
Selection of our books indexed in the Book Citation Index

in Web of Science™ Core Collection (BKCI)

Interested in publishing with us?
Contact book.department@intechopen.com

Numbers displayed above are based on latest data collected.

For more information visit www.intechopen.com

Open access books available

Countries delivered to Contributors from top 500 universities

International authors and editors

Our authors are among the

most cited scientists

Downloads

We are IntechOpen,
the world’s leading publisher of

Open Access books
Built by scientists, for scientists

12.2%

122,000 135M

TOP 1%154

4,800

Chapter 1

dT-Calculus: A Formal Method to Specify Distributed
Mobile Real-Time IoT Systems

Sunghyeon Lee, Yeongbok Choe and Moonkun Lee

Additional information is available at the end of the chapter

http://dx.doi.org/10.5772/intechopen.75138

Abstract

In general, process algebra can be the most suitable formal method to specify IoT systems
due to the equivalent notion of processes as things. However there are some limitations
for distributed mobile real-time IoT systems. For example, Timed pi-Calculus has capability
of specifying time property, but is lack of direct specifying both execution time of action
and mobility of process at the same time. And d-Calculus has capability of specifying
mobility of process itself, but is lack of specifying various time properties of both action
and process, such as, ready time, timeout, execution time, deadline, as well as priority and
repetition. In order to overcome the limitations, this paper presents a process algebra,
called, dT-Calculus, extended from d-Calculus, by providing with capability of specifying
the set of time properties, as well as priority and repetition. Further the method is
implemented as a tool, called SAVE, on ADOxx meta-modeling platform. It can be con-
sidered one of the most practical and innovative approaches to specify distributed mobile
real-time IoT systems.

Keywords: dT-Calculus, process algebra, mobility, time, SAVE, ADOxx

1. Introduction

The main characteristics of distributed mobile real-time IoT systems can be movement of

things on some geographical space and real-time communication among them with deadlines

[1]. Therefore it is necessary to specify these characteristics with formal methods during design

phase of the system development process, and process algebra is known to be best suitable for

the specification of the systems since things can be considered as processes and the character-

istics can be depicted as both the movements of processes and the timed communications

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

among them [2]. For example, the most suitable process algebras for IoT systems can be as

follows:

1. Timed pi-Calculus [3]: It is the timed version of the existing pi-Calculus [4], which expresses

process movements indirectly by using the notion of value passing. It allows time-stamp and

clock to be passed additionally during value passing, with which the temporal require-

ments of the process movements can be specified.

2. Timed Mobile Ambient [5]: It is the timed version of the existing Mobile Ambient [6], where

process can move by ambient with in, out, and open capabilities. In contrast to pi-Calculus,

it is based on the semantics of autonomous movement, and makes timed specification

possible by adding time property to the movement.

3. d-Calculus [7]: This is a process algebra that can express direct process movements into or

out of other processes by using the four types of synchronous movements with simple

temporal conditions: a bound of the minimum and maximum limits. It naturally allows

process nesting by the resulting inclusion relations among processes.

However it is noticed that there are fundamental limitations in the above process algebra to

specify the main characteristics of distributed mobile real-time IoT systems due to lack of both

full description power of mobile and temporal properties, as follows:

1. Timed pi-Calculus: It allows various types of temporal requirements to be specified, but it

is not possible to specify directly both the actual execution time of action itself and the type

of its movement in the same requirements.

2. Timed Mobile Ambient: It is possible to specify temporal requirements by adding tempo-

ral property to ambient, but it is difficult to understand intuitively process synchronization

since the synchronization is represented by the movement of the ambient.

3. d-Calculus: It allows various types of temporal requirements to be specified, but only

simple types of temporal requirements for process movements are possible. For example,

a temporal bound of the minimum and maximum limits. It results in limited specification

of the temporal requirements of the movements as well as analysis of the requirements.

In order to overcome the limitations, this paper proposes process algebra, namely, dT-Calculus,

which is the timed version of d-Calculus, extended for more specific temporal specification

and analysis of the requirements of the IoT systems. More specifically, dT-Calculus allows the

temporal properties of the actions of processes to be expressed as follows:

• Ready time: The time needed before execution of an action or a process.

• Timeout: The maximum waiting time up to the actual execution of an action or a process,

after the execution will be ready with ready time.

• Execution Time: The actual execution time of an action or a process.

• Deadline: The time that the execution of action is to be terminated.

• Period: Period for repetition of an action or a process.

Internet of Things - Technology, Applications and Standardization2

These specific temporal properties allow various types of temporal requirements of process

movements and communications over the IoT environment to be specified and analyzed,

without modifying any types of the process movements and communications from d-Calculus.

This paper is organized as follows. Section II introduces some of the existing process algebras with

temporal properties. Section III introduces the basic algebra for dT-Calculus, that is, d-Calculus.

Section VI describes syntax and semantics of dT-Calculus, focusing on its temporal properties.

Section V demonstrates usability of dT-Calculus with a simple IoT example. Section VI shows

some comparison of dT-Calculus with other process algebras. Section VII introduces a tool, called

SAVE [8, 9], which is developed on ADOxx meta-modeling platform, to specify and analyze the

temporal requirements of the process movements with dT-Calculus. Finally conclusions will be

made and some of future researches will be discussed.

2. Related research

2.1. Timed pi-Calculus

One of the best known process algebra to specify the temporal properties is Timed pi-Calculus.

It is the timed version of pi-Calculus, adding the temporal properties to process movements.

Figure 1 shows the syntax of Timed pi-Calculus.

In the send and receive actions of the calculus, tc and c represent time-stamp and clock used for

creating of the time-stamp, respectively. Further δ and γ represent temporal restriction condition

and clock reset, respectively. The process specification with temporal restriction condition is to

be used as follows:

P ¼ c < 2ð Þx y; tc; ch i:P
0

(1)

It implies that, in 2 time units after clock c is reset, name y can be transmitted through channel

x in tc.

