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Abstract

Hard C-means (HCM) and fuzzy C-means (FCM) algorithms are among the most popular
ones for data clustering including image data. The HCM algorithm offers each data entity
with a cluster membership of 0 or 1. This implies that the entity will be assigned to only
one cluster. On the contrary, the FCM algorithm provides an entity with a membership
value between 0 and 1, which means that the entity may belong to all clusters but with
different membership values. The main disadvantage of both HCM and FCM algorithms
is that they cluster an entity based on only its self-features and do not incorporate the
influence of the entity’s neighborhoods, which makes clustering prone to additive noise.
In this chapter, Kullback-Leibler (KL) membership divergence is incorporated into the
HCM for image data clustering. This HCM-KL-based clustering algorithm provides two-
fold advantage. The first one is that it offers a fuzzification approach to the HCM cluster-
ing algorithm. The second one is that by incorporating a local spatial membership
function into the HCM objective function, additive noise can be tolerated. Also spatial
data is incorporated for more noise-robust clustering.

Keywords: data science, clustering, image clustering, hard and fuzzy C-means,
membership function, Kullback-Leibler (KL) divergence

1. Introduction

Image segmentation is a principle process in many image, video, scene analysis and computer

vision applications [1–3]. The objective of segmentation process is to divide an image into

multiple separate regions or clusters which make it easier to recognize and distinguish differ-

ent objects in image. Over the last few decades, several image segmentation methods have

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



been developed. However, there is still no satisfactory performance especially in noisy images.

This makes development of segmentation algorithms that are capable of handling noisy

images an active area of research. The current segmentation methods can be classified into

thresholding, region-detection, edge-detection, probabilistic and artificial neural-network clas-

sification and clustering [1–3]. Among the widely used are the hard and fuzzy-based clustering

methods since clustering needs no training examples [4–24]. Hard C-means (HCM) also called

K-means clustering algorithm is an unsupervised approach in which data is basically

partitioned based on locations and distances between various data points [4–6]. K-means

partitions the data into C-clusters so that the distances between data within each cluster are

as close as possible but as far as possible between data in different clusters. HCM clustering

algorithm offers crisp segmentation in which each data point belongs to only one cluster.

Thereby it does not take into consideration fine details of infrastructure of data such as

hybridization or mixing. Compared with HCM algorithm, fuzzy C-means (FCM) algorithm is

able to provide soft segmentation by incorporating membership of belonging described by a

membership function [7, 8]. However, one disadvantage of the standard FCM is not incorpo-

rating any spatial or local information in image context, making it very sensitive to additive

noise and other imaging artifacts. To handle this problem, different techniques have been

developed [9–13]. These techniques have involved spatial or local data information for the

enhancement and regularization of the performance of the standard FCM algorithm. Local

membership information has also been employed to generate a parameter to weight or modify

the membership function in order to give more weight to the pixel membership if the immedi-

ate neighborhood pixels are of the same cluster [14]. HCM algorithm has also been fuzzified by

involving membership entropy optimization [15–17].

In this chapter, HCM clustering algorithm is modified by incorporating local spatial data and

Kullback-Leibler (KL) membership divergence [18–22]. The local data information is incorpo-

rated via an additional weighted HCM function in which the smoothed image data is used for

the distance computation. The KL membership divergence aims at minimizing the information

distance between the membership function of each pixel and the locally smoothed one in the

pixel vicinity. The KL membership divergence thus provides an approach for regularization

and fuzzification. The chapter is organized as follows. In Section 2, clustering problem formu-

lation is overviewed. In Section 3, HCM clustering algorithm is described. In Section 4, several

FCM-related clustering algorithms are explained. In Sections 5 and 6, the proposed local

membership KL divergence-based FCM (LMKLFCM) and Local Data and membership KL

divergence-based FCM (LDMKLFCM) clustering algorithm are discussed. In Section 7, simu-

lation results of clustering and segmentation of synthetic and real-world images are presented.

Finally Section 8 presents the conclusion.

