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Abstract

Energy scaling of femtosecond laser pulses has a lot of applications in nanoscale
micromachining, precision time-resolution spectroscopy, high-harmonic generation,
surgery, etc. Besides applied sciences and technology, there are fundamental applica-
tions of energy harvesting at femtosecond scale. In particular, it is possible to study
and control intra-atom and molecular dynamics at attosecond level as well as to map
the quantum processes directly with unprecedented spatial and temporal resolution.
This “mesoscopic” union of classical and quantum phenomena provides with new
insights into fundamental issues of quantum mechanics of open systems including
possible application in the field of quantum computing. In this work, we consider a
theory of femtosecond pulse energy harvesting using the dissipative soliton generation
in both solid-state and fiber mode-locked lasers and the femtosecond pulse enhance-
ment in an external resonator. The femtosecond pulse energy, width, and spectrum
scaling laws are presented in the explicit and physically meaningful form.

Keywords: mode-locked laser, dissipative soliton, external enhancement resonator,
femtosecond pulse energy scaling, spectral extra-broadening

1. Introduction

In the last decades, the breakthrough in the energy scalability of femtosecond laser pulses has

been achieved that bring high-energy physics on tabletops of a mid-level university lab [1, 2].

As a result, the intensities of � 1015 W/cm2 become available directly from a mode-locked

thin-disk laser oscillator operating at an over-MHz repetition rate [3–8]. Such systems are

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



considerably more simple, functional and economical than classical chirped-pulse amplifiers

(of course, at the ~GW-pulse power level) [9, 10]. Moreover, a high repetition rate provides the

signal/noise ratio improvement of 103 � 104 in comparison with an ordinary kHz chirped

pulse amplifier. In practice, such oscillators are of interest for direct gas ionization and high-

harmonic generation [11, 12], pump-probe diffraction experiments with electrons [13] and

fabrication of fine structures in transparent and semi-transparent materials [14], characteriza-

tion and control of the electronic dynamics, metrology and ultra-sensitive spectroscopy,

biophotonics and biomedicine, etc. [2, 15, 16].

The phenomenon of ultrashort pulse energy harvesting exceeds the limits of immediate laser-

based applications and is involved in a much broader context of formation and control of

macroscopic coherent structures [17]. The high-energy ultrafast lasers become an excellent tool

for testing the fundamental problems of self-organization and nonlinear dynamics far from

thermodynamic equilibrium which cover the area ranging from hydrodynamics to condensed

matter physics and even biology and sociology [18–20]. Such an approach based on the

transfer of issue of complicate dynamics to another simpler material context can be named

“metaphoric” or “analog” modeling [21, 22] and successes due to high controllability, relative

simplicity, and unique potential of statistic gathering inherent in lasers systems [1].

The idea of energy E harvesting is based on an elementar relation: E ¼ PavTres, where Pav is an

average power in a resonator with an effective period Tres. Scaling of Pav and/or Tres would

provide the scaling of ultrashort pulse energy on condition that a stable ultrashort pulse emerges

spontaneously (so-called, mode-locking self-start condition) in a laser system. As will be shown,

these conditions are highly non-trivial for energy-scalable lasers and can limit substantially the

pulse energy and its width. Two main approaches to the energy harvesting at femtosecond

scale will be considered in this work.

The first one is based on the unique capacity of laser dissipative solitons (DS) [17, 23] to

accumulate an energy without loss of stability [24, 25]. Some basic approaches to study of the

energy-scaling laws for such systems will be presented, and the limits of energy and pulse

width scalability will be outlined.

The second approach is based on the energy storing in an external high-Q resonator (so-called

enhancement resonator, ER) coupled synchronously with a femtosecond pulse oscillator [26–28].

This simple idea faces difficulties when it is realized on a femtosecond scale because nonlinear

effects and group-delay dispersion (GDD) tend to destroy a synchronization between a laser

and ER. These issues will be outlined, and some modifications of ER technique will be pro-

posed.

2. DS energy scaling

The DS energy and width scaling are connected closely with a duality between amplification of

the maximum number of laser modes and simultaneous spectral condensation, i.e., the concentration
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of energy within the strongly confined spectral region. It is important that all excited and

amplified modes must be phase-synchronized, i.e., coherent.

