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Abstract

In this chapter, we investigate a magnetic line source diffraction problem concerned
with a step. To study the diffraction problem in lossy medium, we follow the Wiener-
Hopf technique and steepest decent method to solve it for impedance step. By equating
the impedances of the step to zero, the solution reduces for magnetic line source diffrac-
tion by PEC step. Then we transform the obtained solution for PEMC step by using
duality transformation. Perfect electromagnetic conductor (PEMC) theory is novel idea
developed by Lindell and Sihvola. This media is interlinked with two conductors namely
perfect electric conductor (PEC) and perfect magnetic conductor (PMC). Both PEC and
PMC are the limiting cases of perfect electromagnetic conductor (PEMC). We study the
magnetic line source diffraction by PEMC step placed in different soils (i) gravel sand (ii)
sand and (iii) clay. By using the permittivity, permeability and conductivity of these lossy
mediums we predict the loss effect on the diffracted field. Such kind of study is very
useful in antenna and wave propagation for subsurface targets and to investigate antenna
radiation patterns.

Keywords: Wiener-Hopf technique, Fourier transform, Green function, impedance,
diffraction, line source, step, PEMC, PMC, PEC, Lossy medium, permeability,
conductivity, permittivity

1. Introduction

In this chapter, we have studied the diffraction problem precisely and investigated the mag-

netic line source diffraction by a perfect electromagnetic conductor (PEMC) step [1–3] for the

lossy medium. PEMC step is assumed to be placed in lossy medium. Discontinuity in diffrac-

tion theory is relevant to many engineering applications. The physical significance of the step

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.



problem regarding engineering application is due to the fact that it is used in many electronic

devices such as solder pad which have many applications in them which are interconnected

through a step like circuit, microwave oven etc. This configuration is significant for predicting

the scattering caused by an abrupt change in the material as well as in the geometrical

properties of a surface. This problem is concerned with the diffraction of plane, cylindrical

and surface waves by different impedance step discontinuities, such as step discontinuities

made of plasmonic materials. Specially diffraction by a step in a perfectly conducting plane

makes a canonical problem for the geometrical theory of diffraction (GTD) analysis of scatter-

ing by metallic tapes on paneled compact range reflectors [4]. The scattering of surface waves

by the junction of two semi-infinite planes joined together by a step was first introduced by

Johansen [5] in the case where both the half planes and the step are characterized by the same

surface impedances. This problem is solved by using Wiener-Hopf technique, Green function

and steepest descent method. The diffracted far field is investigated by the method of steepest

descent. Some of the other researchers like Büyükaksoy and Birbir, Büyükaksoy and Tayyar,

Büyükaksoy and Tayyar, Aksoy and Alkumru [6–16] have been investigated the scattering

problems which can also be considered for the diffraction of plane, cylindrical and surface

waves by different impedance step discontinuities, such as step discontinuities made of

plasmonic materials.

The importance of present work stems from the facts that: (a) the scattering properties of a

surface are functions of both its geometrical and material properties. (b) The edge scattering by

dihedral structures whose surfaces can be modeled by the impedance boundary condition has

been the focus of attention of many scientists for both acoustic and electromagnetic waves [17].

(c) The step geometry constitutes a canonical problem for scattering because a step geometry is

used as an interconnection circuit of many electronic devices such as solder pad, microwave

oven and frequency selective surface etc. [18]. A diffraction problem due to a magnetic line

source is considered as better substitute than the plane waves. It is pertinent to mention here

that the problem of diffraction of plane or line source diffraction of electromagnetic waves

from a step is both mathematically difficult and physically important because the solution of

the problem involves determination of n unknowns which in turn requires the solution of

system of n linear equations.