2. Problem formulation

The objective is to cluster a set of observed data xn; n ¼ 1; 2; ::;Nf g where each data point is

an M� dimensional real-vector called the feature or the pattern vector, i.e., xn ∈R1�M. For

gray-scale image data, xn; n ¼ 1; 2; ::;Nf g is a row-wise concatenation of a 2-D image
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Xpq; p ¼ 1; 2; ::;P; q ¼ 1; 2; ::;Q
� �

. That is n ¼ p� 1ð ÞQþ q and the intensity-feature xn is a

single-dimensional real-value, i.e., M ¼ 1. Clustering aims at partitioning theses N observa-

tions into C < N divisions, {μ1, μ2,…,μC} called C clusters or segments so as to make the

entities or pixels in the same cluster as similar as possible and the ones in different clusters

as dissimilar as possible. One approach to cluster these data is to minimize the within-

clusters sum of squares of distances (WCSS) and to maximize the between-clusters sum of

squares of distances (BCSS).

3. Hard C-means (HCM)

In hard C-means (HCM) algorithm also called the K-means one, the objective is to minimize

the following function [4–6, 15].

JHCM ¼
XC

i¼1

XN

n¼1
uindin (1)

where din ¼ xn � vik k2, is the square of the Euclidian distance between the nth pixel feature xn
of the image under segmentation and vi ∈V ¼ v1; v2;…; vCf g called the center of the ith cluster

given by

vi ¼

P

xn ∈μi
xn

Ni
, i ¼ 1, 2,…, C: (2)

where μi is the ith cluster label and Ni is its number of patterns in cluster i. In (2), it is clear that

the pattern xn belongs to only one cluster which means that uin ∈ 0; 1f g called the membership

function is given by [15].

ukn ¼
1; k ¼ argmini dinð Þ

0, Otherwise

�

(3)

From (3), it is obvious that the HCM provides a crisp membership function uin ∈ 0; 1f g or {False,

True}. uin ∈ 0; 1f g. Thus HCM algorithm does not take into account fine details of infrastructure

Given xn, n ¼ 1, 2,…, N:

Initialize v0i , i ¼ 1, 2, ::, C; t ¼ 0;

1. For n ¼ 1, 2,…, N

Compute:

2. din ¼ xn � vti
�

�

�

�

2
; i ¼ 1, 2,…, C:

3. k ¼ argmini dinð Þ; ukn=1; uin ¼ 0; i ¼ 1, 2, ::, C; i 6¼ k: (HCM);

uin ¼ 1

PC

j¼1

din
djn

� � 1
m�1ð Þ

(FCM)

4. Update t ¼ tþ 1; vtþ1
i ¼

P

n
uinxn

P

n
uin

, i ¼ 1, 2,…, C:

5. Check if V t � V tþ1
�

�

�

�

2
> ε (negligible change); repeat 1–5 until convergence.

Table 1. Pseudo code of the HCM (FCM) algorithms.
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such as hybridization or mixing of data which is important in data clustering and decision

making. The algorithm is implemented by an iterative procedure as summarized in Table 1.

4. Related fuzzy clustering algorithms

4.1. Conventional FCM

The fuzzy C-means (FCM) algorithm seeks to minimize the following objective function [7].

JFCM ¼
XC

i¼1

XN

n¼1
umindin (4)

It is obvious that the difference between the FCM algorithm and HCM one is the incorporation

of the exponent parameter m, called the fuzzification parameter, and if it is settled to 1, the

FCM algorithm reduces to the HCM one. Thus, due to this exponent m, the membership of the

nth pixel to the ith cluster, uin, can take on an infinite set of values from 0 to 1. Thus each nth

pixel may belong to all clusters with equal membership values of 1=C which in this case we

obtain too fuzzy membership function. Then the exponent parameter 1 < m is incorporated to

control the degrees of fuzzification; the bigger the m, the more the fuzzification. Finally, the

fuzzy membership uin should satisfy [7].

uin ∈U ¼ uin ∈ 0; 1½ �;
XC

i¼1
uin ¼ 1∀n; 0 <

XN

n¼1
uin < N∀i

n o

, (5)