The notion of clock in Timed pi-Calculus is based on local clock concept, which allows various

kinds of temporal restriction conditions. For example,

Figure 1. Syntax of Timed pi-Calculus.

dT-Calculus: A Formal Method to Specify Distributed Mobile Real-Time IoT Systems
http://dx.doi.org/10.5772/intechopen.75138

3

Q ¼ e > 5ð Þ d� tz ≤ 3ð Þx z; tz; dh ið Þ:Q
0

(2)

It specifies two temporal conditions with clock: e > 5ð Þ represents a condition for a local clock

e, and d� tz ≤ 3ð Þ represents a temporal condition related to a receiving message. d and tz are

the temporal conditions on the clock for the receiving message and its time-stamp, but, since

the clock ticks continuously, d� tz ≤ 3ð Þ implies the temporal condition that the message

should be transmitted in 3 time units.

The mobile property of Timed pi-Calculus is represented indirectly by changing the state of

channel connection among processes through passing the connecting channel names. For

example,

yx:P
0

∣y zð Þ:Q
0

∣R!
τ
P

0

∣Q
0

x=zf g∣R (3)

As shown in Figure 2, it represents the state of P and R, connected by x, to be changed to the

state ofQ and R, newly connected by x, after passing the name x toQ by P through the channel

y. Obviously the connection between of P and R is invalid since there is no x in P.

2.2. Timed Mobile Ambient

Timed Mobile Ambient is another process algebra to specify process movements and temporal

properties. It is the timed version of Mobile Ambient. Figure 3 shows the syntax of Timed

Mobile Ambient.

In Timed Mobile Ambient, 0 represents the process with no action. n in n△t P½ �μ implies the

location where Process P executes, and △t does that P should terminate its execution in t.

If t > 0, then ambient n△t P½ �μ is equal to n[P]. If a timer becomes 0 by t ¼ 0, then n△t P½ �μ can be

represented as a pair of n△t P½ �μ;Q
� �

, where Q is a safe process, implying that, in case that

n△t P½ �μ is not completed in time or timed out, a safe process Q can be activated in order to

handler the time-out case of n△t P½ �μ. For example, if the open n capability does not occur in the

time t, ambient n△t P½ �μ is deactivated, and a safe process Q is activated instead as a handler. If

Q ¼ 0, then n△t P½ �μ can be simple enough to represent n△t P½ �μ;Q
� �

.

Figure 2. Movement in Timed pi-Calculus.

Internet of Things - Technology, Applications and Standardization4

Tags are related to reductions, which are similar to execution rules, and are classified into

active and passive ones. And μ is a neutral tag to represent whether a tag is active or passive.

An active tag performs a reduction in a time unit by consuming capability, and a passive tag

performs a series of reductions in time units. The reduction rule is defined in Figure 4.

The movement M△t
: P;Qð Þ is provided by the capability M, and followed by the execution of

Process P. If the time becomes 0 as in t ¼ 0, the safe process Q is executed instead of P.

An output action implies that Process P releases a namem on Channel c. An input action implies

that that Process P brings a name from Channel c and binds it to a name nwithin the scope of P.

Restriction does that a new unique name n is declared within the scope of P.

Since the communication method used in Timed Mobile Ambient is not direct, it is possible to

define appropriate types for receivers in communication. The Amb Γ½ � in the restriction and the

output and input actions is used to define such types.

Figure 5 shows a part of the Cab Protocol in Timed Mobile Ambient [5]. The basic scenario of

the protocol is that cab takes on a client sending the signal call from the place from. If the call

Figure 3. Syntax of Timed Mobile Ambient.

Figure 4. Reduction rules of Timed Mobile Ambient.

dT-Calculus: A Formal Method to Specify Distributed Mobile Real-Time IoT Systems
http://dx.doi.org/10.5772/intechopen.75138

5

from the client is not replied, the client should recall. The cab can be absent or full of customers,

the client can be waiting for a cab at the specific place while sending signals or be on a cab. In

order to specify the scenario, four processes are defined: load client, call, recall, and call from

client.

In specification, Ambient client must enter cab, and cab can release Ambient load client. After

Ambient client gets off cab, Ambient from looks for cab for another client’s transportation. If

Ambient from finds cab, client gets on cab by the R-In reduction.

call△t7 in△t10cab:in△t11 from: …

h ia
; recall

� �

∣cab∞½ �μ ! cab∞ call△t7 in△t11 from: …

h ip
; recall

h iμ

(4)

If the timer △t7 of Ambient call is terminated before getting-on cab, Ambient call is released

automatically. This kind of specification allows for Ambient cab and Ambient call not to contact

each other in △t7. After releasing Ambient call, a safe process can be executed by the

R-GTProgress reduction.

call△t7 in△t10cab:in△t11 from: …

h ia
; recall

� �

! recall (5)

Once Ambient recall enters Ambient client, other calls will be informed for execution. The recall

process will repeat itself until load client is released.

3. Preliminary research

d-Calculus is the process algebra developed to specify and analyze the process movements

directly on geographical space. There are four types of movements in d-Calculus, all of which

are synchronously defined.

3.1. Syntax

The syntax of d-Calculus is shown in Figure 6 and is defined as follows:

1. Action: Actions performed by a process.

2. Priority: The priority of the process P represented by a natural number n ≥ 0. The higher

number represents the higher priority. Exceptionally, 0 represents the highest priority.

Figure 5. Timed Mobile Ambient example.

Internet of Things - Technology, Applications and Standardization6

3. Nesting: P contains Q. The internal process is controlled by its external process. If the

internal process has a higher priority than that of its external, it can move out of the

external without the permission of the external.

4. Channel: A channel r of P to communicate with other processes. t implies the time needed

for the communication through the channel.

5. Choice: Only one of P and Q will be selected non-deterministically for execution.

6. Parallel: Both P and Q are running concurrently.

7. Exception: Execution of P, but F in case of violation of the deadline t.

8. Sequence: P follows after action A.

9. Empty: No action.

10. Send/Receive: Communication between processes, exchanging a message by a channel r. t

represents deadline of the communication.

11. Request: Requests for movement. t, p and k represent deadline, priority and key, respec-

tively.