It is clear that in the case of the line source incidence, the results of plane wave diffraction

by impedance step are modified by a multiplicative factor of the form 2π
kr0

� �1
2

exp ikr0 þ i π4

� �

,

which agrees with the results already known [19, 20]. In far zone, the solution of magnetic

line source diffraction reduces to plane wave as kr ! ∞. Using the method described in

[16], the concerned problem “magnetic line source diffraction by an impedance step” is first

reduced to a modified Wiener-Hopf equation of the second kind whose solution contains

infinitely many constants satisfying an infinite system of linear algebraic equations. From

this far field solution we obtain analytical solution for magnetic line source diffraction

by perfect electric conductor (PEC) step, by taking the surface impedances η1 and η2 equal

to zero. Next, we apply the duality transformation introduced by Lindell and Sihvola.

Transformations have been made from the diffracted fields by a PEC step plane to PEMC

step. Numerical solution of this system is obtained for various values of parameter M with

Antennas and Wave Propagation186



step height a ¼ λ=4, from which the effects of these parameters on the diffraction phenom-

enon are studied and compared with the PEMC analytical theory [3]. Next we study the

solution magnetic line source diffraction by PEMC step. PEMC is novel metamaterial

developed by Lindell and Sihvola [21, 22]. Its constitutive relations and salient features are

given below:

ið Þ D ¼ MB

and

iið Þ H ¼ �ME

PEMC behaves as an example of an ideal boundary. As a check, we obtain the PMC and PEC

boundary conditions as the two limiting case of PEMC:

M ! 0 PMCð Þ : n�H ¼ 0, n:D ¼ 0

and

M ! �∞ PECð Þ : n� E ¼ 0, n � B ¼ 0:

This medium is characterized by a scalar parameter M known as admittance of the surface.

PEMC is a generalization of both perfect electric conductor (PEC) and perfect magnetic con-

ductor (PMC) media. Therefore, the medium is known as PEMC. Defining a certain class of

duality transformations, this medium corresponds to PEC or PMC media. PEMC medium

allows some nonzero fields, it rejects electromagnetic field propagation and acts as a boundary

to electromagnetic waves just like the PEC and PMCmedia. Denoting the unit normal between

air and PEMC by, from the continuity of tangential component, the electric field E and the

magnetic field H satisfy the equation

HþME ¼ 0

It is also continuous through the PEMC air interface, because this vanishes in the PEMC

medium, and the boundary condition becomes

n� HþMEð Þ ¼ 0

Similarly, the normal component of the field satisfies

D�MB ¼ 0

and is continuous across the boundary for

n � D�MBð Þ ¼ 0:

Because the normal component of the Poynting vector at the PEMC boundary vanishes and

is nonreciprocal, except in the PMC and PEC limiting cases M ¼ 0, � ∞ respectively. PEMC
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is truly isotropic, but due to the cross-components in addition to the co-components in

the scattered field, it is bi-isotropic. Due to its particular property of short-circuiting a

linear combination of the tangential electric and magnetic fields, the PEMC media can be

exploited in microwave engineering applications. Some examples of such are, e.g., ground

planes for low-profile antennas, field pattern purifiers for aperture antennas, polarization

transformers, radar reflectors, and generalized high-impedance surfaces. PEMC medium

can be artificially constructed by building a structure which forces the boundary conditions

on the surface of a sample to be the same as those of PEMC. Many authors have worked

on PEMC and metamaterial [21–47]. Next we will study the magnetic line diffraction

by PEMC step in lossy medium and the fields are obtained analytically for more general

solution.

We extend the problem reported by [3] for the lossy background medium. Several canonical

objects in lossy media has been investigated over the years by many authors [44–56] by

applying approximate values of electric conductivity and dielectric constants of various

materials. The concept of subsurface scattering of EM waves for detecting the cavities and

targets buried in soil has important applications in the areas of nonproliferation of

weapons, environmental monitoring, hazardous-waste site location and assessment, and

even archeology. To have information about this potential, it is first essential to understand

the behavior of the soil by applying EM wave, and how the targets within the soil give

response. We analyze the response of the soil to an EM wave by using complex dielectric

permittivity of the soil in finding radar range resolution. This leads to a concept of an