The membership uin and the cluster-center vi that minimize the FCM function in (4), subject to
PC

i¼1 uin ¼ 1∀n are given by [7].

uin ¼
1

PC
j¼1

din
djn

� � 1
m�1ð Þ

(6)

vi ¼

PN
n¼1 uinxn

PN
n¼1 uin

(7)

4.2. Local spatial data-based FCM (LDFCM)

The neighboring pixels of an image are highly correlated and are thus highly expected to

belong to the same cluster or object. To get benefit from this spatial data information, the

standard FCM objective function in (4) has been modified by adding a weighted regularization

function dependent on local image data information [10–12]. That is, the LDFCM objective

function is given by

JLDFCM ¼ JFCM þ α

X

C

i¼1

X

N

n¼1

umindin (8)

where α is a weight to be experimentally selected by the user, m is a fuzzification parameter,

din ¼ xn � vik k2, xn ∈X is the nth pixel of the locally-smoothed image, X, obtained in advance
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from the original one by X ¼ w xð Þ∗∗X, where ** means two-dimensional convolution. The

weights w xð Þ can be equal or not provided that its centerweight is zero and are summed to

unity. From (8), it is clear that the LDFCM aims at minimizing the standard FCM objective

function plus another weighted modified FCM function acting as a regularization function. In

this regularization FCM function, the distances are generated from the locally-smoothed image

data instead of the original image data. Therefore, this correlates the clustering pixel xn with its

immediate spatial neighboring pixels which biases the algorithm to provide clustered images

with piecewise homogenous regions. The membership uin and the cluster-center vi functions of

the LDFCM method are given by [10–12].

uin ¼
1

PC
j¼1

dinþα din
djnþα djn

� 	 1
m�1ð Þ

(9)

vi ¼

PN
n¼1 uin xn þ αxnð Þ

1þ αð Þ
PN

n¼1 uin
(10)

It is obvious from (9) and (10) that when α ¼ 0, the membership uin and the cluster-center vi
become the ones provided by the standard FCM algorithm in (6) and (7). The advantage of the

LDFCM method arises from involving the locally-smoothed data αxn in computing the mem-

bership uin and the cluster-center vi functions which indeed can handle additive noise.

4.3. Spatial-based fuzzy C-means (SFCM)

An approach to incorporating local spatial data information into the standard FCM has been

presented in [13]. The objective function of the SFCM algorithm is given by

JSFCM ¼
X

C

i¼1

X

N

n¼1

uminDin, (11)

where Din is a modified or weighted distance between the nth pixel and the ith cluster-center.

This modified distance is computed from the original or standard distance din ¼ xn � vik k2 as

follows

Din ¼ 1� λð Þdinf in þ λdin (12)

where λ∈ 0; 1½ � is an experimentally selected weight, and f in is a spatial or local data function

given by [13].

f in ¼

P

k∈Nn
dik

min
P

k∈Nn
dik; i ¼ 1; 2; ::;C

n o (13)

It is obvious from (12) that with λ ¼ 1, the SFCM clustering method reduces to the standard

FCM method. The spatial data function f in is dependent on the original distances of the set of

pixels Nn in the immediate neighborhood of the nth pixel. If all pixels in the neighbor set do
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not belong to the ith cluster f in is maximum since the denominator is minimum while the

numerator is maximum. This implies that f in causes Din to increase when the pixels of the

immediate neighborhood of the nth pixel do not belong to the ith cluster. This increase of Din

contributes to decreasing the membership uin for achieving and preserving the minim of the

SFCM function in (11).

Themembership uin and the cluster-center vi associatedwith the SFCMmethod are given by [13].

uin ¼
1

PC
j¼1

Din

Djn

� � 1
m�1ð Þ

(14)

vi ¼

PN
n¼1 uinxn

PN
n¼1 uin

(15)

It is obvious from (14) that similar to the standard FCM, the membership uin is inversely

proportional to the weighted distance Din, which again means that, increasing Din when the

immediate neighboring pixels to the nth pixel do not belong to the ith cluster, decreases

the membership function uin. From (15), however, it is clear that the SFCM algorithm computes

the cluster-center vi in a similar way as the standard FCM method does. Hence, additive noise

can still reduce the accuracy of cluster center vi obtained by the SFCM algorithm.