12. Permission: Permissions for movement. t represents deadline.

13. Create process: Creation of a new internal process. The new process cannot have a higher

priority than its creator.

14. Kill process: Termination of other processes. The terminator should have the higher prior-

ity than that of the terminate.

15. Exit process: Termination of its own process. All internal processes will be terminated at

the same time.

Generally all the movements are synchronous. In order for a process to move in or out of

another process, the moving process (mover) needs permission from the target process.

Figure 6. Syntax of d-Calculus.

dT-Calculus: A Formal Method to Specify Distributed Mobile Real-Time IoT Systems
http://dx.doi.org/10.5772/intechopen.75138

7

Reversely, in order for a process to be moved in or out of another process forcefully, the

moving process needs permission from the being-moved process (movee).

By means of the strict method of synchrony, the movements of processes can be controlled, and

further the security and safety of the IoT systems can be guaranteed by pre-cautiously

preventing insecure or unsafe movements.

3.2. Mobility

As stated, the process movement in d-Calculus occurs synchronously between the requesting

process and the permitting process. It implies that the movement cannot be allowed without

permission. It prevents any unplanned movement from occurring unexpectedly, and clarifies

control of the movement explicitly. There are four types of such movements in d-Calculus as

follows:

• in: A process moves into another process directly.

• out: A process moves out of another process directly.

• get: A process makes another process move into itself.

• put: A process makes another process move out of itself.

The types of movements can be pictorial depicted as shown in Figure 7.

4. dT-Calculus

dT-Calculus is the process algebra developed to specify and analyze the movements of things

in the IoT systems with temporal restrictions directly on geographical space. In order to

represent precise temporal properties explicitly, it extended the basic temporal property of the

movements in d-Calculus to specify the different types of temporal properties for period and

sporadic actions or processes, with the additional syntax and semantics accordingly.

Figure 7. Pictorial view of d-Calculus movements.

Internet of Things - Technology, Applications and Standardization8

4.1. Temporal properties

As shown in Figure 8, there are five temporal properties in dT-Calculus: ready time, timeout,

execution time, deadline, and period. The first four properties are used to specify the temporal

properties of sporadic actions or processes, and the last one is used to specify the temporal

properties of periodic actions and processes inclusively. The definition of each property is as

follows:

1. Ready time: It represents the waiting time for an action. At the point of the action in a

process, the process was to wait in ready time before executing the action. No other or

synchronous actions are possible during ready time.

2. Timeout: It represents the maximum waiting time for the actual execution of an action to be

started after the action is ready for execution. If the waiting time in ready time is over and

the partner for its synchronous action is not ready, the action cannot be executed. If the

partner is ready for the action in timeout, the action can be executed. If not, the action will

be in the state of timeout, the process will be in some fault state unless some proper

handling action is not specified.

3. Execution Time: The time needed to execute an action. In case that the action can be

performed in timeout after ready time, the action will be executed in execution time and be

terminated. And then the next action will be available.

4. Deadline: The termination time for the execution of an action. All actions must be termi-

nated in deadline. Deadline starts as ready time does. If the action is terminated in deadline,

the process will be in some fault state. In order to prevent the process from being in the

fault state, an exceptional handling must be specified accordingly.

5. Period: The duration of period for the execution of an action or process in repetition. The

action will repeat itself after period of executing the action or process. This is an additional

temporal property to specify the periodic action or process, different from the previous

four temporal properties. The periodic action or process can be put into some fault state

due to failure or timeout and deadline.

Figure 8. Time properties of dT-Calculus.

dT-Calculus: A Formal Method to Specify Distributed Mobile Real-Time IoT Systems
http://dx.doi.org/10.5772/intechopen.75138

9

All actions and processes are defined or specified with these temporal properties. However the

properties cannot be applied to some actions and processes. For example, empty action, no-time

action, timed process, etc.

4.2. Syntax

The syntax of dT-Calculus is shown in Figure 9, and the extended notions from d-Calculus for

temporality are as follows:

1. Timed action: The execution of an action with temporal restrictions. The temporal proper-

ties of [r, to, e, d] represent ready time, timeout, execution time, and deadline, respectively. p

and n are properties for periodic action or processes: p for period and n for the number of

repetition.

2. Timed process: Process with temporal properties.

3. Exception: P will be executed. But F will be executed in case that P is out of timeout or

deadline.

The biggest difference of dT-Calculus with d-Calculus is the notion of timed action and pro-

cesses. In d-Calculus, the temporal property is simple, defined with a time interval in action or

process: the boundary of the lower and upper time limits. However, in dT-Calculus, the

property is divided into more specific properties, as described. In addition, the exceptions

caused by the violation of the temporal properties are more specifically divided into the one

by deadline and the one by timeout.

Consequently the separate notions for temporal properties for action and process in d-Calculus

can be represented in one single notion and form of the properties in dT-Calculus.

If there is no temporal properties to be specified in an action, it will be considered to be [0,-,1,-]

by default. That it, there is no waiting time so that the action can be executed immediately, and

infinite waiting for the synchronous co-action is possible without timeout and deadline.

Figure 9. Syntax of dT-Calculus.

Internet of Things - Technology, Applications and Standardization10

4.3. Semantics

The semantics of dT-Calculus for the temporal properties in action and process are defined as

transition rules as shown in Table 1.

Each rule in the table is defined as follows:

1. Tick-Time R: The rule for ready time of an action. As time passes in ready time, the values of r

and d decrease accordingly.

2. Tick-Time TO: The rule for timeout of an action. The action, not executing, but in waiting,

decreases its timeout time accordingly as time passes.

3. Tick-Time End: The rule for termination of an action. After the execution of the action

started and the value of e becomes 0, the next action can start.

4. Tick-Time SyncE: The rule for execution of an action. When an action and its partner

co-action are executed synchronously, the values of e and d decrease accordingly as time

passes.

5. Tick-Time AsyncE: The rule for execution time of an asynchronous action. In case of asyn-

chronous action, there is no need for timeout: it goes into its own execution immediately

just after ready time and the values of e and d decrease accordingly as time passes.