In a trivial model of laser, there exists a set of N�longitudinal resonator modes which are

separated by the frequency interval of δω ¼ 2π=Tres and excited by a gain medium with the

gain-bandwidth Ω: N � Ω=δω [29]. These modes are mutually phase-independent and inco-

herent, and a result of their interference A ¼
PN=2

n¼�N=2 ai cos ω0 þ nδωð Þtþ nδϕ
� �

is the irregu-

lar field beatings with the width of separated spikes � 1=Nδω ¼ 1=Ω (Figure 1(a); the inter-

mode phase difference δϕ is random). However, a fixed inter-mode phase difference results in

regular spikes of the � 1=Ω width with the peak power � N2 and the repetition-period ¼ Tres

(Figure 1(b)) [30]. The last phenomenon is called mode-locking (ML) and underlies a coherent

energy condensation within short-time intervals. Respectively, the spectral width of each spike

tends to ΔΩ.

However, this simple scheme faces many complications. Well, to be precise, a gain-band is not

uniform (bell-shape like) and a mode, which is closest to a frequency ω0 at gain maximum, has

maximum amplification. Since laser gain is energy-saturable, this mode concentrates all energy

and suppresses the competitive modes. This is a mode selection process. Therefore, a multimode

generation leading to ultrashort pulse formation is not a genuine but emergent phenomenon

which requires a multimode instability.

There are several possible mechanisms for such instability [31] which are closely connected

with the issue of the ML self-start. Existing theories of the ML self-start predict a lot of effects

involved in a laser pulse formation including mode-beatings [32, 33] and hole burning,

induced refractive grating in an active medium [34], dynamic gain saturation [33, 35],

parasitic reflections and absorption in a resonator [36], continuous-wave instability [37, 38]

and Risken-Nummedal-Graham-Haken effect [39]. The thermodynamic theory of ML self-start

has been developed, and it has been shown that the pulse appearance is a first-order phase

transition, which is affected strongly by the laser noises distributed over a whole resonator

period [40–42]. In any case, a stable ML requires whether a nonlinear resonant excitation by

Figure 1. Interference of phase uncoupled (a) and locked (b) modes (N ¼ 20) [30].
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external periodic “force” (active mode-locking)1 or a mutual mode coupling through an optical

nonlinearity (passive mode-locking). The excitation of harmonics at �nδω couples and syn-

chronizes the adjacent modes and provides their phase-locking.

The mechanisms of ML are beyond the scopes of this work, and we will focus on the principles

of the sustained ML energy-scalable regimes at femtosecond scale. The basic principle under

consideration is to exploit DS [23] which is extremely stable in nonequilibrium dissipative

environment [24, 25]. Since DS behaves like a soliton of integrable systems [17, 44], its dynam-

ics can be described by some distributed nonlinear model. The most famous and studied one is

based on the complex nonlinear Ginzburg-Landau equation which can be treated as a dissipa-

tive extension of the nonlinear Schrödinger equation [45].2

A very productive approach to the study of this class of equations is based on the so-called

variational approximation (VA) [49–51]. The non-dissipative effects can be described by the

Lagrangian density:

L ¼
i

2
a∗ z; tð Þ∂za z; tð Þ � a z; tð Þ∂za

∗ z; tð Þð Þ �
1

2
γ a z; tð Þj j4 þ

β2
2
∂ta z; tð Þ∂ta

∗ z; tð Þ, (1)

where a z; tð Þ is a complex slowly varying field amplitude, t and z are local time and propaga-

tion distance, respectively, γ is a self-phase modulation (SPM) coefficient and β2 is a group-

delay dispersion (GDD) coefficient. The Euler-Lagrange equation corresponding to Eq. (1) is

the nonlinear Schrödinger equation:

i∂za z; tð Þ ¼
β2
2
∂t, ta z; tð Þ þ γ a z; tð Þj j2a z; tð Þ: (2)

Further, two different types of DS will be considered: (i) chirped-free

a z; tð Þ ¼ α zð Þsech t=T zð Þð Þexp iϕ zð Þ
� �

, (3)

and (ii) chirped pulses

a z; tð Þ ¼ α zð Þsech t=T zð Þð Þ1þiψ zð Þexp iϕ zð Þ
� �

, (4)

where α, Τ, ψ and ϕ are DS amplitude, width, chirp, and phase-delay, respectively.

