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Abstract

The development of therapeutics for the treatment of Alzheimer’s disease (AD) has 
been challenged with a myriad of obstacles: an evolving and incomplete understand-
ing of disease etiology and progression, challenges with early diagnosis, multifactorial 
genetic and environmental factors that contribute to patient variability, and the cost of 
conducting lengthy clinical trials. One approach that has garnered a significant amount 
of attention and resources for its potential as a disease modifying approach is passive 
immunotherapy directed at clearing amyloid-β (Aβ) species, a pathological hallmark of 
Alzheimer’s disease. While passive immunotherapeutic trials directed at Aβ have not 
yet demonstrated clinical benefit, they have prompted important advances in the appli-
cation and understanding of biomarkers, patient selection, novel functional readouts, 
and safety monitoring. Application of these lessons has enabled more recent clinical 
trials to incorporate better trial designs and refine inclusion criteria to optimize patient 
population enrollment. In addition, new passive immunotherapy targets emerging in 
the clinic have emerged, as well as novel technologies to enhance future antibody thera-
peutics. Taken together, the advances in research and clinical science have prepared the 
passive immunotherapy field to advance emerging promising disease modifying treat-
ments in AD.

Keywords: amyloid-β, tau, passive, immunotherapy, Alzheimer’s disease

1. Introduction

Alzheimer’s disease is a progressive neurodegenerative disease that clinically presents as a 

gradual onset of dementia, beginning with mild cognitive and functional deficits, leading 
eventually to an inability to carry out everyday tasks. Alzheimer’s disease and other demen-

tias have a reported worldwide prevalence of approximately 42 million people, with an age-

standardized rate of 761 per 100,000 [1]. Current therapeutics are limited to symptomatic 
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approaches, such as acetylcholinesterase inhibitors and NMDA receptor (NMDAR) antago-

nists, which aim to enhance the function of unaffected neurocircuitry but do not target the 
underlying cause of the disease, thus there is a desperate need for approved disease modify-

ing therapies.

Alzheimer’s disease is characterized by the dual pathological hallmarks of extracellular senile 
plaques and neurofibrillary tangles, composed of the amyloid-β (Aβ) peptide and tau protein, 
respectively. In addition, the primary familial forms of the disease are caused by mutations 

that directly affect Aβ homeostasis [2]. Due to both the pathological and genetic link to dis-

ease initiation, Aβ has been a prominent target for the development of disease-modifying 
therapeutics.

One such therapeutic approach is anti-Aβ immunotherapy. Active immunotherapy 
approaches utilize either the ability of the immune system to raise polyclonal antibodies 

against a therapeutic composed of an Aβ sequence-derived antigen and adjuvant, while pas-

sive immunotherapy approaches treat a patient with monoclonal antibodies with known 
antigen binding capabilities. While a large amount of research and development has been 

carried out regarding active immunotherapy towards AD targets [3], this chapter will focus 

on passive immunotherapy in AD, with the goal of describing what has been learned from 

past clinical studies, and what lessons may be applied to future efforts.

2. Aβ

2.1. Mechanisms of Aβ pathophysiology

The primary component of senile plaques is Aβ, a small peptide derived from the amyloid 
precursor protein (APP). In AD, Aβ is formed via sequential cleavage of APP by β-secretase 
[4] and the presenilin-1 (PS1) subunit of γ-secretase [5], respectively. This results in peptides 

of varying length, ranging from 38 to 43 amino acids [6], of which Aβ
1–42

 is the most amy-

loidogenic [7]. A central tenet in the understanding of causative factors of AD is the amyloid 

cascade hypothesis [8], which holds that the pathological increase of amyloidogenic Aβ in AD 
is a central initiating event in disease, that precedes and initiates a cascade of events that lead 

to other pathologies such as the formation of neurofibrillary tangles, inflammation, oxidative 
stress, neuronal dysfunction, and cell death [9]. While the amyloid cascade hypothesis has 

been challenged since first proposed [10, 11], there is abundant evidence from in vitro and 

in vivo studies confirming the significant role Aβ plays in inducing neurotoxicity, synaptic 
dysregulation, and pathology.

Degeneration of cultured neurons by treatment with aggregated forms of Aβ has been 
observed in multiple laboratories, and appears to correlate with extent of aggregation [7, 12]. 