4.4. HCM incorporating membership entropy

The membership entropy has been incorporated into the HCM for fuzzification. The member-

ship entropy-based FCM (MEFCM) algorithm has the following objective function [17].

JMEFCM ¼ JHCM þ β
XC

i¼1

XN

n¼1
uin log uinð Þ þ 1� uinð Þ log 1� uinð Þð Þ (16)

where β > 0 is a weight experimentally selected to control the fuzziness of the entropy term.

We still need U to be constrained to satisfy (5). It can be shown that the membership and the

cluster-center that minimize (16) are respectively given by [17]

uin ¼
1

PC
j¼1

exp din=βð Þþ1

exp djn=βð Þþ1

(17)

vi ¼

PN
n¼1 uinxn

PN
n¼1 uin

(18)

It is obvious so far that the membership function of the nth entities provided by FCM, HCM

and MEFCM algorithms depends upon the inverse of the square of the Euclidean distance

din ¼ xn � vik k2 which is a function of only xn with no data or membership information of the

clustering entity’s neighbors are involved. Hence, the FCM, HCM and MEFCM algorithms

miss important spatial local data and membership information. Thus additive noise can

degrade xn, vi and din, thereby biasing the membership of a degraded entity to a false cluster.
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5. HCM incorporating local membership KL divergence

In [18], an approach to incorporating local spatial membership information into HCM algo-

rithm has been presented. By adding Kullback-Leibler (KL) divergence between the member-

ship function of an entity and the locally-smoothed membership in the immediate spatial

neighborhood, the modified objective function, called the local membership KL divergence-

based FCM (LMKLFCM), is given by [18–22].

JLMKLFCM ¼ JHCM þ γ
XC

i¼1

XN

n¼1
uin log

uin
πin

� 	

þ
XC

i¼1

XN

n¼1
uin log

uin
πin

� 	� 	

(19)

where γ is a weighting parameter experimentally selected to control the fuzziness induced by

the second term in (19), uin ¼ 1� uin is the complement of the membership function uin, πin

and πin are the spatial local or moving averages of membership uin and the complement

membership uin, functions respectively. These local membership and membership complement

averages are computed by [18–22].

πin ¼
1

NK

X

k∈Nn; k6¼n

uik (20)

πin ¼
1

NK

X

k∈Nn; k 6¼n

1� uikð Þ ¼ 1� πin (21)

whereNn is a set of entities/pixels falling in a square window around the nth pixel andNK is its

cardinality. It is obvious that all entities in the window are weighted equally by w
uð Þ
pq ¼ 1=NK.

Other windows can be used such as Gaussian one provided that the weight of the window-

center is 0 and the rest weights are summed to unity. The first term in (19) provides hard-

cluster labeling. It pushes the membership function toward 0 or 1. The KL membership and

membership-complement divergences, in addition to providing fuzzification approach to

HCM clustering, measure the proximity between the membership of a pixel in a certain cluster

and the local average of the membership over the immediate spatial neighborhood pixels in

this cluster. So, they push the membership function to the locally smoothed membership

function πin. Therefore, this can smooth out additive noise and bias the solution to piecewise

homogenous labels which leads to a segmented image with piecewise homogenous regions.

The minimization of the objective function JLMKLFCM in (19) yields uin and vi to be given,

respectively, by [18].

uin ¼
1

P

C

j¼1

πjn 1�πinð Þexp din=γð Þþπinð Þ
1�πjnð Þexp djn=γð Þþπjn

� 	πin ¼ δinπin (22)

vi ¼

PN
n¼1 uinxn

PN
n¼1 uin

(23)

Incorporating Local Data and KL Membership Divergence into Hard C-Means Clustering for Fuzzy and Noise-Robust…
http://dx.doi.org/10.5772/intechopen.74514

41



It is obvious from (22) that uin is proportional to πin and the proportional parameter δin is

inversely proportional to the entity’s distance din and the maximum δkn occurs when dkn ¼ 0.