Tick-Time R �

A r;to;e;d½ ����!
⊳1

A r�1;to;e;d�1½ �

r ≥ 1ð Þ

Tick-Time TO �

A 0;to;e;d½ ����!
⊳1

A 0;to�1;e;d�1½ �

to ≥ 1ð Þ

Tick-Time End �

A 0;to;0;d½ � � A
0

���!
⊳1

A
0

Tick-Time SyncE
A∣A

0

�������!
τ ∨ δð Þ ∧⊳1

A
00

∣A
000

A 0;to1 ;e1 ;d1½ �∣A
0
0;to2 ;e2 ;d2½ ��������!

τ ∨ δð Þ ∧⊳1
A 0;to1 ;e1�1;d1�1½ �∣A

0
0;to2 ;e2�1;d2�1½ �

e1 ≥ 1 ∧ e2 ≥ 1ð Þ

Tick-Time AsyncE �

A 0;to;e;d½ ����!
⊳1

A 0;to;e�1;d�1½ �

Tick-Time P �

P r;to;e;d½ ����!
⊳1

P r;to;e;d�1½ �

Timeout �

A 0;0;e;d½ �\P���!
⊳1

P

Deadline �

A r;to;e;0½ �\P���!
⊳1

P

Period �

A
p,n
r;to;e;d½ ����!

⊳p

A
p,n�1
r;to;e;d½ �

n > 1ð Þ

Period End �

A
p,1
r;to;e;d½ � � A

0

���!
⊳p

A
0

Table 1. Temporal semantics of dT-Calculus.

dT-Calculus: A Formal Method to Specify Distributed Mobile Real-Time IoT Systems
http://dx.doi.org/10.5772/intechopen.75138

11

6. Tick-Time P: The rule for passage of time in process. Since the temporal property for a

process uses only deadline in its temporal requirements, the value of e decreases accord-

ingly as time passes.

7. Timeout: The rule for timeout to occur. When the value of to becomes 0, its timeout error will

occur. However, when an exception for the timeout defines, its exception handling will be

activated accordingly.

8. Deadline: The rule for violation of deadline. When the value of d becomes 0, its deadline

error will occur. However, when an exception for the deadline defines, its exception han-

dling will be activated accordingly.

9. Period: The rule for execution of a periodic action. The action will be executed again after

the period passes, and the value of n will be decremented by 1.

10. Period End: The rule for termination of a periodic action. In case that the value of n is 1, no

action will be repeated after the period passed over.

4.4. Laws

The laws for the additional temporal properties in dT-Calculus are shown in Table 2. The laws

represent the notion and restrictions of temporal properties in dT-Calculus as follows:

1. Timed Process: Only applicable temporal property for a process is deadline.

2. Non-time Action: The action with no temporal properties is same as the one with the

temporal properties of [0,-,1,-].

3. Empty: Only applicable temporal property for the Empty action is execution time.

4.5. Characteristics

The temporal properties are directly specified to each action and process in dT-Calculus. The

specification of the temporal properties for both actions and processes allows the temporal

requirements for both actions in a processes and the process itself to be specified and analyzed

at the same time.

The introduction of the periodic temporal property has many advantages than other process

algebras in specification of different types of repeating processes. Generally, the starting time

of each synchronous action depends on the ready time of its partner action so that the same

actions may require different total execution or termination time of their synchronous actions.

P r;to;e;d½ � ¼ P �;�;�;d½ � Timed Process

A ¼ A 0;�;1;�½ � Non-time Action

∅ r;to;e;d½ � ¼ ∅ �;�;e;�½ � Empty

Table 2. Temporal Laws of dT-Calculus.

Internet of Things - Technology, Applications and Standardization12

That is, there is some problem of not being able to specify explicitly and precisely the temporal

properties of periodic actions in the following form:

A �∅ �;�;e;�½ � � A �∅ �;�;e;�½ � � A �∅ �;�;e;�½ � �… (6)

It is intended to specify the above periodic actions with empty actions, but the empty actions

with fixed execution time are not appropriate because their interaction times for synchroniza-

tion can be different from each other. However, there is an advantage that there is no need to

consider such time for synchronous interactions if the periodic temporal property is used. The

specification of the periodic requirements becomes very simple since the next execution of an

action will be performed after elapsing the periodic temporal duration without calculating the

temporal length left over up to the next re-execution of the action following the immediate

execution of the action.

4.6. Graphical representation

There are two graphical representations for dT-Calculus: system view and process view.

System view represents graphical relationships among processes in a system: containment and

Table 3. Icon for system view.

Table 4. Icon for process view.

dT-Calculus: A Formal Method to Specify Distributed Mobile Real-Time IoT Systems
http://dx.doi.org/10.5772/intechopen.75138

13

interactions. Process view represents graphical relationships among actions in a process: prece-

dency and control flow. These views show in-the-large (ITL) view of a system and in-the-small

(ITS) views for its processes, respectively. And they provide better understanding of the

system and the processes in the visual representation. Tables 3 and 4 show the icons for the

views, respectively.

5. Example

This section describes the specification of a distributed mobile real-time IoT system in

dT-Calculus with a Smart Emergency Evacuation System (SEES) example.

SEES is a system that activates evacuation plan with supporting devices in buildings or

facilities, in case of fire or threat, by detecting the source of fire or threat as well as the people

and their movements in the building, and guiding them safely out of the building until all of

them move out of the building safely in both active or passive manner [10].

5.1. Requirements

SEES needs a set of secure requirements since it guarantees safe evacuation of people in a

building in case of fire or threat. The requirements include, as stated, provision of the evacua-

tion plan, detection of the source of fire or threat as well as the people and their movements in

the building, automatic notification of the fir and threat to police and 911, and safe guidance of

the residents out of the building. It can be summarized as follows:

1. Req 1: Sensors must confirm occurrence of fire or threat continuously.

2. Req 2: Controller must send fire or threat alarm to all the people in case of fire or threat.

3. Req 3: Controller must guide all the people to the safe areas without fire in both present

and near future.