2.1. Chirped-free DS

VA in action looks like following. Substitution of the trial solution (3) into (1) with the subse-

quent integration over t results in the reduced Euler-Lagrange equations [52]:

1

This phenomenon is closely related to the concept of stochastic resonance which describes processes of resonant coherence

enhancement in a noisy periodically driven system [43].
2

Different versions of this equation describe an extremely broad area of phenomena ranging from laser dynamics [17, 46, 47],

oscillatory chemical reactions [22] to Bose-Einstein condensations and biological systems [48].
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4γα2 þ 6∂zϕ ¼ β2=T
2, (5)

β2=T
2 þ 2 γα2 þ 3∂zϕ

� �

¼ 0, (6)

2α2
∂zT þ 4Tα∂zα ¼ 0: (7)

Eq. (7) is the energy conservation law, and Eqs. (5) and (6) give the parameters of Schrödinger

soliton if ∂zT ¼ 0, ∂zα ¼ 0:

αT ¼
ffiffiffiffiffiffiffiffiffiffi

β2=γ
q

, q � �∂zϕ ¼ β2
2T2

, (8)

where the first expression is the soliton area theorem, and the last one defines the soliton wave-

number q.

2.1.1. Perfectly saturable absorber

The effect of dissipative factors can be taken into account using the Ritz-Kantorovich method

[51–54] when the reduced Euler-Lagrange equations are driven by a dissipative “source” [52]:

d

dz

∂
Ð

Ldt

∂ bið Þz
� ∂

Ð

Ldt

∂bi
¼ 2Re

ð

Q
∂a∗

∂bi
dt,

Q ¼ �iΓaþ ir aþ τ∂t, tað Þ
1þ σ

Ð

aj j2dt
þ iμζ aj j2a
1þ ζ aj j2

:

(9)

Here the reduced Lagrangian
Ð

Ldt is calculated using a trial function (i.e., Eq. (3)) with the

parameters bi ¼ α;T;ϕ
� �

. The dissipative factors are defined by a net-loss with the coefficient

Γ, a small-signal gain r with the inverse saturation energy σ and a squared inverse gain

bandwidth τ. The self-amplitude modulation (SAM) providing ML is described by an effective

“perfectly saturable absorber” [24] with the modulation depth μ, and the inverse saturation

power ζ.

A solution obtained from Eqs. (3) and (9) gives the expressions for area theorem and phase

delay corresponding to the Schrödinger soliton. But the DS amplitude is defined by dissipative

factors [52]:

μ log 1þα2�α
ffiffiffiffiffiffiffiffi

1þα2
p

1þα2þα
ffiffiffiffiffiffiffiffi

1þα2
p

	 


α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α2
p þ 2 Σþ μ

� �

� 2

3
Cα2 ¼ 0, (10)

where Σ ¼ r

1þ2α2Tσ
� Γ, C ¼ rτγ

β2ζ
1þ 2α2Tσ
� ��1

: The peak power α2 in Eq. (10) is normalized to ζ.

It is convenient to assume that a laser operates in the vicinity of a threshold in steady-state

regime: r

1þ2α2Tσ
≈Γ and Σ ≈ 0, C ≈

Γτγ
β2 ζ

.
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The marginal stability condition Σ ¼ 0 defines a stability of DS against continuous-wave or

multiple pulse generation [30, 55], and the DS approaching this stability threshold has a

minimum width and a best asymptotical energy scalability (E ¼ 2α2Tζ=
ffiffiffiffiffiffi

τΓ
p

≫ 1) [52]:

C ! const�
ffiffiffiffiffiffiffiffiffi

μτΓ
p

=Eζ, E ! const�
β2
γ

ffiffiffiffiffiffi

μ

τΓ

r

,

α2 ! const
2

� �2 μβ2
τΓγ

, T !
2

const

ffiffiffiffiffiffi

τΓ

μ

s

, const ≈ 3:535:

(11)

These scaling laws demonstrate main principles of chirped-free pulse energy harvesting. Of

course, these dependencies can be considered as only qualitative ones. Nevertheless, they

demonstrate that the asymptotic DS energy scales ∝ β2, and the minimum pulse width is

defined by not only the medium gain bandwidth ∝ 1=
ffiffiffi

τ
p

but the net-loss Γ and the modula-

tion depth μ, as well (Figure 2).

Thus, the pulse can be squeezed by scaling of modulation depth with a parallel decrease of the

stabilizing dispersion. Additional pulse shortening can be provided by net-loss lowering (see

Figure 2). These tendencies are quite reasonable because the selective spectral properties of an

active medium are defined by not the gain for a small signal but by the saturated gain ≈Γ near

the pulse stability threshold (i.e., since no gain, no gain induced spectral selection). Simulta-

neously, the modulation depth defines an inter-mode coupling strength that favors ML and,

thereby, pulse spectrum broadening with μ-growth.