Strong evidence indicates that soluble aggregated forms of Aβ might exert direct toxicity to 
neurons [13–15] through a variety of mechanisms, including (but not limited to) disruption 

of plasma membranes [16], dysregulation of mitochondrial function and dynamics via direct 

interaction [17], and excitotoxicity [18]. Confirming the centrality of Aβ’s role in  neurotoxicity, 
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myriad transgenic mouse models expressing mutant APP or APP/PS1 recapitulate many AD 

phenotypes, including plaque pathology, synaptic dysfunction, decreased cognition, neuro-

inflammation, and neuronal loss (reviewed in [19]).

One of the earliest mouse models of Aβ plaque deposition was the PDAPP mouse (Line109). 
These transgenic mice exhibit high human APP expression (>10-fold higher than endog-

enous levels), which is accompanied by extracellular Aβ plaque deposition, development 
of neuritic dystrophy, gliosis, and loss of synaptic and dendritic structures in the hippo-

campus [20]. The PDAPP mouse model was instrumental to demonstrate that therapies 

developed to clear Aβ deposits could potentially ameliorate functional deficits. Schenk and 
colleagues were the first to develop an active immunization approach using aggregated 
Aβ

1–42
 [21], which resulted in prevention of plaque formation in mice immunized before the 

development of pathology, and more importantly demonstrated that the induced polyclonal 

response can promote plaque clearance in aged PDAPP mice via phagocytosis by resident 

microglia. This breakthrough was later extended by administering the anti-N-terminal Aβ 
monoclonal antibody (mAb) 3D6 directly to PDAPP mice (passive immunotherapy); anti-

bodies crossed the blood-brain barrier (BBB), localized to pathological features, and induced 

the opsonization and clearance of senile plaques in a microglia-dependent manner [22]. 

These preclinical findings validated Aβ-directed passive immunotherapy as a potential 
therapeutic strategy for AD.

2.2. Aβ passive immunotherapy in the clinic

The first Aβ immunotherapy clinical trial utilized active vaccination with Aβ
1–42

 (AN1792) 

and was halted during Phase IIa due to the appearance of meningoencephalitis, likely due 
to the infiltration of T-cells in the brain as a result of the presence of T-cell epitope(s) in the 
antigen, which contained the full-length Aβ

1–42
 peptide [23]. However, long-term follow-up 

indicated that patients that developed an immune response displayed modest but significant 
sparing of function, as assessed by the Disability Assessment for Dementia (DAD) and the 

Dependence scale [24]; in addition, autopsy of a patient immunized with AN1792 without 

meningoencephalitis displayed an absence of plaque pathology at autopsy and the presence 

of Aβ-reactive microglia, indicating that AN1792 was successful at engaging phagocytes to 
remove plaques [25].

Concerns for safety in active Aβ vaccination trials shifted most development efforts to passive 
immunotherapy, which carries less risk of an inflammatory response to drug. An overview of 
clinical Aβ antibody efforts described in the following text is listed in Table 1.

2.2.1. First-generation Aβ passive immunotherapies

Bapineuzumab, directed at the N-terminus of Aβ, was the first monoclonal antibody ther-

apy developed to target Aβ in AD. It was first tested in a phase I study in AD patients with 
single ascending doses ranging from 0.5 to 5 mg/kg administered every 13 weeks to evalu-

ate safety, tolerability, and pharmacokinetics (PK) [26]. A significant safety finding of this 
study was the presence of vasogenic edema (VE) in the highest-dose cohort: 3/10 patients 
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displayed these abnormalities, two of whom were asymptomatic. Due to the observation of 

VE at 5 mg/kg a dose regimen ranging from 0.15 to 2 mg/kg, administered every 13 weeks for 
18 months was selected for the multiple ascending dose phase II trial [27]. In the phase II trial, 

study completers that received all 6 planned infusions displayed significant improvements 
in DAD score and the Alzheimer’s Disease Assessment Scale-Cognitive (ADAS-cog), though 

this effect was not observed in the intent-to-treat population. VE was observed in ~10% of 
bapineuzumab treated patients (half of whom were asymptomatic), in comparison to 0% of 
the placebo group; the appearance of VE was dose-dependent and appeared early during the 

course of treatment. Interestingly, the majority (10/12) of VE cases occurred in carriers of the 
APOε4 allele, a risk factor for aggressive AD [28].

Two phase III trials for bapineuzumab were completed to evaluate efficacy in patients with 
mild to moderate AD who were either APOε4 carriers or non-carriers in separate trials, with a 

lower dose regimen in the carrier trial [29]. These trials did not meet the co-primary cognitive 

and functional endpoints, though CSF phospho-tau, a proposed biomarker of neurodegen-

eration in AD, did decrease in both studies and positron emission tomography-Pittsburgh 
B (PET-PIB) imaging revealed less amyloid pathology in the APOε4 carrier group treated 

with bapineuzumab compared to placebo. One important finding is that of the subgroup that 
underwent PET-PIB imaging, 6.5% of APOε4 carriers and 36.1% of non-carriers did not have 
detectable PET-PIB signal at trial entry, raising concerns about misdiagnosis and improper 

subject selection in the trials. While these studies did not succeed in meeting primary end-

points, they did provide information to guide future trials, particularly in understanding MRI 

abnormalities, such as VE and microhemorrhages.