It is clear that if γ ! ∞, uin ¼ πin=
PC

j¼1 πjn. Therefore, the resultant membership is indepen-

dent of the data to be clustered but dependent on the initial value of the membership matrixU0

and on the smoothing fashion. If u0in is generated from a random process greater than zero,

then utin versus the number of iteration t converges, because of recursive averaging and normal-

izing, to a normal distribution variable with mean equal to 1
C ¼ E utin

� �

¼ E πinf g=
PC

j¼1 E πjn

� �

which, in this case, means too much fuzzy membership function. This has been proved exper-

imentally by using a synthetic image of 4 clusters and γ ¼ 1010: Finally, as shown by (23), the

computation of the cluster-center vi is still independent of the local original data.

6. HCM incorporating local data and membership KL divergence

To incorporate local spatial data into the LMKLFCM objective function in (19), the following

objective function has been proposed in [18].

JLDMKLFCM ¼
PC

i¼1

PN
n¼1 uin din þ αdin


 �

þ

γ
PC

i¼1

PN
n¼1 uin log

uin
πin

� 	

þ
PC

i¼1

PN
n¼1 uin log

uin
πin

� 	� 	

(24)

Therefore, similar to (22) and (23), the membership function uin and the cluster-center vi are,

respectively, given by [18].

uin ¼
1

P

C

j¼1

πjn 1�πinð Þexp dinþαdinð Þ=γð Þþπinð Þ
1�πjnð Þexp dinþαdinð Þ=γð Þþπjnð Þ

� 	πin (25)

vi ¼

PN
n¼1 uin xn þ αxnð Þ

1þ αð Þ
PN

n¼1 uin
(26)

It is obvious that the LDMKLFCM algorithm in (24)–(26) provides a membership that depends

upon the local spatial data and membership information while the cluster center is dependent

upon the locally-smoothed data. Thus the algorithm has twofold approach to handle additive

noise.

7. Simulation results

This simulation aims at examining the performance of the conventional FCM, the member-

ship entropy-based FCM (MEFCM), the spatial distance weighted FCM (SFCM), the local

membership KL divergence-based FCM (LMKLFCM) and the local data and membership KL
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divergence-based FCM (LDMKLFCM) algorithms. It is to be noticed that all the algorithms

can be implemented almost similar to the pseudo code in Table 1 by replacing the steps 3 and 4

by the corresponding computation of the membership function and cluster centers of each

algorithm.

7.1. Clustering validity

To measure the performance of the fuzzy clustering algorithms, several quantitative measures

or indices have been adopted in [23, 25] and references therein. Few of these measures are the

partition coefficient VPC and the partition entropy VPE index of Bezdek and Xie-Beni (XB

index) VXB, given respectively by

VPC ¼
1

N

XN

n¼1

XC

i¼1
uin (27)

VPE ¼ �
1

N

XN

n¼1

XC

i¼1
uin log uinð Þ (28)

The closer of the VPC to 1, the better the performance since the minimization is constrained by
PC

i¼1 uin ¼ 1: The closer the VPE to 0, the better the performance since this means the less

fuzziness of the membership and thus clusters are well-separated.

In synthetic images, in addition to the above clustering validity measures, several clustering

validity and performance measures have also been used such as the accuracy, sensitivity and

specificity given respectively by

Acc: ¼ TPþ TNð Þ= TPþ TN þ FPþ FNð Þ (29)

Sen: ¼ TP= TPþ TNð Þ (30)

Spe: ¼ TN= TN þ FNð Þ (31)

where T, F, P, and N are mean true, false, positive, and negative, respectively. The TP, FP, TN,

and FN are computed as follows. While generating the synthetic image, the ground truth labels

are formulated as the logical matrix given by [23].