4. Req 4: The evacuation of all the people must be completed in 25 time units.

5. Req 5: 911 must evacuate the people who are not escaped from the fire.

In case that these requirements are not satisfied, it is possible for people not to escape from fire

or to escape through insecure paths, causing loss of human lives. Therefore it is very important

to specify these requirements formally and to verify their satisfiability.

5.2. Specification

As shown in Figure 10 in dT-Calculus, the SEES in the example operates as follows:

1. A fire is detected by sensor(s), and is informed to the controller by the sensor(s).

2. The controller informs the people in the building of the fire or threat, and, at the same time,

shows the evacuation paths as planned.

Internet of Things - Technology, Applications and Standardization14

3. The controller tracks all the people in the building while they are evacuating, and informs

the current status of the evacuation to 911 in real-time, so that the people trapped in the

building can be monitored in real-time as planned.

4. 911 rescues the people trapped in the building in order, based on the status of the fire or

threat in the building and the availability of the rescue facilities and devices.

In the specification, the following actions have been declared in Process Building and Process

Control System to detect the case that the people cannot be evacuated from building autono-

mously:

Building :: ¼ ⋯P1 out 0;0;1;14½ � � CS P1
� �

⋯ (7)

Control System :: ¼ ⋯CS P1ð Þ 0;0;1;7½ �\CE P1
� �

(8)

The above code implies that, when P1 moves out of the building, it sends CS a signal of its safe

evacuation, and that, if not, that is, if the signal is not received in the deadline of 7 time units of

[0,0,1,7] by CS, the non-evacuation situation of P1 is informed to 911 by the exception handler

process CE of CS.

In the specification from Figure 10, sensors, SensorA, and SensorB, are defined to perform their

actions in repetition by the period properties of dT-Calculus: normally their fire alarm actions

do not occur by timeout in normal case of no fire, however, in case of fire, they have to occur in

order to inform Control System of the fire.

Figure 10. The SEES example in dT-Calculus.

dT-Calculus: A Formal Method to Specify Distributed Mobile Real-Time IoT Systems
http://dx.doi.org/10.5772/intechopen.75138

15

There are two people in the building and there are two choices for them in case of fire: one for

evacuation safely from the building, and another for non-evacuation.

5.3. Graphical representation

The textual specification in dT-Calculus can be represented graphically in two views: in-the-

large (ITL) and in-the-small (ITS). The ITL view can be considered as system view consisting of

processes interacting together with communication and movements. The ITL view can be

considered as process view with the detailed actions. Figure 11 shows the ITL view of the SEES

example, and Figures 12 and 13 show the ITS views of the processes in the example.

In order to construct the ITL view for the example, it is necessary to understand main pro-

cesses and their containment relations from the example, which is textually specified with

dT-Calculus in Section 5.2 as follows:

Sys≔Building Control SystemjStairA SensorA½ �jStairB SensorB½ �j1stfloorj2nd floor P1jP2½ �½ �∣911; (9)

In Figure 11, P1 and P2 are placed in 2nd floor since they are defined as contained processes of

2nd floor in Eq. 9. Similarly, SensorA and SensorB are placed in StairA and StairB, respectively, in

the figure, since they are defined as contained process of StairA and StairB, respectively, in the

equation. Further 1st floor, 2nd floor, StairA and StairB are placed in Building in the figure, since

they are defined as contained processes of Building in the equation. However 911 is placed

outside of Building in the figure since it is defined as a parallel process of Building in the

equation. In addition, the edges in the view are the channels for communication among the

processes in the example.

In order to construct the ITS view of each process as shown in Figures 12 and 13, it is necessary

to understand the types of actions in each process and their order of execution. For example,

Figure 14 shows the ITS view of Building from Figure 13. The figure shows actions as nodes

Figure 11. ITL view of the SEES example.

Internet of Things - Technology, Applications and Standardization16

and their execution order as directed edges for Building, which is textually specified with

dT-Calculus in Section 5.2 as follows:

Building≔ SA Fire
� �

þ SB Fire
� �� �

� P1 out 0;0;1;13½ � � CS P1
� �� �

\∅ � P2 out 0;0;1;13½ � � CS P2
� �� �

\∅

� 911 in 0;0;1;10½ � � P1 out 0;0;1;5½ �\∅ � P2 out 0;0;1;5½ �\∅ � 911 out
� �

\∅;

(10)

Building performs the SA Fire
� �

þ SB Fire
� �

first. The Choice operation in the action is graphi-

cally represented with its Choice icon in the figure, including its two independent execution

paths. And it is followed by a sequence of timed actions with exception, represented by their

graphical icons. Firstly, P1 out 0;0;1;13½ � � CS P1
� �� �

\∅ is graphically represented by a pair of

ordered action of P1 out 0;0;1;13½ � and CS P1
� �

with its exception, that is, ∅, in the figure. Other

timed actions are similarly represented in the same graphical pattern.

Figure 12. ITS views of the SEES e2xample (1).

dT-Calculus: A Formal Method to Specify Distributed Mobile Real-Time IoT Systems
http://dx.doi.org/10.5772/intechopen.75138

17

5.4. Execution

Figure 15 shows the execution model for the SEES example. It consists of total 8 execution

paths. Note that an execution path implies each independent case of execution by the example.

Figure 13. ITS views of the SEES example (2).

Figure 14. ITS view of the building process.

Internet of Things - Technology, Applications and Standardization18

It can be obtained by analyzing all the possible synchronization cases in the example. The icons

in the model are defined in Table 5.

As shown in Figure 15, there are total eight paths: two locations for fire, two cases of evacua-

tion for two persons, and consequently eight cases in total.