optimum frequency and bandwidth for imaging in a particular soil. The radar cross section

of several canonical objects in lossy media is derived, and examples are given for several

objects like scattering of buried PEC sphere, PEC cylinder, and PEC plate [44] and similarly

scattering by PEMC plate [54], PEMC strip [55] and PEMC cylinder [56]. Furthermore, we

can study the diffraction by PEC and PEMC half plane [39] and step is also made by semi-

infinite half planes with a step height a, so they can also be investigated for diffraction by

using the electric parameters of soils. Also characteristics of radar cross section can be

further studied with different objects for PEC, PMC and PEMC cases in lossy medium. In

addition to RCS of various PEC, PMC and PEMC objects [59] in lossy medium can also be

investigated in future.

The objective of this chapter is to determine the diffracted field by PEMC step excited by a

line source in lossy medium and to investigate surface and borehole techniques for detecting

and mapping subsurface cavities, targets and to evaluate the results of surface and borehole

radar probings performed at the test sites. Detection of subsurface cavities is concerned with

ground-probing radar. A number of factors that control the velocity, absorption and attenu-

ation characteristics of a radar wave and plane EM wave propagating through a dielectric as

well as lossy medium like the earth. The imaging of objects buried in soil has potentially

valuable applications in many diverse areas, such as nonproliferation of weapons, environ-

mental monitoring, hazardous-waste site location and assessment, and even archeology. We

study the magnetic line source diffraction by PEMC step placed in different soils (i) gravel

sand (ii) sand and (iii) clay. By using the approximate value of permittivity, permeability and

conductivity of these lossy mediums, we predict and analyze the loss effect on the diffracted

field.
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2. Mathematical model

Consider the diffraction due to a magnetic line source located at x0; y0
� �

, illuminated by two

half planes S1 ¼ x < 0,f y ¼ a, z∈ �∞;∞ð Þg and S2 ¼ x > 0,f y ¼ 0, z∈ �∞;∞ð Þg with rela-

tive surface impedance η1 joined together by a step of height }a} with relative surface imped-

ance η2: The geometry of the line source diffraction is shown in Figure 1.

The time dependence e�iωt, is suppressed throughout the solution.

The Helmholtz equation concerned with the diffraction problem is given below

∂
2

∂x2
þ

∂
2

∂y2
þ k2

� �

uT x; yð Þ ¼ δ x� x0ð Þδ y� y0
� �

, (1)

subject to the boundary conditions at two half planes and a step given by:

3. Boundary conditions

1þ
η1
ik

∂

∂y

� 	

uT x; að Þ ¼ 0, x < 0 (2)

1þ
η2
ik

∂

∂x

� 	

uT 0; yð Þ ¼ 0, 0 < y < a (3)

Figure 1. Geometry of problem: a line source located at (x0, y0) making an angle θ0 with the horizontal, is incident upon

impedance step of surface impedances η1 and η2, respectively, as shown. Here, (x, y) is the observation point at an angle θ

with the horizontal.
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and

1þ
η1
ik

∂

∂y

� 	

uT x; 0ð Þ ¼ 0, x > 0 (4)

with continuity equations:

uT x; a�ð Þ ¼ uT x; aþð Þ (5)

and

∂uT x; a�ð Þ

∂y
¼

∂uT x; aþð Þ

∂y
(6)

where uT is the total field. For the mathematical analysis purpose, it is easy to express the total

field uT x; yð Þ as follows:

uT x; yð Þ ¼
ui x; yð Þ þ ur1 x; yð Þ þ u1 x; yð Þ, y > a,

u2 x; yð Þ, 0 < y < a,




(7)

Here, k ¼ ω=c is the wave number and supposed to have positive imaginary part. The lossless

case can be obtained by making Imk ! 0 in the final expressions. By substituting Eq. (7) in