During the course of the phase III trials, the observation that VE and microhemorrhages 

correlated with anti-amyloid dose levels was more pronounced in APOε4 carriers, and 

were normally transient and asymptomatic [30] led to the formation of an Alzheimer’s 

Name Epitope Most recent clinical  
phase

References

First-generation Aβ passive immunotherapeutics

Bapineuzumab 1–6 PhIII (terminated) [22]

Solanezumab 16–26 PhIII [33, 41]

Ponezumab 35–40 PhIIa (terminated) [32, 42]

Second-generation Aβ passive immunotherapeutics

Crenezumab 16–26 

(aggregate-selective)

PhIII [41]

Gantenerumab 3–11, 18–27 PhIII [34]

BAN-2401 Protofibrils PhII [36]

Aducanumab N-terminus PhIII [37, 38]

Table 1. Past and current Aβ antibody therapeutics.
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Association-led workgroup composed of industry and academic experts to advise the FDA 
on potential routes to monitor VE and microhemorrhages. The term amyloid-related imag-

ing abnormalities (ARIA) was adopted to address the spectrum of MR imaging abnormali-

ties observed with anti-amyloid therapies, spanning from sulcal effusion and vasogenic 
edema seen on FLAIR MRIs to hypointensities (hemosiderin deposits) on T2* MRI. The 
ARIA terminology was further subdivided to ARIA-E (sulcal effusion and edema) and 
ARIA-H (hemosiderin deposits) [31]. Recommendations from the workgroup included (a) 
standardization of technical and monitoring practices for MRI, (b) exclusion from trials of 

patients with preexisting ARIA-H, and (c) monitoring of symptoms potentially associated 

with ARIA. The adoption of these standards, and the understanding that ARIA is largely 

a short-lived treatment related effect inherent to many anti-amyloid therapies, opened the 
possibility of testing higher and more frequent drug administration regimens with appro-

priate patient safety monitoring.

In parallel with bapineuzumab, two additional anti-Aβ passive immunotherapies underwent 
contemporaneous clinical trials: Ponezumab, directed at the C-terminus of Aβ, underwent 
Phase I and IIa trials, but was discontinued after Phase IIa [32]. Solanezumab, directed at 

an internal epitope of Aβ and hypothesized to function by binding soluble species in the 
CNS and periphery, failed a phase III trial in mild AD patients [33], and a trial conducted in 

prodromal patients was discontinued. However, it is currently being tested in genetically-

defined Alzheimer’s disease populations, with results expected in 2021 (clinicaltrials.gov; 
Identifier: NCT02008357).

2.2.2. Second-generation Aβ passive immunotherapies

Whereas the first generation of Aβ therapeutic mAbs differed in binding to distinct antibody 
domains (N-, mid-, and C-terminus), the second generation are intended to primarily bind 

specific conformations and aggregation states. Gantenerumab, currently in two phase III tri-
als for mild and prodromal AD, binds a discontinuous epitope consisting of the N-terminus 

and an internal epitope, implying a unique conformational binding specificity (clinicaltri-
als.gov; Identifiers: NCT01224106, NCT02051608) [34]. Crenezumab, currently in phase II 

and phase III trials for autosomal dominant AD and prodromal-to-mild AD, respectively, is 

reported to selectively bind soluble and insoluble aggregates, but not monomers (clinicaltri-

als.gov; Identifiers: NCT01998841, NCT03114657) [35]. In contrast to other therapeutic mAbs, 

crenezumab is engineered on an IgG4 backbone to reduce effector function, and microglial-
mediated phagocytosis of Aβ deposits is not anticipated. BAN-2401, is in clinical development 
in a large phase II study in early AD patients; is proposed to selectively bind Aβ protofibrils 
(clinicaltrials.gov; Identifier: NCT01767311) [36].

A promising antibody candidate from this group that is currently in the clinic is aducanumab. 