Firstly, for each execution path of successful evacuation, it is possible to perform analysis of

their temporal properties as follows. Let us consider the case that a fire occurs at Stairs A:

Figure 15. Execution paths of the SEES system.

dT-Calculus: A Formal Method to Specify Distributed Mobile Real-Time IoT Systems
http://dx.doi.org/10.5772/intechopen.75138

19

1. T1: A fire occurs at Stairs A.

2. T2: A sensor detects the fire and informs a controller of the fire with a signal.

3. T3: The controller informs P1 on Floor 2 of an evacuation path through Stairs B.

4. T4: The controller informs P2 on Floor 2 of an evacuation path through Stairs B.

5. T5: The controller informs 911 of the fire, and P1 enters Stairs B.

6. T6: P2 enters Stairs B.

7. T7: P1 enters Floor 1.

8. T8: P2 enters Floor 1.

9. T9: P1 moves out of the building.

10. T10: P2 moves out of the building, and the controller detects that P1 moved out of the

building.

11. T11: The controller detects that P2 moved out of the building.

All the people moved out of the building in 10 time units. And the controller detected their

evacuation in 11 time units. Since there are more actions left to be performed by 911, it takes

more time units for the system to terminate its own mission.

Secondly, for each execution path of failed evacuation, it is also possible to perform analysis of

their temporal properties as follows. Let us consider the case that a fire occurs at Stairs A:

1. T1: A fire occurs at Stairs A.

2. T2: A sensor detects the fire and informs a controller of the fire with a signal.

3. T3: The controller informs P1 of an evacuation path through Stairs B.

Table 5. Icon for execution model.

Internet of Things - Technology, Applications and Standardization20

4. T4: The controller informs P2 of an evacuation path through Stairs B, and P1 is not able to

move of out Floor 2.

5. T5: The controller informs 911 of the fire.

6. T6: P2 enters Stairs B.

7. T8: P2 enters Floor 1.

8. T10: P2 moves out of the building.

9. T12: The controller detects that P1 is still on Floor 2.

10. T13: The controller informs 911 of the non-evacuation of P1.

11. T14: The controller detects that P2 moved out of the building, and 911 moves into the

building to rescue P1.

12. T16: 911 finds P1 and provides the first treatment.

13. T18: P1 moves out of the building.

14. T19: 911 moves out of the building.

For evacuation, P2 takes 10 time units, but p1 takes 18 time units due to rescue time required

for 911 to handle P1’s non-evacuation situation. Once all the people are safely evacuated, the

system will terminate its mission. However it will takes little more time due to some left-over

actions by 911.

As a result of analysis, it can be confirmed that, in case of the fire at Stairs A, all the people

were evacuated safely in 20 time units. Similar to the case of the fire at Stairs A, it can be

confirmed that, in case of the fire at Stairs B, all the people were evacuated safely in 20 time

units. Consequently it can be concluded that all the people in the building will be safely

evacuated in time in any case of fires.

5.5. Analysis

In order to assure the safety of SEES, it is necessary to verify if the safety requirements,

specified in dT-Calculus, in Section 5.1, are satisfied or not. All the five requirements specified

in the section must be verified in order to prevent loss of lives from happening by fire as

follows:

1. Req 1: Sensors must confirm occurrence of fire continuously.

It is specified in the SEES specification for SensorA and SensorB as follows. They are

detecting fires in the same actions in different locations, that is, A and B:

SensorA≔ SA Fire
� �

0;3;1;0½ �
� CS FireA

� �

� �

\∅3

� �6,∞
(11)

dT-Calculus: A Formal Method to Specify Distributed Mobile Real-Time IoT Systems
http://dx.doi.org/10.5772/intechopen.75138

21

Each sensor performs a fire-detecting action for 3 time units. In case of no fire, it terminates its

action immediately, but it repeats its fire-detecting action repeatedly as the following periodic

actions with the specifier of its “6,∞.” However, in case of fire, it notifies the fire to the

controller, and similarly, it repeats its fire-detecting action repeatedly as the following periodic

actions.

2. Req 2: Controller must send a fire alarm to all the people in case of fire or threat.

The controller performs the following actions in case of fire:

CS FireAð Þ � P1 StairB
� �

� P2 StairB
� �

þ CS FireBð Þ � P1 StairA
� �

� P2 StairA
� �� �

(12)

No matter where the fire occurs, it can be verified that the alarm is sent to all the people in the

building: P1 and P2.

3. Req 3: Controller must guide all the people to the safe areas without fire in both present and

near future.

In the actions in 2), it can be varified that the people receiving the FireA by CS get the StairB

signal for evacution and, similarly, that the people receiving the FireB by CS get the StairA

signal for evacution. It guarantees that the people in the fire areas are evacuating through the

non-fire areas.

4. Req 4: The evacuation of all the people must be completed in 25 time units.

As shown in Section 5.4, the autonomous evacuaiton, that is, the evacuation of the people

without 911, takes 10 time units. However the heteronomous evacuaiton, that is, the evacua-

tion of the people by 911, takes little longer that the autonomous case, since it requires the time

that 911 arrives at the site. In this case, the controller has to recognize the situation of non-

evacuation of the people at T12 ans T17, and 911 has to evacuate the people at T21 and T22.

Finally, P1 is evacuated at P1, and P2 is evacuated at T24. In both cases, it can be verified that

all the people are evacuated in 25 time units.

5. Req 5: 911 must evacuate all the people who are not escaped from the fire.

911 performs the following actions after the call:

CE P1ð Þ �⋯þ CE P2ð Þ �⋯þ CE P1ð Þ � CE P2ð Þ �⋯ð Þ (13)

It shows that the evacuations are performed by the signals from the controller, as the following

calls for the signals of the controller show:

⋯ � CS P1ð Þ 0;0;1;7½ �\CE P1
� �

� CS P2ð Þ 0;0;1;4½ �\CE P2
� �

(14)

CS(P1) and CS(P2) are the signals from the people when they are evacuating from the building.

In case that the signals are not transmitted to the controller in the certain period of time, the

controller sends 911 the non-escaping signal to indicate the non-evacuation situation of the

Internet of Things - Technology, Applications and Standardization22

people. It is be verified that SEES guarantees that the controller recognizes all the non-evacuated

people in the building and informs 911 of the situations, and that 911 evacuates them in time.