Eqs. (1)–(6), we arrive at

∂
2

∂x2
þ

∂
2

∂y2
þ k2

� �

ui x; yð Þ ¼ δ x� x0ð Þδ y� y0
� �

: (8)

and

∂
2

∂x2
þ

∂
2

∂y2
þ k2

� �

ur1 x; yð Þ ¼ δ x� x0ð Þδ yþ y0
� �

: (9)

The solution of the incident field and reflected field from [11] can be written as

ui x; yð Þ ¼ be�ik x cosϕ0þy sinθ0½ �

ur1 x; yð Þ ¼ b
η1 sinϕ0 � 1

η1 sinθ0 þ 1
e�ik x cosϕ0þ y�2að Þ sinϕ0½ �

where

b ¼ �
1

4i

ffiffiffiffiffiffiffiffiffi

2

πkr0

r

ei kr0�π=4ð Þ

The diffracted field u1 x; yð Þ and u2 x; yð Þ satisfy the Helmholtz equations
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∂
2

∂x2
þ ∂

2

∂y2
þ k2

� �

u1 x; yð Þ ¼ 0, x∈ �∞;∞ð Þ: (10)

∂
2

∂x2
þ ∂

2

∂y2
þ k2

� �

u2 x; yð Þ ¼ 0, x∈ 0;∞ð Þ: (11)

1þ η1
ik

∂

∂y

� 	

u1 x; að Þ ¼ 0, x < 0 (12)

1þ η2
ik

∂

∂x

� 	

u2 0; yð Þ ¼ 0, 0 < y < a (13)

and

1þ η1
ik

∂

∂y

� 	

u2 x; 0ð Þ ¼ 0, x > 0 (14)

u1 x; aþð Þ þ 2bη1 sinϕ0

η1 sinϕ0 þ 1
e�ik x cosϕ0þa sinϕ0½ � ¼ u2 x; a�ð Þ (15)

and

∂u1 x; aþð Þ
∂y

� 2bikη1 sinϕ0

η1 sinϕ0 þ 1
e�ik x cosϕ0þa sinϕ0½ � ¼ ∂u2 x; a�ð Þ

∂y
(16)

where

b ¼ � 1

4i

ffiffiffiffiffiffiffiffiffi

2

πkr0

r

ei kr0�π=4ð Þ

4. Fourier transform

Taking Fourier transform of the Eq. (10) such that:

Φ α; yð Þ ¼ 1
ffiffiffiffiffiffi

2π
p

ð

∞

�∞
u1 x; yð Þeiαxdx,

and

u1 x; yð Þ ¼ 1
ffiffiffiffiffiffi

2π
p

ð

∞

�∞
Φ α; yð Þe�iαxdα,

where
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Φ α; yð Þ ¼ Φ� α; yð Þ þ Φþ α; yð Þ

Φþ α; yð Þ ¼ 1
ffiffiffiffiffiffi

2π
p

ð

∞

0

u1 x; yð Þeiαxdx,

Φ� α; yð Þ ¼ 1
ffiffiffiffiffiffi

2π
p

ð0

�∞
u1 x; yð Þeiαxdx,

and Eq. (10) reduce to

d2ϕ

dy2
þ γ2ϕ α; yð Þ ¼ 0, (17)

where γ αð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2 � α2
p

and α is a complex transform variable.

Apply half range Fourier transforms to the Eq. (11)

∂
2

∂x2
þ ∂

2

∂y2
þ k2

� 	

Ψþ α; yð Þ ¼ 0, 0 < y < a: (18)

where

Ψþ α; yð Þ ¼ 1
ffiffiffiffiffiffi

2π
p

ð

∞

0

u2 x; yð Þeiαxdx

Fourier transforms of the Eqs. (12)–(16) can be written as

1þ η1
ik

∂

∂y

� 	

Φ� α; að Þ ¼ 0, x < 0 (19)

1þ η2
ik

∂

∂x

� 	

Ψþ α; að Þ ¼ 0, 0 < y < a (20)

and

1þ η1
ik

∂

∂y

� 	

Ψþ α; 0ð Þ ¼ 0, x > 0 (21)