Lin ¼
1; if xn ∈ i

0; otherwise
; i ¼ 1, 2,…, C, n ¼ 1, 2, ::, N:

�
(32)

where xn is the noise-free pixel in the synthetic image and 1 and 0 represent True and False,

respectively. After the segmentation is done, the estimated labels are also formulated as logical

matrices generated by [20].

bLkn ¼
1; k ¼ argmaxi uinð Þ

0; otherwise
; i ¼ 1, 2,…, C, n ¼ 1, 2, ::, N:

�
(33)

Finally, the TP, TN, FP, and FN are given by [20].
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TP ¼

PC

i¼1

PN

n¼1
bL
in
Lin; TN ¼

PC

i¼1

PN

n¼1
bL
in
Lin

FP ¼

PC

i¼1

PN

n¼1
bL
in
Lin; FN ¼

PC

i¼1

PN

n¼1
bL
in
Lin

(34)

where “__” means the logical complement.

7.2. Artificial image

In this simulation, the artificial or synthetic noise-free image shown in Figure 1(a) is degraded

by adding zero-mean white Gaussian noise (WGN) with different variances. The noisy image

Figure 1. Clustering of the synthetic image: (a), noise free-image; (b), the noise-free image plus zero-mean and 0.08

variance WGN; (c) FCM; (d), MEFCM; (e), SFCM; (f), LMKLFCM; (g), LDMKLFCM. It is evident that the clustered images

in (f) and (g) have lesser number of misclassified pixels which means that noisy pixels are rightly clustered. Clustering

validation measures are summarized in Table 2.
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shown in Figure 1(b) is for 0.08 noise variance. We have studied the performance of the five

algorithms, namely, the standard FCM, the membership entropy-based FCM (MEFCM), the

spatial distance weighted FCM (SFCM), the local membership KLFCM (LMKLFCM) and the

local data and membership KLFCM (LDMKLFCM) algorithms in segmenting these noisy

images with m ¼ 2 and C ¼ 4. The parameters for the algorithms have been elected via

simulation as β ¼ 1000 for MEFCM; λ ¼ 0:5 for SFCM; γ ¼ 1000 for LMKLFCM; and

γ ¼ 1000 and α ¼ 0:5 for LDMKLFCM. For the computation of the locally smoothed data xn,

a neighboring window of size 3x3 has been used. Also, the same spatial window has been used

for the computation of the locally-smoothed membership function πin. The initial values of the

membership functions U and the cluster-centers V are generated from a uniformly distributed

random process with means 0.5 and equal to the image mean, respectively. We have collected

results from 25 Monte Carlo runs of each algorithm. In each run, the initial values of U and V

of the FCM are new random samples while the ones of the rest algorithms are generated by

executing few number of iterations of the FCM algorithm. Simulation results, not included for

space limitation, have shown that the algorithms provide further improvement with these

initial values generated by the FCM algorithm than those randomly generated. Also, in each

run, a new random sample of WGN is used in generating the noisy images. Figure 1(c–g) show

the clustered images generated by the five algorithms in the case of 0.08 noise variance. These

clustered images show that the LMKLFCM and the LDMKLEFCM algorithms provide the

ones with lesser noise which means lesser number of misclassified pixels. Moreover, the

LDMKLFCM algorithm offers the superior clustered image. Table 2 summarizes the averages

and standard deviations (μ� σ) of the performance measures. The LMKLFCM and

LDMKLFCM show the maximum VPC and the minimum VPE. The averages of the accuracy,

sensitivity and the specificity performance measures of the five algorithms have been studied