6. Comparative analysis

6.1. Main characteristics of IoT systems

The main characteristics of the IoT-based systems are shown in many literatures [11–13]. These

can be summarized as follows with respect to process algebra:

1. Mobility: A number of devices in the systems are able to move their positions in geograph-

ical space. The devices should be able to get IoT services at any place and environment.

2. Real-time: The IoT devices in the systems should be able to get IoT services in real-time.

3. Interactivity: The interactions among the IoT devices in the systems must be possible, i.e.,

communication among the electronic devices in the smart home.

Especially, distributed mobile real-time IoT systems must have the above characteristics in

order to operate properly in real-time without faults over geographical space with temporal

restrictions.

6.2. Timed pi-Calculus

Timed pi-Calculus is a process algebra that is designed to specify and analyze mobile

services. Timed pi-Calculus is the timed version of pi-Calculus, which allows time-stamp

and clock be passed additionally during value passing: the temporal requirements of the

process movements can be specified. However there is a limitation that the execution time of

an action cannot be specified directly on the action. Further it is difficult to analyze the

execution time, the deadline, and others of an action, since such temporal properties are

represented by the passing time-stamp and clock. Similarly the movement in the algebra is

inappropriate to represent a real movement of a process since it is represented by value

passing. Consequently such indirect representation of a movement may result in distortion

of the patterns of real movements since the representation reduces the scope of the possible

movements in expression.

6.3. Timed Mobile Ambient

Timed Mobile Ambient is a process algebra that allows specification of temporal requiements

by adding temporla properties on the existing movments of processes from Mobile Ambient.

Temporal properties are added to process movements controlled by capabilities, and the

process with the properties performs as follows: if the process performs an action within the

valid time, it performs normally as in Mobile Ambient. If not, the existing process is intention-

ally terminated and a safe process is executed instead, in order to handle this abnormal

dT-Calculus: A Formal Method to Specify Distributed Mobile Real-Time IoT Systems
http://dx.doi.org/10.5772/intechopen.75138

23

situation. Timed Mobile Ambient solves the incapability of temporal specification of Mobile

Ambient, but it is difficult to reason about starting time of processes since there is no other

temporal properties except deadline. In addition, it is difficult to understand intuitively pro-

cess synchronization since the synchronization is represented by the movements of ambients.

6.4. d-Calculus

d-Calculus is a process algebra that is designed to express direct process movements into or out

of other processes both autonomously and heteronomously. It allows various types of mobile

requirements to be specified, but only a simple type of temporal requirements for process

movements is possible: a temporal bound of the minimum and maximum limits. It results in

limited specification of the temporal requirements of the movements as well as analysis of the

requirements. In addition, specification can be represented in both text and graph in order to

increase visibility of the specification as well as comprehensibility. However there are limita-

tions in specification of temporal properties: the execution time is only possible for an action

and deadline is specified only by exception. It implies that only simple temporal specification is

possible, but complex temporal specification for the smart EMS example is not allowed.

6.5. dT-Calculus

However, dT-Calculus overcomes these limitations of these algebras. Since it is an extension

version of d-Calculus, it can utilize all different types of direct movements of processes.

Besides, it is possible to specify complex temporal requirements of the smart mobile service

by supplying a variety of additional temporal properties. Further, the analysis of the temporal

properties is relatively easy since the properties are directly specified on actions and processes.

And it is possible to specify exceptional handling to solve errors or faults caused by any

violation of timeout and deadline.

6.6. IoT-based comparison

The first three process algebras can be analyzed with dT-Calculus with respect to the IoT

characteristics stated in Section 6.1, as follows:

1. Mobility: A number of IoT devices are moving around in the IoT systems in a various

manners. For example, a device containing other devices can move in and out of other

devices, autonomously or heteronomously. In Timed pi-Calculus, the movements of pro-

cesses can be expressed with value passing only. Consequently there are limitations to

express various kinds of direct movements. In Timed Mobile Ambient, there are three in,

out, open movement actions. However there is no movement action for passive or heter-

onomous movement. In d-Calculus and dT-Calculus, it is possible to express both auton-

omous and heteronomous movements of processes since they provide both the active

actions of in, out and the passive actions of get, put.

2. Real-time: The IoT systems should provide their services in real-time. It means that the

process algebras for the systems must have capability to express real-time properties of the

Internet of Things - Technology, Applications and Standardization24

services. In Timed pi-Calculus, it is possible to specify the temporal properties of processes

by providing time-stamp and clock through value passing. But it is not possible to specify

execution time of its actions. In Timed Mobile Ambient, it is possible to specify only

temporal property of deadline for process movement with capability, but other properties

are not possible. In d-Calculus, only execution time and deadline properties are possible,

but others are not possible. However, in dT-Calculus, other properties, such as, ready time

and time out, are possible, beside execution time and deadline properties of d-Calculus.

3. Interactions: All the devices in the IoT system should interact together. It implies that the

process algebras for the systems must have capability to express the interactions. All the

above algebras are able to express interactions among processes, but there are differences

in the types of the interactions. In Timed pi-Calculus, the interactions are based on of

synchronized communication. In Time Mobile Ambient, the interactions are based on

capability-based movements, besides communication. In d-Calculus and dT-Calculus, the

interactions are based on both communication and movements by synchronization.

Table 6 shows the summary of the analysis with respect to the IoT characteristics.

7. SAVE

In order to demonstrate the feasibility of the approach in the paper, a tool, called SAVE

(Specification, Analysis, Verification and Evaluation) [14], has been developed on the ADOxx

meta-modeling platform [15]. As shown in Figure 16, it consists of four basic components as

follows:

• Modeler: It provides capability to specify system and process views.

• EMGenerator: It generates an execution model (EM) for the views and makes each path of

the model to be selected for simulation.