Aducanumab is a human mAb that selectively targets soluble aggregates and fibrils, and 
binds the N-terminus of Aβ. Preclinical studies demonstrate that the chimeric form of adu-

canumab peripherally administered to an APP transgenic mouse (a) crosses the BBB and 

binds to plaques (b) reduces calcium overload in neurons [37], and (c) reduces plaque burden 

in a dose-dependent manner [38]. An interim report from a double-blind, placebo controlled 
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phase Ib study revealed a dose-dependent decrease of amyloid PET signal that corresponded 

with significant slowing of cognitive decline at 52 weeks at the highest dose level, 10 mg/kg 
[38]. While ARIA was reported at a similar frequency compared with previous trials, adher-

ence to guidelines formalized by the Alzheimer’s Association ARIA working group [31] 

allowed for higher and more frequent dosing, potentially contributing to the positive results 

seen in these early studies. Aducanumab is currently in phase III trials in prodromal early 

AD patients, with endpoints and patient populations informed by the successful phase Ib 

study [39]. Interestingly, enrollment for these phase III clinical trials was recently increased by 

approximately 15% due to patient variability in the primary functional endpoint [40].

3. Tau

While most passive immunotherapy clinical trials in AD have been directed at Aβ, key dis-

coveries regarding tau function and contribution to disease mechanisms have prompted sig-

nificant efforts directed towards tau. Hyperphosphorylated and aggregated tau protein are 
the main component of neurofibrillary tangles (NFTs), which, together with Abeta plaques, 
are considered a primary hallmark in Alzheimer’s disease. Because of its intracellular local-
ization, tau deposits have historically been thought to be unavailable to immunotherapeutic 

treatments. However, results outlined in this section indicate the potential for targeting tau 

through a passive immunotherapeutic approach.

3.1. Tau biology and pathophysiology

Since the discovery that NFTs are composed of the microtubule-associated protein tau [43–

45], many efforts have been devoted to elucidating molecular mechanisms of tau pathophysi-
ology. Tau is an intracellular microtubule binding protein, which is involved in the regulation 

of microtubule stability and dynamics. In the brain, tau exists principally as six different iso-

forms, which vary in the absence or presence of N-terminal acidic repeats and a microtubule 

repeat; these differences are due to the splicing in or out of exons 2, 3, and 10 [46]. In normal 

physiological situations, the specific ratio of tau isoforms is developmentally regulated, likely 
due to the changing needs of microtubule fluidity versus stability throughout development 
and maturity [47].

Tau is an intrinsically disordered, natively-unfolded protein [48] whose physiological func-

tion is tightly regulated by post-translational modifications—principally via phosphoryla-

tion, which regulates microtubule binding affinity [49, 50]. In the AD brain, tau aggregates 

to form hyperphosphorylated NFTs and inclusions, composed of paired-helical and straight 

filaments [51]. In contrast to the intrinsically disordered nature of monomeric tau in solution, 

these structures adopt an ordered structure composed of a β-sheet core comprised of central 
residues, surrounded by a disordered coat comprised of the C- and N-termini of the molecule 

[52]. In AD, the appearance of tau pathological features positively correlates with dementia 

and disease progression [53, 54], leading to the hypothesis that the formation of tau pathology 

is a primary causative agent in the development of AD.
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While the stereotypic appearance and progression of tau pathology down the perforant path-

way—the neurocircuit from the entorhinal cortex to the hippocampus—has been described 
[55, 56], the molecular mechanisms underpinning this observation had remained elusive. 

Neurons in the performant path have long been known to be selectively vulnerable to insult 
such as hyperactivity [57] and expression of AD-related presenilin mutations [58], but the dis-

covery that, when injected into the brain parenchyma, tau from a mutant mouse could simu-

late the formation of tau aggregates in a previously healthy animal [59] allowed the possibility 

that this progression may be mediated by aggregated and misfolded forms of the protein. 

This was strikingly confirmed in mice with tau expression restricted to the entorhinal cortex: 
in these mice, tau pathology propagated from the region of expression to distant efferent 
neurons [60, 61], demonstrating that direct cell-cell contact was not required for propagation, 

and that the pathological signal could be spread trans-synaptically. The demonstration that 

tau itself was present in interstitial fluid [62], could be secreted from neurons [63], and passed 

between cells [64] and neurons [65] provided evidence that tau species themselves could be 

directly transmitted between neurons in vivo, providing a potential mechanistic basis for the 

propagation of tau pathology. Although tau and Aβ are likely associated with different patho-

physiological processes in Alzheimer’s disease, the presence of pathogenic extracellular tau 

species could theoretically also be targeted by immunotherapeutic approaches, in this case 

by a different mechanism of action: interception/sequestration and prevention of cell-to-cell 
transmission.

3.2. Tau passive immunotherapy

An overview of preclinical and clinical tau antibody efforts described in the following text is 
listed in Table 2.