Algorithm Images VPC VPE

FCM Synthetic

Simulated MR

Real MR

Lena

0.8105 �0.0007

0.7921 �0.0011

0.8930 �0.0140

0.8286 �0.0004

0.3517 � 0.0012

0.3986 � 0.0020

0.1998 � 0.0240

0.2824 � 0.0006

SFCM Synthetic

Simulated MR

Real MR

Lena

0.8370 � 0.0010

0.8674 � 0.0009

0.9204 � 0.0006

0.8936 � 0.0006

0.3017 � 0.0017

0.2409 � 0.0014

0.1440 � 0.0012

0.1786 � 0.0009

MEFCM Synthetic

Simulated MR

Real MR

Lena

0.8616 � 0.0012

0.8873 � 0.0012

0.9602 � 0.0113

0.9268 � 0.0004

0.2271 � 0.0019

0.1841 � 0.0018

0.0650 � 0.0183

0.1198 � 0.0007

LMKLFCM Synthetic

Simulated MR

Real MR

Lena

0.9853 � 0.0011

0.8958 � 0.0088

0.9625 � 0.0087

0.9609 � 0.0012

0.0270 � 0.0028

0.1721 � 0.0146

0.0441 � 0.0128

0.0643 � 0.0020

LDMKLFCM Synthetic

Simulated MR

Real MR

Lena

0.9874 � 0.0011

0.9234 � 0.0030

0.9519 � 0.0016

0.9730 � 0.0026

0.0227 � 0.0022

0.1258 � 0.0049

0.0604 � 0.0025

0.0446 � 0.0026

Table 2. Clustering validation measures for synthetic and real-world images.

Incorporating Local Data and KL Membership Divergence into Hard C-Means Clustering for Fuzzy and Noise-Robust…
http://dx.doi.org/10.5772/intechopen.74514

45



Figure 2. The average versus noise variance of accuracy, (a); sensitivity, (b); and specificity, (c); ⊳, FCM; þ, MEFCM;

SFCM; LMKLFCM; LDMKLFCM. The proposed LMKLFCM and LDMKLFCM algorithms provide the superior perfor-

mance among the five algorithms. The LDMKLFCM algorithm shows more noise-robust capability.
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against noise variance. Figure 2 shows these measures versus noise variance. It is clear that

both the LMKLFCM and the LDMKLFCM algorithms provide the superior performance

among the five algorithms and the LDMKLFCM algorithm shows more noise-robustness.

7.3. Magnetic resonance image (MRI)

A simulated MRI of [26], illustrated by Figure 3(a), has been used as a noise-free image. It has

been degraded by adding white Gaussian noise (WGN) with zero-mean and 0.005 variance to

Figure 3. Clustering of simulated MRI: (a), noise-free MRI; (b), the MRI in (a) plus zero-mean WGN with 0.005 variance.

Segmented images by: (c), FCM; (d), MEFCM; (e), SFCM; (f), LMKLFCM (g), LDMKLFCM. Obviously, the segmented

images in (f) and (g) provided by the LMKLFCM and the LDMRKLCM algorithms, respectively, have lesser noise which

means that the noisy pixels are correctly clustered. The clustering validation measures summarized in Table 2 show that

the LMRKlCM; and LDMKLFCM provide the maximum VPC and the minimum VPE.
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generate the noisy MRI illustrated by Figure 3(b). This noisy MRI image has been clustered by

the five algorithms. The parameters for all algorithms have been taken similar to the ones of

the synthetic image simulation except, for the MEFCM algorithm, β ¼ 200 and, for both

LMKLFCM and LDMKLFCM algorithms, γ ¼ 1000: We have also executed 25 runs of each

algorithm. The initial values of uin and vi have been generated and adjusted as explained in the

synthetic image simulation. Figure 3(c–g) shows the resulting clustered images provided by

the five algorithms in a certain run. Table 2 shows the averages and standard deviations

(μ� σ) of the performance measures VPC and VPE of the five algorithms. It obvious that the

LMKLFCM and LDMKLFCM provide the segmented images with lesser noise or lesser num-

ber of misclassified pixels, the maximum VPC and the minimum VPE.