Process Algebra IoT Characteristic

Types of movement Properties Types of temporal properties Interactions

Timed pi-Calculus Indirect movements Deadline Communication

Timed Mobile Ambient in, out, open Deadline Communication

Movements

d-Calculus in, out, get, put Execution time

Deadline

Communication

Movements

dT-Calculus in, out, get, put Ready time

Time out

Execution time

deadline

period

Communication

Movements

Table 6. Comparison of dT-Calculus with other algebras by the IoT characteristics.

dT-Calculus: A Formal Method to Specify Distributed Mobile Real-Time IoT Systems
http://dx.doi.org/10.5772/intechopen.75138

25

• Simulator: It generates a model for the selected simulation, in a Geo-Temporal Space

(GTS) diagram.

• Analyzer: It analyzes the secure requirements of the system by model-checking on the

diagrams.

The graphical models in SAVE are designed by the ADOxx Development Tool, and the pro-

cedures of the SAVE components are built from the ADOxx libraries. The detailed logics of the

procedures are programmed in the ADOScript language.

The first step to use SAVE for analysis is to specify systems in dT-Calculus. There are two

specification models in SAVE, as shown in Figures 17 and 18 for the SEES example: ITL

(In-The-Large) and ITS (In-The-Small). From specification, the execution model can be auto-

matically generated by the execution model generator. The execution model reveals all possi-

ble execution paths and determines whether each path is of normal or deadlock. Figure 19

shows the execution model for the SEES example.

After generating an execution model, the simulation model for each execution path is auto-

matically generated. The simulation model is represented in GTS (Geo-Temporal Space), where

all the execution and movements resulted in the path are described in the model in detail.

Figure 16. SAVE architecture.

Internet of Things - Technology, Applications and Standardization26

Based on the simulation model, it is possible to analyze and verify the temporal requirements

of IoT systems. Figure 20 shows the simulation model for the first path of the SEES example in

Figure 19.

Figure 17. ITL model in SAVE.

Figure 18. ITS models in SAVE.

dT-Calculus: A Formal Method to Specify Distributed Mobile Real-Time IoT Systems
http://dx.doi.org/10.5772/intechopen.75138

27

8. Conclusions and future research

This paper proposed dT-Calculus for mobile and temporal specification of the distributed

mobile real-time IoT systems. The algebra extended d-Calculus for specification and analysis

Figure 19. Execution model in SAVE.

Figure 20. Simulation model in SAVE.

Internet of Things - Technology, Applications and Standardization28

of a variety of different types of temporal properties at the direct movement actions and the

mobile processes. Further a tool, called SAVE, has been developed to demonstrate the feasibil-

ity of the approach with the algebra.

In the paper, the process algebra for specification with temporal properties is presented. In the

future research, the different types of verification methods are developed to demonstrate the

usability of dT-Calculus, based on a logic system, including SAVE with a verification model.

Acknowledgements

This work was supported by Basic Science Research Programs through the National Research

Foundation of Korea (NRF) funded by the Ministry of Education (2010-0023787), and Space

Core Technology Development Program through the NRF (National Research Foundation of

Korea) funded by the Ministry of Science, ICT and Future Planning (NRF-2014M1A3A3A020

34792), and Basic Science Research Program through the National Research Foundation of

Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A3A01019282).

Author details

Sunghyeon Lee, Yeongbok Choe and Moonkun Lee*

*Address all correspondence to: moonkun@jbnu.ac.kr

Chonbuk National University, Jeonju-si Jeonbuk, Republic of Korea

References

[1] Chen C-Y, Hasan M, Mohan S. Securing Real-Time Internet-of-Things. arXiv preprint

arXiv. 2017;1705:08489

[2] Choe Y, Lee M. Algebraic method to model secure IoT. In: Karagiannis D, Mayr HC,

Mylopoulos J, editors. Domain-Specific Conceptual Modeling. Switzerland: Springer

International Publishing; 2016. pp. 335-355. Ch. 15

[3] Saeedloei N, Gupta G. Timed π-Calculus. Trustworthy Global Computing. Lecture Notes

in Computer Science. Vol. 8358. Cham: Springer. 2014

[4] Milner R, Parrow J, Walker D. A calculus of mobile processes (i–ii). Information and

Computation. 1992:1-77

[5] Aman B, Ciobanu G. Mobile ambients with timer and types. In: International Colloquium

on Theoretical Aspects of Computing. Berlin Heidelberg: Springer; 2007

[6] Cardelli L, Gordon A. Mobile ambients. In: Nivat M, editors. ETAPS 1998 and FOSSACS

1998. LNCS. Vol. 1378. Heidelberg: Springer; 1998. pp. 140-155

dT-Calculus: A Formal Method to Specify Distributed Mobile Real-Time IoT Systems
http://dx.doi.org/10.5772/intechopen.75138

29

[7] Choe Y, Lee M. δ-Calculus: Process algebra to model secure movements of distributed

mobile processes in real-time business application. In: 23rd European Conference on

Information Systems; 2015

[8] Choe Y, Choi W, Jeon G, Lee M. A tool for visual specification and verification for secure

process movements. In: eChallenges e-2015; 2015

[9] SAVE tool. Available from: http://austria.omilab.org/psm/content/save/info

[10] Snoonian D. Smart buildings. IEEE Spectrum. 2003;40(8):18-23

[11] Chung S-m, Choi J-h, Park J-w. Design of software quality evaluation model for IoT.

Journal of the Korea Institute of Information and Communication Engineering. 2016;

20(7):1342-1354

[12] Liu Y, Zhou G. Key technologies and applications of internet of things. 2012 Fifth Inter-

national Conference on Intelligent Computation Technology and Automation (ICICTA);

IEEE; 2012

[13] Sarkar C, et al. A scalable distributed architecture towards unifying IoTapplications. 2014

IEEE World Forum on Internet of Things (WF-IoT); IEEE; 2014

[14] Choe Y, Lee S, Lee M. SAVE: An environment for visual specification and verification of

IoT. 2016 IEEE 20th International on Enterprise Distributed Object Computing Workshop

(EDOCW); IEEE; 2016

[15] Fill H, Karagiannis D. On the conceptualisation of modeling methods using the ADOxx

meta modeling platform. Enterprise Modeling and Information Systems Architectures.

2013;8(1):4-25

Internet of Things - Technology, Applications and Standardization30