Pioneering tau immunotherapy studies demonstrated that immunization with phospho-tau 

peptides (phosphorylated at Ser396/404) in two different tau transgenic lines raised anti-tau 
antibodies, which immunohistochemically stained the brains of P301L-tau transgenic mice. 
In addition, active immunization resulted in reductions in tau pathology. The mice also 

displayed improved performance in motor tasks [66, 67]. Purified anti-tau antibodies from 

Name Epitope Most recent development phase References

MC1 7–9, 313–322 Preclinical [69, 70]

BIIB092/BMS986168 17–28 PhII (recruiting) [85, 88]

ABBV-8E12 25–30 PhI open label extension [81, 82]

Cis mAb Cis-pT231 Preclinical [74]

RO7105705 pSer409 PhII (recruiting) [71]

PHF1 pSer396/404 Preclinical [67, 69, 70]

TOMA Tau oligomer Preclinical [76]

Table 2. Tau clinical and preclinical antibodies discussed in this chapter.
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immunized mice were peripherally injected into naïve transgenic mice and localized to neu-

rons in the brain displaying tau pathology, demonstrating their ability to cross the blood-

brain barrier (BBB) and localize to their target. In a separate study performed by the same 

lab, passive administration of the mAb PHF1, directed at the Ser396/404 phosphoepitope, 

also resulted in reductions in tau pathology in mice compared to isotype control [68]. The 

findings from this series of studies were proposed to be due to two potential mechanisms: (a) 
antibody-mediated clearance of extracellular tau deposits and (b) intracellular uptake of tau 
antibodies. The efficacy of passive immunotherapy using PHF1, as well as the conformational 
antibody MC1, were also confirmed in independent labs [69, 70], bolstering early evidence of 

this novel promising therapeutic avenue.

An antibody targeting a different phosphoepitope, pSer409, also shows promise in preclini-
cal models; however, conclusions regarding the mechanism of antibody function were con-

siderably different than those proposed in the initial active and passive studies described in 
the prior paragraph. In this study, a highly selective mAb was able to bind tau phosphory-

lated at Ser409 and specifically bind AD brain tissue. The mAb was shown to neutralize 
oligomer-induced neurotoxicity; however, the neutralization activity of the antibody was 

reduced in mixed neuron-microglial cultures. Antibody engineered with reduced effector 
function (REF) maintained neutralization activity in mixed neuron-microglial cultures, while 

the wild-type anti-pSer409 antibody did not prevent neurotoxicity and in fact promoted the 

release of pro-inflammatory cytokines from microglia [71]. Both wild-type and REF variants 

of the antibody prevented the progression of tau pathology in the tau P301L mouse, lead-

ing the authors to conclude that phagocytic clearance of tau structures was not a contribut-

ing mechanism of action to efficacy in the transgenic mouse model. In addition, the lack 
of FcR message found in isolated neurons prompted the conclusion that receptor-mediated 

uptake did not occur. The antibody examined in this report has been developed into a ther-

apeutic candidate, which is currently in clinical development (clinicaltrials.gov; Identifier: 
NCT03289143).

Additional studies have been conducted to identify and target post-translationally modified 
forms of tau to explore effects of antibody treatment. One compelling approach targets a 
unique structural isoform of tau induced by phosphorylation of tau at T231. Phosphorylation 

of tau at T231 occurs during disease progression; the prolyl isomerase Pin1 normally binds 

and converts the pT231/Proline motif from a toxic cis form to a soluble nontoxic trans form 

[72]. A mAb targeting cis but not trans pT231-tau detects pathology during mild cogni-

tive impairment (MCI) [73]. In addition to AD, this post-translational signature (as well 

as others) appears in the brains of traumatic brain injury (TBI) patients. When adminis-

tered peripherally in a murine TBI model carried out in tau transgenic mice, the cis-pT231 

tau antibody prevented the spread of tauopathy and cortical LTP deficits, and improved 
performance in the elevated plus maze, which was correlated to TBI-induced disinhibition 

behavior in patients [74]. Another effort targeting disease-specific forms of tau is centered 
around developing antibodies that bind soluble oligomeric tau—hypothesized to be the 
most toxic form of the molecule [75]—and have minimal binding to monomeric or mature 
NFTs [76]. Tau oligomer-specific monoclonal antibodies (TOMAs) were dosed via intracere-

broventricular (i.c.v.) infusion to tau P301L mice. Strikingly, a single i.c.v. injection reduced 
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tau oligomers and histopathology, and rescued deficits in rotarod and spontaneous alterna-

tion tests. Examination of serum revealed oligomeric tau and antibody/antigen complexes, 

suggesting peripheral clearance as a mechanism of action [77].