Eqs. (8) and (10) demonstrate that an approach to the threshold C (Σ ! 0) as well as a higher

E∝ ζ=
ffiffiffi

τ
p

minimize the pulse width T (Figure 3).

Figure 2. Dependence of the asymptotic full width at half maximum (FWHM) TFWHM on the modulation depth μ for

different net-loss coefficients Γ. The gain bandwidth of 5.3 THz corresponds to a Yb: YAG thin-disk active medium.
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Properties of DS are described by the so-called master diagram [24] which represents the DS

parametric space and is shown in Figure 4(a). There are two DS-solutions of Eqs. (1), (3), (9)

and (10): (i) upper branch (i.e., the branch with the larger C for fixed E and Σ, see Figure 4(a))

corresponds to the above considered energy-scalable DS. The energy scalability for this type of

soliton is accompanied by minimization of its width (Figures 3 and 4(b); i.e., lim
E!∞,Σ!0

T ¼

2
const

ffiffiffiffiffi

τ Γ
μ

q

, see Eq. (11)) and, respectively, by the growth of peak power. Namely, this branch

has a threshold of marginal stability Σ = 0 (Figure 4(a); curve 1). (ii) lower branch (Figure 4

(a)) corresponds to a DS energy scalability provided by its width growth (Figure 4(b);

lim
E!∞,Σ<0

T ¼ ∞). Thus, this DS branch is unpractical for energy scaling because the broad

chirp-free pulse would require an additional nonlinear mechanism for external compression.

One can name this branch as energy-unscalable.

A fundamental property of the DS solutions presented is their stability. The Vakhitov-

Kolokolov stability criterion dE=dq > 0 [56, 57] demonstrates the stability of both branches of

DS (see Eq. (8)):

Figure 3. Dependence of the normalized TFWHM on Σ (a) for μ = 0.05 (1), 0.1 (2), 0.15 (3), C ¼ 0:01; and on the normalized

energy E (b) for μ = 0.05, Σ = 0.

Figure 4. Master diagram (a) and the corresponding DS widths (b). Σ = 0 (1), �0.01 (2), and �0.02 (3), μ = 0.05.
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dE

dq
¼

d

dq
2α2T
� �

¼
d

dq
2

ffiffiffiffiffiffiffiffiffi

2β2q
p

=γ
� �

¼

ffiffiffiffiffiffiffiffiffiffiffiffi

2β2=q
p

γ
> 0: (12)

It means physically that an energy scalability of DS does not suffer from soliton collapse and

both DS branches are feasible.

As was mentioned above, the net-gain Σ is energy-dependent, and such a dependence has to

be taken into account. In the neighborhood of the laser threshold where Σ Eð Þ ≈ 0, one may

expand the net-gain coefficient near a threshold energy Ξ ¼ σ�1
r=Γ� 1ð Þ:

Σ ¼
d

dE

r

1þ σE
� Γ

� �







E¼Ξ

þO
d2

dE2

� �

≈ δ
E

Ξ
� 1

� �

, (13)

where δ ¼ �Γ
2
Ξσ=r

Figure 5(a) shows the DS dependence on the threshold energy for a fixed control parameter C

in the presence of gain saturation. DS squeezes with energy, and such a squeezing is confined

by the stability criterion Σ < 0. Simultaneously, Σ decreases from 0 with energy (Figure 5(b)),

that corresponds to the “energy unscalable” DS, with the subsequent growth up to 0, that

corresponds to the “energy scalable” DS. Thus, there is not a “switch” between two different

types of DS in a real-world laser system which behaves quite smoothly with energy.

2.1.2. Cubic-quintic SAM

Physically, this type of SAM describes approximately an action of nonlinear polarization

rotation, which is a typical ML mechanism for fiber lasers, or a so-called “soft aperture” Kerr-

lens ML typical for solid-state lasers [24, 25]. In this case, loss saturation switches to the loss

growth at α2 ¼ 1=2ζ and

Q ¼ �iΓaþ
ir aþ τ∂t, tað Þ

1þ σ
Ð

aj j2dt
þ iκ 1� ζ aj j2

	 


aj j2a: (14)

The κ-parameter plays a role of the inverse loss saturation power, and the modulation depth is

μ ¼ κ=4ζ.