A real MRI from [27], shown in Figure 4(a), has been considered as a noise-free image. To

generate the noisy MRI shown in Figure 4(b), salt & pepper noise with 0.050 variance have

Figure 4. Clustering of real MRI example: (a), noise-free real MRI; (b), the image in (a) plus salt&pepper with 0.05

variance. Segmented images by: (c), FCM; (d), MEFCM; (e), SFCM; (f), LMKLFCM (g), LDMKLFCM. Clearly, the

segmented images in (f) and (g) generated by the LMKLFCM and the LDMRKLCM algorithms, respectively, have lesser

noise. The clustering validation coefficients summarized in Table 2 show that the LMRKlCM; and LDMKLFCM provide

the maximum VPC and the minimum VPE.
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been added. The noisy MRI has been clustered by the FCM, SFCM, MEFCM, LMKLCM and

the LDMKLFCM algorithms. The parameters for all algorithms have been taken similar to the

ones of the synthetic image simulation except, for the MEFCM algorithm, β ¼ 300 and, for both

the LMKLFCM and LDMKLFCM algorithms, γ ¼ 800: We have also obtained the results of 25

runs of each algorithm. The initial values of uin and vi have been generated and adjusted as

Figure 5. Segmentation of Lena image: (a), noise-free image; (b), the image in (a) plus WGN noise with zero-mean and

0.05 variance. It is obvious that the images in (f) and (g) have lesser number of misclassified pixels. The clustering

validation coefficients summarized in Table 2which shows that the LMKLFCM and the LDMKLFCM algorithms provide

the superior VPC and VPE.
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mentioned in the synthetic image simulation. Figure 4(c–g) show the segmented images

provided by the five algorithms in a certain run while Table 2 summarizes the averages and

standard deviations (μ� σ) of the performance measures. It is obvious that the proposed

LMKLFCM and LDMKLFCM algorithms provide the segmented images with lesser noise or

lesser number of misclassified pixels, the maximum VPC and the minimum VPE.

7.4. Lena image

A popular Lena image shown in Figure 5(a) has been considered as a noise-free image

example. The noisy Lena image shown in Figure 5(b) has been generated by adding WGN

noise with zero-mean and 0.01 variance. The parameters of the five algorithms have been

adjusted to the values similar to the ones used in the previous simulations except C ¼ 2;

β ¼ 1000 for the MEFCM algorithm; γ ¼ 2000 for the LMREFCM and γ ¼ 2000 and α ¼ 0:5

for the LDMREFCM algorithms. We have also executed 25 Mont Carlo Runs of each algorithm

as explained above. Figure 5(c–g) shows the resulting segmented images obtained by the five

algorithms. Visually investigation of the segmented images shows that the LMKLFCM and

LDMKLFCM algorithms provide the images with lesser number of misclassified pixels.

Table 2 shows the average and standard deviation (μ� σ) of the performance measures of

the five algorithms. It is also clear that the two algorithms provide the maximum VPC and the

minimum VPE.

8. Conclusions

The hard C-means algorithm has been fuzzified by incorporating into the objective function

spatial local information through two KL membership divergences. The first KL membership

divergence measures the information proximity between the membership of each pixel and its

local membership average in the pixel neighborhood. The second one measures the informa-

tion proximity between the complement membership and its local membership average in the

pixel neighborhood. For regularization, the local data information has been incorporated by an

additional new weighted hard C-means function in which the noisy-image is replaced by a

noise-reduced one. Such incorporation of both local data and local membership information

facilitates biasing the algorithm to classify each pixel in correlation with its immediate neigh-

boring pixels. Results of segmentation of synthetic, simulated medical and real-world images

have shown that the proposed local membership KL divergence-based FCM (LMKLFCM) and

the local data and membership KL divergence-based entropy FCM (LDMKLFCM) algorithms

outperform several widely used FCM related algorithms. Moreover, the average runtimes of

all algorithms have been measured via simulation. In all runs, all algorithms start from the

same randomly generated initial conditions, as mentioned in the simulation section, and

stopped at the same fixed point. The LDMKLFCM, LMKLFCM, standard FCM, MEFCM, and

SFCM algorithms have provided average runtime of 1.5, 1.75, 1, 0.9 and 1 sec respectively. The

simulation results have been done using Matlab R2013b under windows on a processor of Intel

(R) core (TM) i3, CPU M370 2.4 GHZ, 4 GB RAM.
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