Informed by studies indicating the potential for the propagation of tau pathology across cell 

membranes [64], as well as the demonstration of trans-synaptic transmission in vivo [60, 78], 

an independent effort to discover tau antibodies that interrupted cell-to-cell transmission 
yielded phosphorylation-independent antibodies that blocked uptake of tau aggregates to 
cultured cells [79, 80]. When administered to tau transgenic mice centrally via an Alzet mini-

pump, these antibodies slowed the advance of tau pathology, as measured by immunohisto-

chemical and biochemical means [79]. One of the efficacious antibodies used in this report, 
HJ8.5, was used in a peripheral administration model to further explore its potential as a 

therapeutic agent [81]. HJ8.5 is a high affinity anti-N terminal mAb that recognizes residues 
25–30, which are present on all splice isoforms of tau. In this study, P301S tau transgenic mice 

were dosed intraperitoneally over a 3-month period with 10 or 50 mg/kg of HJ8.5. The high 
dose cohort displayed decreases of insoluble tau, AT8 staining, and thioflavin S staining. In 
addition, this cohort exhibited improvements in sensorimotor function compared to isotype 

control and low-dose cohorts. The preclinical efficacy profile, as well as the concordance of 
in vivo data with mechanistic in vitro studies, propelled the humanized analogue of this anti-

body into the clinic (clinicaltrials.gov; Identifier: NCT03391765) [82]. Interestingly, a separate 

effort focused on discovering antibodies and epitopes important for uptake and transmis-

sion determined that while N-terminal antibodies could indeed block uptake of recombinant 
and AD patient-derived tau, there were other epitopes with potentially more potent function, 

notably antibodies binding C-terminal to the acidic inserts [83].

A key component of the amyloid cascade hypothesis is that Aβ aggregation induces, either 
indirectly or directly, fibrillization of tau as well as other disease processes (reviewed in [84]). 

The finding that extracellular secreted and truncated forms of tau (termed eTau) could regu-

late Aβ levels demonstrated a potential upstream role of tau in relation to Aβ, complementary 
to the amyloid cascade hypothesis. In this study, secreted eTau was isolated from iPSC neu-

rons derived from patients with AD; treatment of neurons with eTau displayed increases in 

secreted Aβ, and these increases could be prevented via application of eTau-binding antibod-

ies such as MC1 and IPN002, which recognizes residues 17–28. Aβ levels were not affected 
by PHF1 antibody, as the PHF1 epitope is not present in eTau. This finding was recapitulated 
in transgenic P301L-tau mice; peripheral treatment with IPN002 resulted in reductions in Aβ 
in the interstitial fluid and cortical tissue [85]. These findings were recently confirmed by a 
different group using mAbs that target very similar N-terminal tau epitopes; in these studies, 
behavioral improvements as well as decreases in Aβ were noted in mice transgenic for mutant 
forms of presenilin, APP, and tau [86, 87]. IPN002 has been developed into a clinical thera-

peutic and is undergoing clinical trials as BIIB-092/BMS986168 (clinicaltrials.gov; Identifier: 
NCT03068468) [88].

Though the success of preclinical studies with tau antibodies has provided sufficient rationale 
to begin exploration in the clinic, a greater understanding of the full range of factors involved 

in tau toxicity and the mechanisms of action of tau passive immunotherapy are needed. These 
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mechanisms may be different than those proposed for Aβ immunotherapy. There remain con-

flicting details from the studies presented here, such as the relative contribution of microglial-
mediated phagocytosis, the relative importance of eTau-mediated Aβ production, the extent 
of trans-synaptic transmission in transgenic mice with widespread expression in the brain, 

and the optimal epitope to target. Gaining a clearer understanding of these factors continues 

are a current research focus.

Clinical trials with Aβ immunotherapies have demonstrated the importance of proper clini-
cal diagnosis, patient selection, sensitive cognition tests, and effective biomarkers to moni-
tor efficacy and disease progression. Though some general commonalities may exist in the 
clinical design of Aβ and tau passive immunotherapy trials, there are substantial differences 
in the targets and any potential clinical development approaches. In contrast to Aβ, there 
are a number of non-AD tauopathies such as progressive supranuclear palsy (PSP) [89] and 

frontotemporal dementia and parkinsonism linked to chromosome 17 (FTDP-17) [90] that 

may provide alternative clinical development pathways to test novel tau-directed therapeu-

tic approaches. In contrast to AD, these diseases present pathological signatures composed 

almost uniformly of tau and neurofibrillary tangles; in addition, FTDP-17 is an autosomal 
dominant disorder, genetically validating the causative role of tau. Diagnosis of these and 

other tauopathies have historically been made solely based on clinicopathology; due to the 

difficulty of diagnosis from to the overlap of symptomologies with other neurodegenerative 
disorders, as well as the lack of clear biomarkers, diagnosis is only confirmed at autopsy [91]. 