Figure 5. The dimensionless DS widths (a) and the corresponding net-gain (b) in dependence on the threshold energy Ξ

for δ = �0.05, C = 10�3 (1); δ = �0.5, C = 10�3 (2); and δ = �0.05, C = 10�2 (3). μ = 0.07.
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The solutions for T and q correspond to Eq. (8), but the two-branch solution for DS peak power

can be expressed in an explicit form:

α2 ¼
5

16
2� C∓

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2� Cð Þ2 þ 96ζΣ=5κ

q

� �

(15)

(power, time and energy are normalized to ζ,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κ=ζτΓ
p

and
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

κζ=τΓ
p

, respectively, and

C ¼ τΓγ=β2κ). These branches are separated by the energy curve E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5 2� Cð Þ=C
p

=2 (curve 1

in Figure 6), and are shown in Figure 6.

The asymptotic scaling laws for this type of SAM are:

C !
5τΓ

4μζ2E2
, E !

ffiffiffiffiffiffiffiffiffiffiffiffiffi

20μβ2
κγ

s

¼

ffiffiffiffiffiffiffi

5β2
ζγ

s

,

α2 !
5μ

κ
, T !

ffiffiffiffiffiffiffiffiffi

κβ2
5γμ

s

:

(16)

One can see that the energy scaling is provided by the DS width (not power) scaling that is a

natural consequence of the peak power confinement α2 ¼ 1=2ζ imposed by a SAM saturation3.

Both branches behave quite congruently in this case (Figure 6).

2.1.3. Energy harvesting of the chirp-free DS at femtosecond scale

Most promising devices realizing the femtosecond-pulse energy scalability are thin-disk solid-

state lasers [5, 6, 24, 58] which provide an excellent average power scaling and controllable

nonlinear effects limiting the energy scalability in fiber oscillators [25]. Nevertheless, there are

some main obstacles for further energy harvesting at femtosecond scale for such a type of

Figure 6. Master diagram for the chirp-free DS and the cubic-quintic SAM. Curve 1 divides two different branches of DS.

The upper line E ¼
ffiffiffiffiffiffiffiffiffi

5=C
p

corresponds to asymptotical energy scaling law.

3

In the case of perfectly saturable SAM, the confinement is imposed by spectral dissipation (i.e., the DS width but not

power is confined; see Eq. (11)).
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devices. (i) a traditional ML mechanism uses the structured semiconductor devices (so-called

semiconductor saturable absorber mirrors, SESAM) which (α) have a slow (~100 fs) response time;

(β) a complicated and hardly-controllable kinematics including higher-order nonlinear effects,

non-saturable losses, temperature and radiational damage, etc.; (γ) SAM and SPM effects are

decoupled for this type of ML that requires growth of GDD for DS stabilization in accordance

with the area theorem (Eq. (8)). (ii) As was shown (Eq. (11)), the minimum pulse width is

∝

ffiffiffiffiffiffiffiffiffiffiffiffi

τΓ=μ
p

so that using the media with the broader gain band would provide a pulse shorten-

ing down to sub-100 fs [59]. However, such media with good optical quality are not widely

available and technologically advanced.

Nevertheless, an alternative approach to energy scalability of femtosecond pulses has been

demonstrated in [7]. (i) ML mechanism can be provided by an instantaneous self-focusing

(Kerr-lensing) induced by a set of nonlinear crystals inside a laser resonator. (ii) Such a

mechanism combines both SAM and SPM that enhances the SAM parameters (μ and ζ) in

parallel with the SPM one (γ, see Eq. (11)). As a result, the GDD value can be reduced in

parallel with the DS shortening in agreement with the area theorem. (iii) A real-world gain

band profile is Lorentzian, not Gaussian as in Eqs. (9) and (14).

The Lorentzian gain profile can be taken into account by using the numerical simulations of

the generalized complex nonlinear Ginzburg-Landau equation [60, 61]:

∂za ¼ �Γaþ μζ aj j2

1þ ζ aj j2
a� i

β2
2
∂t, taþ γ aj j2a

� �

þ rΩ

2 1þ σ
Ð

aj j2dt
	 


ð

t

�∞

a z; t
0

	 


exp �Ω t� t
0

	 
h i

dt
0
, (17)

where a characteristic gain bandwidth is Ω∝ 1=
ffiffiffi

τ
p

.

As was shown in [60], the Lorentzian gain profile gives more efficient amplification and

broader spectrum than the Gaussian one. Additionally, an inherent gain dispersion shifts the

DS spectrum and affects its shape [62]. The numerically obtained pulse spectra for different

modulation depths are shown in Figure 7. One can see a pronounced spectrum broadening

and, correspondingly, pulse shortening with the modulation depth growth.

