like the case Cu or even Cd, when compared with USEPA Eco-SSLs and other SSVs from 

other countries) (Table V.5). This is true, especially if our SSVs are derived following the 

rationale described in this study aimed in balancing the protection of species and soil 

functions, with the attempt to reduce the occurrence of false positives, which also 

contribute for increasing the costs of the risk assessment of contaminated lands. 
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Is almost generally accepted that soil quality standards should be derived based on the 

utilization of natural soils (Provoost et al., 2008), the discussion now is if we should 

harmonize the procedures between European countries. As demonstrated in our study 

such harmonization is possible, at least to a certain degree, especially when software 

models are available to help in the application of the SSD-method and in the derivation of 

the HCp values. Some degree of variability should be accepted in the selection of the HCp 

values, however the rational followed should be clearly explained. 
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5.5 Conclusion  

Based in the SSD-method, soil screening values for uranium, cadmium and copper, were 

derived in this study for Portuguese soils similar to the PTRS1. The SSVs derived were 

based on Ec20 or EC50 and HCp values (HC5 or HC50) were selected taking into account: i) 

the fit of the statistical model used to the toxicity data used (r2); ii) the best 95% 

confidence intervals obtained for HCps; iii) the existence of toxicity data on the left part 

of the SSD curve, iv) a comparative analysis with field and laboratorial data available for 

contaminated Portuguese natural soils. The SSVs derived in this study are proposed for a 

generic use, since in the author’s opinion, at this screening step, aimed in selecting sites 

requiring a more site-specific risk evaluation, such decision must be based only on the 

degree of contamination. Future land uses should be later considered, by local 

authorities, supported by scientific expertise of risk assessors, in the definition of the level 

of risk that can be considered acceptable or not. In fact, this strategy is already followed 

by the decision support system of the Dutch risk assessment framework (Jensen and 

Mesman, 2006b). This work has shown that the harmonization of procedures to derive 

SSVs between European countries it is possible, especially when software tools are 

available to obtain SSD curves, but some variability should be accepted in the selection of 

the cut-offs to support the derivation of SSVs.  A role of thumb could be to keep the 

process transparent but as simplest as possible.  
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Final remarks  

After the publication of Rachel’s Carson book “Silent Spring” in 1962, the general public, 

scientists and politicians were awakened for the risks posed to soil ecosystems by the 

intentional use of chemicals (pesticides) to increase crop production (van Gestel, 2012). 

Forty years later, more threats to soils were identified and only in 2006, the European 

Commission published the final version of the Soil Thematic Strategy for Soil Protection 

(CEC, 2006a). However, till now the EU Union still lacks appropriate legal documents to 

enforce an adequate soil management, in order to prevent a further degradation of this 

environmental compartment and of the services provided. Meanwhile, several European 

countries, with a high economic development and with a great awareness of the 

problems caused by their past and actual industrial and agricultural activities, started the 

development of their own soil protection policies, as well as the development of 

guidelines and frameworks for soil monitoring and assessment. In Portugal, some actions 

were taken only related with most concerning abandoned mine areas, mainly enforced by 

the public opinion, manifested after the perception of risks posed to human health, by 

the exposure to wastes (mainly radiological) left in these areas. Nevertheless, any 

attempt was made to develop national legislation related with soil protection and with 

the evaluation and clean-up of contaminated areas. Concerns with soils have been 

integrated only in other sectoral policies (e.g. agriculture, forestry) and national programs 

like the one related with desertification combat (Rosas et al., 2009).  To the best of our 

knowledge, any survey was made to get information about the extent of soil degradation 

or about the number of contaminated sites within the national territory, or at least this 

information is not public.  

Due the expanding perception of soil degradation and of the resulting economic and 

environmental consequences and the recognized need to recover the extensive area of 

degraded soils for new land-uses, the Soil Thematic Strategy is being applied and new 

European policies are emerging (like the Soil Framework Directive that stills in debate in 

the Council and European Parliament3) focusing soil’s protection and the management of 

contaminated sites. In order to be prepared for accomplishing the objectives proposed, 

3 http://europa.eu/rapid/press-release_IP-12-128_en.htm?locale=en, on-line available: March 2014. 
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European member states must develop and validate their own tools and frameworks for 

assessing soil contamination, in a conservative and cost effective manner. Such evaluation 

has to include both human health and ecological risks, if they are made for mitigating the 

risks to humans, but also for recovering soils for new land-uses. Portugal is one of the 