Modern tau PET imaging agents are currently under clinical investigation [92]; while early 

generations of tau PET tracers displayed nonspecificity and suboptimal binding and PK char-

acteristics, the newest class of tracers display improved specificity, PK properties, and may 
allow for improved diagnosis in tauopathies as well as an ability to monitor tau pathology in 

AD clinical trials [93].

4. New targets and technologies

4.1. Targeting the immune system in AD

The vast majority of passive immunotherapeutic approaches in AD have targeted Aβ and 
tau; this is a natural outcome of the primacy of these proteins as the principal pathological 

hallmarks of the disease. The association of mutations of APP (and proteins that modulate its 
generation, such as presenilin-1) to familial AD, and the high degree of correlation between 

tau pathological development and cognition, strengthen the validity of these two proteins as 

important causative disease agents. However, new approaches, primarily targeting immuno-

modulatory proteins, are also currently under development.

The presence of neuroinflammatory processes and signatures in AD has been well estab-

lished, but the exact role they play in disease etiology, or whether neuroinflammation has a 
primarily protective or harmful role, has not been clear (reviewed in [94]). Studies examining 

the complement cascade have helped to understand this duality. The synaptic pruning activ-

ity carried out by microglia is regulated by complement [95]. The initiating protein of the 
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classical complement cascade, C1q, is enriched in the developing mouse CNS and localizes to 

synapses; genetic ablation of this protein results in misregulated innervation due to increased 

presence of synapses [96]. While C1q is normally downregulated after development, it is ele-

vated in normal aging [97] and disease, including AD [98]. In a transgenic APP mouse, C1q 

localizes to synapses, and is required for pathological synapse loss. Treatment of C1q knock-

out mice with oligomeric Aβ displayed no synaptic loss, indicating that C1q is a required 
mediator of Aβ-induced toxicity. Interestingly, an anti-C1q antibody rescued Aβ-induced 
synaptotoxicity in vivo, and LTP impairment in situ, when compared to isotype control [99]. 

These data hinted at the promise of C1q immunotherapy to provide protective benefits by 
neutralizing a key mediator of Aβ-induced microglial overactivation, which results in synap-

tic loss. The anti-C1q antibody used in this study has been developed into a human therapeu-

tic, and is beginning clinical trials (clinicaltrials.gov; Identifier: NCT03010046) [100].

The mounting evidence of involvement of the adaptive immune system in restraining the 

advance of AD pathology has opened the possibility of directing passive immunotherapies to 

the periphery, which considerably eases the challenge of achieving sufficient drug exposure 
in the CNS to affect pathology. Microglia resident in the brain are known to be recruited to 
sites of injury such as senile plaques, but the finding that peripherally-derived bone marrow 
stem cells are able to enter the CNS, and differentiate into microglia [101, 102], was the first 
direct evidence that repopulation and recruitment of microglia from the periphery was an 

active process. This finding was extended to AD mouse models with the finding that periph-

erally-recruited microglia are mobilized by Aβ, recruited to the site of senile plaques, and are 
able to clear plaques via phagocytosis [103]. The protective role of these immune cells in the 

presence of AD-like pathology was confirmed with the observation that (a) knocking out the 
chemokine receptor CCR2 in an APP-transgenic mouse resulted in decreased recruitment of 
monocytes to Aβ plaques [104], and (b) the specific ablation of bone-marrow derived cells via 
diphtheria-toxin receptor expression resulted in increased Aβ plaques [105]. Furthermore, 

increasing trafficking of macrophages by inhibiting the normally immunosuppressive regula-

tory T-cells through pharmacologic or genetic methods results in reduced Aβ pathology [106].