The dependences of minimum DS width and corresponding stabilizing GDD on the modu-

lation depth for different values of the SAM saturation power ζ are shown in Figure 8. One

can see that the DS shortens with μ in qualitative agreement with the analytical results

presented above. Simultaneously, the DS spectrum is noticeably broader than the gain band

that provides a generation of sub-50 fs pulses at the MW peak power level directly from an

oscillator. Since a pulse is chirp-free, the threshold stabilizing anomalous GDD decreases, as

well, in agreement with the soliton area theorem. Simultaneously, there is the nonmonotonic

dependence of DS width on the SAM parameter ζ so that T decreases initially and then

increases with the ζ-decrease, i.e., with the saturation power growth. The growth of satura-

tion power (ζ-decrease) causes a threshold-like increase of pulse width and stabilizing GDD

for small modulation depths μ.
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Figure 9 illustrates the energy-dependence of the DS width and the stabilizing GDD for a low

net-loss. The short pulses are possible in this case, as well, but a small modulation depth does

not allow a substantial DS shortening.

2.2. Chirped DS

Chirped DS demonstrates a high potential for energy harvesting in both solid-state and fiber

lasers [24, 25] due to enhanced stability provided by well-structured energy redistribution

inside a pulse. An energy scalability results from the DS stretching that limits its peak power

Figure 7. Numerical spectral profiles for different modulation depths μ (inset shows the dependence of T FWHM). GDD

corresponds to the stability threshold, ζ ¼ γ= 1.35 MW�1, δ = �0.05. The Lorentzian gain band of 5.3 THz (dashed line)

corresponds to a Yb: YAG, the output energy Eout is of ≈ 0:011 μJ for 3% output coupler.

Figure 8. Pulse width TFWHM vs. modulation depth (a) along the boundary GDD (b) in dependence on the saturation

parameter ζ. Eout ≈ 0:011–0:014 μJ and other parameters correspond to Figure 7.
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and, thereby, suppresses an instability caused by nonlinearity. This factor is especially impor-

tant for all-fiber lasers, where the strong contribution of nonlinear effects is inevitable with

Tres-growth. VA predicts the following energy-scaling laws4:

E∝ β2






=C
ffiffiffiffiffiffi

τΓ
p

, E∝ β2






=
ffiffiffiffiffiffi

τΓ
p

(18)

for the SAM described by Eqs. (9) and (14), respectively [24, 25].

The chirped DS accumulates energy ∝ψ that allows using a so-called adiabatic theory for ψ≫ 1

[24, 63, 64] which predicts a perfect energy scalability or a DS resonance [65] for the cubic-

quintic SAM (Eq. (14)). That means that energy can be scaled infinitely for C ¼ 1=3 due to pulse

stretching and simultaneous spectral condensation:

lim
C!1=3

E ! ∞

α2 ! 1=ζ

Δ !
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2γ=βζ
p

Θ ! 0 }spectral condensation}
� �

,

8

>

>

>

<

>

>

>

:

(19)

where the DS spectral profile is described by a truncated Lorentzian function:

p ωð Þ ¼ 6πγ

κζ

H Δ
2 � ω2

� �

ω2 þΘ
2

(20)

(here H is the Heaviside’s function).

Figure 9. A low-loss regime with δ ¼ �0:05=3, ζ ¼ 100γ, 1% output coupler, μ = 2%.

4

The negative sign of β2 corresponds to a normal GDD in these notations.
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For the SAM presented by Eq. (9), the adiabatic theory predicts the energy-scaling law in the

form of [66]5:

E∝
β2








ζ
ffiffiffi

τ
p

3

C

ffiffiffiffiffiffiffiffiffiffiffiffi

1� C
p

þ arctanh
ffiffiffiffiffiffiffiffiffiffiffiffi

1� C
p	 


� �

(21)

that gives the first expression in Eq. (18) in the C ! 0 (i.e., E ! ∞) limit.

Since the chirped DS energy scaling is provided by its stretching ∝ψ, this process is reversible

so that an output DS can be compressed by a factor ≈ 1=ψ. Nevertheless, some energy loss

occurs with such compression due to nonuniformity of DS chirp [68]6 that requires optimizing

the DS and pulse compressor parameters.

2.3. Main obstacles to the DS energy harvesting

The DS energy harvesting in both chirped and chirp-free regimes has a common problem ofML

self-starting. The DS stability is a necessary but not sufficient condition of its existence because it

must develop from some stochastic process in a laser (eventually, from a quantum noise).