European member states that still lack soil quality guideline values, like for example soil 

screening values (SSVs) which are crucial for screening evaluations of soil’s 

contamination. These values, if supported by sound scientific information collected for 

Portuguese natural soils, if representative of the dominant soils existing within the 

national territory and if derived based on expert judgment, could be adequately balanced 

to protect ecosystems, but also to make a safe preliminary evaluation of contaminated 

areas. Such evaluations may reduce the number of sites requiring a deeper and a more 

expensive risk assessment evaluation. For this purpose Portugal may take benefit from all 

the experience gained by countries from the North of Europe, like Germany and The 

Netherlands, with a great experience in environmental risk assessment (ERA) of 

contaminated lands. Therefore it may start producing data for the derivation of their own 

SSVs and for the adaptation of existing ERA frameworks to different types of 

contamination and for different climatic regions. In this context, this work appeared as a 

first attempt to derive SSVs for metals, using a Portuguese natural reference soil, 

representative of a dominant type of soil in the territory (Caetano et al., 2012). A set of 

ecotoxicological data for soil microbial parameters, invertebrates and terrestrial plants 

was obtained for developing SSVs for U, Cd and Cu. The selection of these metals was 

justified, but as far as uranium was considered, any other country has made an attempt 

to obtain a soil guideline value for this metal and it assumes a special regional 

importance, since in Portugal, during the 20th century, the exploration of uranium 

containing ore, caused serious environmental impacts that still persist nowadays 

(Carvalho et al., 2005).  

Chapter II, III, IV, included a description of all the assays performed with soils spiked 

with U, Cu and Cd containing solutions, following standard protocols and well known 

protocols for microbial parameters.  
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The results from chapter II, showed clear inhibitory effects of U in almost all tested 

invertebrate species. The microbial parameters tested were also clearly inhibited by U, 

being the most sensitive parameters to this metal, comparatively to the remaining effect 

concentrations obtained for invertebrates and plants. This study gathers for the first time 

more extensive data regarding the ecotoxicity of spiked soils with U on soil microbial 

functional parameters. The results also revealed that the exposure to U in spiked soils 

inhibited the reproduction of invertebrates, namely of E. crypticus, which was the most 

sensitive species to this metal in soil. In opposition, plants reveled to be the less sensitive 

species, since except for Lactuca sativa any other species was affected by concentrations 

of uranium up to 1000 mg/kgdw. Due to the lower sensitivity of plants, less toxicity data 

(EC20 and EC50) was obtained and used for constructing a species sensitivity distribution 

(SSD) for this metal (Chapter V). Although the data available fitted well to the log-logistic 

models more data should be obtained in the future, especially for other plant species and 

soil microbial parameters, aimed in improving the robustness of the HCps estimated. 

Nevertheless, the SSV derived can be safely used, since we consider that it is a 

conservative risk limit, because of the following aspects: i) it was obtained for a natural 

soil, hence taken into account the role of soil physical and chemical properties in the 

availability of uranium, in real scenarios of contamination; ii) it was obtained from 

ecotoxicological data generated with soils spiked in laboratory, and hence with an 

overestimated bioavailability and, iii) it was estimated based on ecotoxicological data 

obtained for the uranyl ion (UO3
-) (ASTDR, 2011), which is one of the most toxic forms of 

uranium, but is not the only form of uranium in contaminated soils. 

In the Chapter III, the high toxicity of Cd for the great majority of soil organisms was 

confirmed. Some of microbial parameters tested reveled a great sensitivity to the 

contaminated soil, whereas others proved to be less affected. As far as the soil enzymes 

activity are considered, we hypothesized that the results obtained (which pointed out for 

less sensitivity of this parameter, despite the high toxicity of cadmium) can be related to 

the exposure time (one month) selected in our studies. Structural changes in the soil 

microbial community may have masked or compensated the effects of Cd on these 

functional microbial parameters. In our opinion, although soil microbial enzymes have 

197 
 



Chapter VI – Final Remarks 

 
been shown to be quite responsive to soil contamination with metals (Lee et al., 2009; 

Thavamanier al., 2012; Zeng et al., 2011), and although well established and quite simple 

protocols are available it is urgent to perceive which is the most appropriate exposure 

period for these assays. On one hand, low periods of exposure may overestimate the 

effects, on the other hand high exposure periods may allow the soil microbial community 

to accommodate the impacts, replacing more sensitive taxa while keeping the same 

functions. In parallel, and to reduce potential over or underestimations of SSVs, caused by 

soil microbial parameters, endpoints related with soil microbial structural diversity should 

also be integrated in the ecotoxicological data set required. Concerning to invertebrates, 

the production of juveniles was strongly constrained by Cd for all the tested species, even 

at the lowest concentrations tested.  Regarding the plants, the effects of Cd were also 

evident, and resulted essentially in a significant growth inhibition of all the species tested. 