Φ� α; aþð Þ � H0

α� k cosϕ0

¼ Ψþ x; a�ð Þ (22)

and

∂Φ� α; aþð Þ
∂y

þ ik

η1

H0

α� k cosϕ0

¼ ∂Ψþ x; a�ð Þ
∂y

(23)

where
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H0 ¼
1

8π2

2η1 sinϕ0

η1 sinϕ0 þ 1
e�ika sinϕ0

2π
ffiffiffiffiffiffi

kr0
p ei kr0�π=4ð Þ:

The solution of Eq. (17) satisfying the radiation condition for y > a can be written as:

Φ α; yð Þ ¼ B αð Þeiγ αð Þ y�aj j, (24)

where B αð Þ is the unknown coefficient to be determined by substituting y ¼ a in the following

expression Φþ α; yð Þ þ Φ� α; yð Þ and ∂Φþ α;yð Þ
∂y þ ∂Φ� α;yð Þ

∂y , and with the help of boundary condition;

Φ� α; að Þ þ η1
ik
Φ

0

� α; að Þ ¼ 0, (25)

where prime denotes differentiation with respect to y:

Rþ αð Þ ¼ B αð Þ 1þ η1
k
γ αð Þ

� �

, (26)

where

Rþ αð Þ ¼ Φþ α; að Þ þ η1
ik
Φ

0

þ α; að Þ: (27)

From the Eqs (22), (23), (26) and (27), we obtain the following Wiener-Hopf functional equations

∂Ψþ x; að Þ
∂y

¼ Rþ αð Þiγ αð Þ
1þ η1

k γ αð Þ þ ik
η1
Φ� α; að Þ þ ik

η1

F0
α�k cosϕ0

� (28)

The corrected solution of Wiener-Hopf equation [2] in case of line source can be expressed as

Rþ αð Þ
αþ Tð ÞGþ αð Þ

¼ F0
iη1
k

k cosθ0 � Tð ÞG� k cosθ0ð Þ
α� k cosθ0

þ k

η1

k
η2
� T

� �

Gþ Tð ÞRþ Tð Þe�
ika
η1

k
η2
þ T

� �

sin ka
η1

� �

αþ Tð Þ

þ
X

∞

n¼1

k
η2
� αn

� �

Gþ αnð ÞRþ αnð Þ nπ
a

� �2

k
η2
þ αn

� �

aαn T � αnð Þ αþ αnð Þ
,

where
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F0 ¼
i

8π2

2η1 sinθ0

1þ η1 sinθ0
e�ika sinθ0

2π
ffiffiffiffiffiffi

kr0
p e�i kr0�π

4ð Þ:

and αn, G αð Þ and Gþ αð Þ are defined in [11]. The function Rþ αð Þ depends upon the unknown

series of constants Rþ Tð Þ, Rþ α1ð Þ, Rþ α2ð Þ, Rþ α3ð Þ:… To find an approximate value for Rþ αð Þ,
substitute α ¼ T,α1,α2, :…,αm in Eq. (29) to get mþ 1 equations in mþ 1 unknowns. The

simultaneous solution of these equations yields approximate solutions for Rþ Tð Þ, Rþ α1ð Þ,
Rþ α2ð Þ,…Rþ αmð Þ:

5. Far zone solution

The unknown constant B αð Þ can be obtained by taking inverse Fourier transform of Eq. (24),

the final expression for the diffracted field is written as

u1 x; yð Þ ¼ 1
ffiffiffiffiffiffi

2π
p

ð

L

Rþ αð Þ
1þ η1

k γ αð Þ
� � eiγ αð Þ y�að Þe�iαxdα, (29)

where L is a straight line parallel to the real axis, lying in the strip Im k cosθ0½ � < Im α½ � < Im k½ �:
To determine the far field behavior of the scattered field, introducing the following substitu-

tions x ¼ r cosθ, y� a ¼ r sinθ and α ¼ �k cos θþ itð Þ, where t is real. The contour of integra-

tion over α in Eq. (30) goes into the branch of hyperbola around �ik if π
2 < θ < π. We further

observe that in deforming the contour into a hyperbola the pole α ¼ ξ may be crossed. If we

make another transformation ξ ¼ k cos θ0 þ it1ð Þ the contour over ξ also goes into a hyperbola.