Elucidation of the biology of inhibitory signaling pathways and proteins such as Programmed 

cell death protein 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), known 
as immune checkpoints, led to the development of antibody therapeutics for use in cancer 
(reviewed in [107]). These therapies function by neutralizing immune checkpoints and acti-
vating T-cells, which prompts antitumor activity. The characterization of checkpoint sig-

naling pathways, along with the findings that peripheral immune cells modulate AD-like 
pathology in a regulatory T-cell (T

reg
)-dependent manner, has prompted examination of the 

PD1/PD-L1 axis in AD. In a recent study, AD transgenic mice were treated with an anti-PD1 
antibody to blockade the PD1/PD-L1 axis. Remarkably, checkpoint blockade in this model 
resulted in substantial rescue of performance in a behavioral assay of memory and cognition 

after a single dose, and mice exhibited decreases in Aβ pathology with only two dose admin-

istrations [108]. The effect on pathology was observed even in mice with profound amyloid 
burden. While the findings of a profound effect on functional measures after such a short dose 
regimen are very exciting, they should be taken with a note of caution. A follow-up study, 
carried out by three pharmaceutical companies using three transgenic models and numerous 
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PD-L1 antibodies was attempted to recapitulate these results. Despite peripheral immune 
activation, in all instances neither reductions in Aβ pathology nor infiltration of peripheral 
monocytes were detected [109]. Further studies are needed to elucidate the potential of check-

point modulation.

4.2. Increasing blood-brain barrier (BBB) penetrance for passive immunotherapeutics

A significant barrier in the development of passive immunotherapeutics for AD is the low 
percentage of circulating antibody that crosses the BBB. Animal studies have indicated that 

~0.1–0.5% of IgG enters the CSF from the periphery [110, 111], which is borne out by pre-

clinical [112] and clinical [113, 114] data obtained with antibodies tested for use in AD. This 

has led to trials with increasing amounts of antibody administered to patients ([82]; clini-

caltrials.gov, Identifier NCT03318523) with the hope of delivering sufficient amounts of 
antibody to the CNS to achieve a clinical effect. There are, however, indications that con-

centrations of antibodies are higher in brain parenchyma than what is present in CSF. The 

chimeric form of aducanumab reported brain:plasma AUC ratios when tested in a trans-

genic APP model of 1.3% [38]. This is in agreement with the finding that the concentration 
of protein analyte present in the interstitial fluid is approximately 10-fold higher than in 
the ISF [62, 115]. This could be due to the rapid turnover of CSF volume [116] compared 

to ISF, longer elimination times of antibodies in brain parenchyma compared with CSF, 

or increased residence time due to target-mediated binding. Nevertheless, methods and 

technologies to increase BBB penetrance of biomolecules urgently need to be applied to 

antibodies and other proteins.

One of the more promising approaches to increase penetrance of protein therapeutics into the 

brain utilize endogenous receptors that transcytose between the brain and periphery, such 

as transferrin receptor (TfR) [117], insulin receptor [118], and LDL receptor-related protein 
1 (LRP1) [119]. Protein engineering approaches feature fusion of the therapeutic molecule to 

proteins, ligands, or peptides that bind these receptors and facilitate transcytosis across the 

BBB (reviewed in [120]). One of the best understood receptor-mediated delivery systems is 

the use of TfR, though a similar path has been taken in the development of technologies that 
utilize insulin receptor. Increased brain uptake of transferrin/antibody fusion proteins were 
detected in rats [121], though the relatively large size (~80 kDa) of full-length transferrin make 
this impractical for biotherapeutic use. The detection of increased transcytosis of anti-TfR 

antibodies and antibody fragments [122, 123], and later advances in antibody generation tech-

nologies, enabled bispecific antibodies that bind TfR as well as target [124]. As understanding 

of the transcytotic properties of TfR binding moieties have increased, so has the understand-

ing of how best to incorporate properties to ensure delivery to the brain. For example, reduc-

ing TfR affinity improves delivery, as a low affinity anti-TfR moiety will release from the 
receptor faster than a high affinity moiety [124]. As receptor-binding fusions enter the clinic, 

further questions regarding safety and distribution changes brought about by higher CNS 

concentrations will need to be continually addressed [125, 126]. Work continues to identify 
receptors that may be useful for increasing BBB concentrations of antibodies to allow engage-

ment with wider range of drug targets [127, 128].
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5. Conclusions and future perspectives

AD provides a monumentally challenging drug development landscape. The uncertainty 

about disease etiology, variability in patient genetics and disease progression, and difficul-
ties in early diagnosis are all but a noncomprehensive list of hurdles to developing effective 
drugs. Though development of therapeutics to slow or halt AD disease progression, including 

passive immunotherapeutics, have not yet yielded clinical benefit, the prospect of applying 
lessons learned in the clinic towards validated targets such as Aβ and tau provides optimism 
for future success. In addition, our understanding of the mechanisms of other principal 

contributing factors to disease progression will provide a variety of new targets to explore. 

Combined with advances in drug technology to increase the availability of biomolecules in 

the CNS, these clinical and biological advances offer great promise around future success in 
treating AD.
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