Seed germination was only slightly affected. L. sativa was the most sensitive plant species 

tested for all the endpoints.  

As above mentioned Chapter IV reports all the ecotoxicological data obtained for Cu 

using PTRS1 as a test substrate. A significant inhibition in the activity of some soil 

enzymes and in nitrogen mineralization was verified. The reproduction of invertebrates 

was also constrained by Cu, namely in E. crypticus. Plant seed’s germination proved once 

again to be few sensitive to copper like it was for Cd and U. In opposition, plant’s growth 

was strongly inhibited by Cu, whit evident effects in both fresh and dry mass.  

For all the metals, the influence of PTRS1 physical and chemical properties in the 

availability of metals was discussed in comparison with other studies using different types 

of soil. The effects observed were attributed only to the test metals, since no effects of 

the intrinsic soils properties on the test species were expected based on Caetano et al. 

(2012). 

Finally, in chapter V, describes the derivation of SSVs for U, Cd and Cu based in all the 

ecotoxicological data obtained in Chapter II, III and IV, using the SSD-method.  Thus, we 

propose for uranium a SSV of 154.1 mg Cu kg-1
dw, for cadmium mg Cu kg-1

dw and for 

copper 58.5 mg Cu kg-1
dw. The soil screening values proposed in this study are for a 

generic use, but should be based on soil type, similarly to the precautionary values from 
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Germany (Carlon, 2007). Two of the SSVs (U and Cd) derived in this study were higher 

than the Canadian Soil Quality Guideline Values, which are the guideline values that have 

been recommended for use in Portugal (Inácio, et al., 2008)This finding triggered the 

discussion about the economic impacts of using SSVs from other countries, which will 

conduct to false positives and hence in higher number of areas requiring more site 

specific evaluations. This is also a good argument for the derivation of our SSVs based on 

national dominant soil types. 

This study has also proved that the harmonization of procedures is possible if we take 

benefits from the methodologies already available. It also laid the foundation for the 

discussion about the best cut-off (from SSDs) to be selected for deriving SSVs. Further, a 

new approach is proposed to replace the one presented by the European Technical 

Guidance Document (EC, 2003) for the determination of PNEC values for the soil 

compartment, as in the author’s opinion these values will be extremely conservative 

reducing the importance of the screening step of the ERA process. In opposition to what 

has been proposed by other author’s the selection of the best cut-off should be not 

made, only based on political decisions, but also based on an expertise judgment which 

should be clearly explained to the other parties involved. Although with regional 

importance, the approach followed in this work could be useful for other European 

Member states that still lack the definition of soil quality guideline values. 

 

6.2 Future perspectives 

Even though the great effort in developing SSVs for three metals, unfortunately this work 

was only the first step in the derivation of these values for environmental risk assessment 

in Portugal. Nevertheless, this study and the work previous published by Caetano et al. 

(2012) has made clear which is the best approach to be followed for other metals and 

organic contaminants. Future work should be focused in characterizing at least more two 

natural soils, as reference soils, and use them as test substrates for the derivation of SSVs. 

The map of Portuguese soils4 already available could be used for this purpose, and the 

reference soils tested by Chelinho et al. (2011), from the south of country may also be an 

4 http://www.igeo.pt/atlas/cap1/Cap1d_6.html 
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alternative. Moreover, these values must validated in the future, through their 

application in different national soils of the same type, both contaminated and non-

contaminated, to check for their discrimination power.  
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Table presenting the general physical and chemical properties of PTRS1 soil.  

 

pH (KCL, 1M) pH (H2O) Conductivity 
mS cm-1 OM (%) WHC (%) Clay

(< 4mm)
Silt

(4-6 mm)
Sand

(63 mm- 2mm)
Gravel
(>2mm)

PTRS1 4.31 ± 0.02 5.91 ± 0.1 4.86 ± 0.23 6.5 ± 0.004 23.9 ±1.84 3.32 22.87 46.99 23.99

OM- organic matter; WHC- water retention capacity.

Size of particles/mm 
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