Existing theories of the ML self-start [32–42] predict that a lot of effects are involved in a pulse

formation. However, a spontaneous formation of the DS from noise (the DS self-start) as a

general problem has not been studied in depth. In optics, this is often considered as a technical

issue, because here one can use one of the provenML techniques to guarantee self-starting. After

the initial kick, however, the DS evolves by itself, and recent experiments have shown contro-

versial results: in high-power solid-state lasers, the strong oscillations (Q-switching) during the

DS buildup dynamics hinders the DS self-start [69], while in a fiber laser, such oscillations can

accelerate the self-start [70]. That is obviously connected to co-existence of nonlinearities with

different time scales: instantaneous non-dissipative SPM, and non-instantaneous dissipative

nonlinearities like stimulated Raman scattering (SRS), saturable absorber losses, and gain satu-

ration. This issue is especially intriguing, as the dynamic gain saturation can provide a supple-

mentary mechanism of DS formation [71].

The growing nonlinearity results in quite nontrivial modification of dynamics [25] and causes

whether DS stabilization or its chaotization [72–74]. For example, the practically relevant

Yb-based thin-disk lasers possess reduced instantaneous nonlinearity and longer gain relaxation

times as compared to a bulk Ti: sapphire laser. In the latter case, the enhanced dynamic gain

saturation can destabilize a much-desired high-energy DS [75–77]. As another example, the

experiments demonstrated, that DS energy scaling in all-fiber fiber lasers is limited by energy

loss due to SRS [78]. Nevertheless, SRS could play a positive role providing the generation of

dissipative Raman soliton and suppressing the optical turbulence [79–81]. The connection of this

phenomenon to the general issues of the turbulence theory waits for its exploration [82].

5

The adiabatic theory does not predict a spectral condensation near the carrier frequency ω ≈ 0 for this SAM law, but such a

concentration is possible at spectrum edges. This phenomenon is clearly visible in the numerous experiments and can be

explained by the DS perturbation theory [67].
6

That is a measure of the DS fidelity.
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3. Femtosecond pulse enhancement in an external resonator

Using a high-finesse ER coupled with a mode-locked femtosecond laser is the method of

energy storing allowing broadband absorption spectroscopy [83], high-harmonic generation

and frequency comb generation up to the extreme ultraviolet frequency [84, 85].

Equations describing a coupling with ER are [86, 87]:

br ¼ rbin þ θain, ar ¼ θbin � rain, (22)

where br and bin are the reflected and incident fields on the coupler from a side of femtosecond

oscillator; ar and ain are the corresponding fields from a side of ER; and θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

, r are the

transmittance and reflection coefficients of a coupler, respectively. The field inside ER evolves as:

ain tð Þ ¼ exp �Γþ iϕ� β1
∂

∂t
þ i

X

N

m¼2

imβm
∂
m

∂tm
þ iγ ar tð Þj j2

" #

ar tð Þ, (23)

where Γ is a net-loss coefficient; ϕ, β1 are the phase and group-velocity delays, respectively; βm
are the mth-order GDD coefficients, and γ is the SPM coefficient.

In the absence of group-delay, GDD and SPM in ER, the energy, and power enhancement

factors (Qe and Qp, respectively) are [87]:

Qe ¼ Qp ¼
θ

1� rexp �Γ½ �

� �2

: (24)

Under the condition of weak changes of the field during single cavity round-trip, Eqs. (22) and

(23) can be rewritten in the form of the generalized driven nonlinear Schrödinger equation for

the intracavity field a(t) [88]:

∂a z; tð Þ
∂z

¼ �Πþ iΔϕ� β1
∂

∂t
þ i

X

m¼2

imβm
∂
m

∂tm
þ iγ aj j2

" #

aþ θΦ tð Þ, (25)

where z is a cavity round-trip number,Π ¼ 1� rþ rΓ,Φ(t) is an incident field amplitude andΔϕ

is a phase offset from the resonance ϕ = π. In the absence of SPM (vacuum ER) but with GDD

induced by resonator mirrors, the solutions for the energy and power enhancement factors are7:

Qe ¼
1

2π
Ð

∞

�∞
Φ tð Þj j2dt

ð

∞

�∞

Ð

∞

�∞
Φ tð Þeiωt

Πþ i β1ω� β2ω
2 þ β3ω

3 � β4ω
4

� �





















2

dω,

Qp ¼ max 1
2π

ð

∞

�∞

Ð

∞

�∞
Φ tð Þeiωtdt

Πþ i β1ω� β2ω
2 þ β3ω

3 � β4ω
4

� �

" #

e�iωtdω

























28

<

:

9

=

;

:

(26)

7

Γ≪ 1 andm ≤ 4 are assumed. The field amplitude and the pulse width are normalized to those of incident.
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Eq. (26) demonstrates reducing the enhancement factors due to GDD [87]. Indeed, βm 6¼ 0

reduces the spectral power at the spectrum edges ∝ 1= 1þ ω2mβ2m
� �

that worsens the spectral

overlap between the pulses from a laser and ER. In combination with a chirp appearance and a

pulse broadening in ER, these factors drop both Qe and Qp (Figure 10).

It is clear that destructive action of higher-order GDD (m > 2 in Eq. (25)) on enhancement factor

of ER grows with the pulse shortening so that a thorough dispersion-engineering of ER mirrors

within a sufficiently broad spectral range is required [28, 87, 88].

Additionally, the enhancement factor control can be provided by realizing a soliton-like regime

in the nonlinear ER with γ 6¼ 0 (Figure 11) [87, 88]. In the absence of higher-order dispersions

(i.e., m = 2), Eq. (25) has an exact soliton-like solution a tð Þ ¼
ffiffiffiffiffiffiffiffiffi

P tð Þ
p

exp iqzð Þ :

P tð Þ ¼
θ

Π

� �2

sech
t

T

� �2

, β2 ¼ �
θT

Π

� �2 γP 0ð Þ

2
,Δϕ ¼ �

θ

Π

� �2 γP 0ð Þ

2
, q ¼ 0: (27)

8This soliton-like pulse can be perturbed by higher-order dispersions (m > 2) induced by the

broad-band ER mirrors so that optimization of ER parameters is required in this case, as well

(Figure 11).

A promising possibility of theQp-increase results from a loss compensation by a gain inside ER. In this

case, Eq. (25) has to be supplemented by the term rrτ∂t, tawith the modifiedΠ ¼ 1� rþ r Γ� rð Þ9

(see Eqs. (9) and (25)). One has to note, that ER remains below lasing threshold and a resonator

mode in an active crystal (Ti: sapphire in our case) has to be sufficiently broad to suppress gain

Figure 10. (a) Maximum Qp inside ER in the dependence of the third-order dispersion (TOD, m = 3) and the fourth-order

dispersion (FOD, m = 4) for γ = 0, Δϕ = 0, β1 ~ �0.5 fs, Γ = 0.5% and 25 fs sech-shaped incident pulse at 790 nm central

wavelength. (b) The corresponding optimal second-order dispersion (GDD, m = 2) [88].

8

Here β2 < 0 corresponds to an anomalous dispersion.
9

r < Γ is the stability condition.
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Figure 11. Dependence of the maximum Qp on TOD and FOD (a) optimized by control of β1 (c), β2 (b), and the

dimensionless SPM coefficient γPmax (d). Incident pulse TFWHM is 25 fs, Γ = 0.25%.

Figure 12. Qe (a) and the pulse width (b) in the presence of gain, SPM, and GDD in ER. Γ = 0.04, the width of the incident

100 nJ pulse is of 30 fs, the laser beam size in the 2 mm Ti: sapphire active crystal is 1.1 mm.
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saturation and SPM. The soliton-like regime increases the enhancement factor and reduces the

sensitivity to higher-order dispersions in this case, as well (Figure 12).

4. Conclusions

In this work, the approaches to an energy harvesting at femtosecond scale are reviewed and

elaborated theoretically with a close connection with both solid-state and fiber ML oscillators

including, in particular, a nonlinear ER. The basic concept here is a dissipative soliton allowing

an extra-energy and spectral width scaling under fine control of the laser parameters. This

concept is a very productive for different applications and brings a high-energy physics in

“physics laboratory” where extremal parameters result from not an onslaught but rather

“subtle tuning.” This tuning requires multi-disciplinary approaches providing the multi-scale

power and energy harvesting, which application areas range from fundamental quantum

mechanics to neuroscience and sociology, and include, in particular, a “quantum engineering”

of Bose-Einstein and quasi-particle condensates. A further outlook concerns a study of

nonlinear dynamics of complicated nonlinear systems far from thermodynamic equilibrium,

which is based on their “metaphoric”modeling in more simple and controllable laser systems.
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