The two hyperbolae will not cross each other if θ < θ0: However, if the inequality is reversed

there will be a contribution from pole which, in fact, cancels the incident wave in the shadow

region in [11]. Simply the asymptotic evaluation of the integral in Eq. (30) using the method of

steepest descent, we find the following solution for far field diffracted by an impedance step

due to a line source at a large distance from the edge:

u1 r;ϕ
� �

e�iπ=4k sinϕRþ αð Þ eikr
ffiffiffiffi

kr
p (30)

6. Magnetic line source diffraction by PEC step

The asymptotic solution for the field diffracted by perfect electric conductor (PEC) step is

obtained by equating η1 ¼ η2 ¼ 0
� �

as

u1 r;ϕ
� �

¼ e�iπ=4k sinϕΦþ �k cosϕ; a
� � eikr

ffiffiffiffi

kr
p (31)

where
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Φþ α; að Þ ¼ Gþ αð Þ i sinϕ0

ei kr0�π
4ð Þ

4π
ffiffiffiffiffiffi

kr0
p G� k cosϕ0

� �

α� k cosϕ0

þ
X

∞

n¼1

Gþ αnð Þ nπ
a

� �2

aαn αn þ αð Þ Φþ αn; að Þ
" #

(32)

and

Gþ αð Þ ¼
ffiffiffi

a
p

e γa=πln αþiγð Þ=k½ �e iαa=π 1�Cþln 2πð Þ=kaþiπ=2ð Þ½ �

�
Y

∞

n¼1

1� ka

nπ

� �2

� iαa

nπ

" #

e
iαa
nπ (33)

such that

G� αð Þ ¼ Gþ �αð Þ

Next we transform magnetic line source diffracted field from PEC to PEMC step under the

duality transformations in the [21]. The field diffracted by perfectly electric conducting (PEC)

step can be transformed.

7. Magnetic line source diffraction by PEMC step

We obtain a solution for magnetic line source diffraction by PEMC step by applying a trans-

formation introduced by Lindell and Sihvola, that is known as duality transformation [21]:

E
s
d

Hs
d

� �

¼
Mη0 η0
�1

η0
Mη0

0

@

1

A

E
s

Hs

� �

, (34)

E
s
d ¼ Mη0E

s þ η0H
s (35)

Hs
d ¼ � 1

η0
E
s þMη0H

s (36)

where E
s and Hs are the diffracted fields and E

s
d and Hs

d are the intermediate fields obtained

from the PEC step by satisfy the condition,

η
o
Hs

d ¼ �uz � E
s
d: (37)

Moreover, the transformation

E

H

� �

¼ 1

Mη0
� �2 þ 1

Mη0 �η0
1

η0
Mη0

0

@

1

A

E
s
d

Hs
d

� �

(38)

gives
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E ¼ 1

Mη0
� �2 þ 1

Mη0
� �2 � 1

� �

E
s � 2Mη0E

s

h i

(39)

H ¼ 1

Mη0
� �2 þ 1

Mη0
� �2 � 1

� �

H
s � 2Mη0H

s

h i

(40)

where E and H are the fields diffracted (scattered) by the PEMC step which is written as

E ¼ 1

Mη0
� �2 þ 1

Mη0
� �2 � 1

� �

E
s � 2Mη0E

s

h i

(41)

and

E
s ¼ e

�iπ=4
k sinϕΦþ �k cosϕ; a

� � eikr

ffiffiffiffi

kr
p (42)

where

Φþ α; að Þ ¼ Gþ αð Þ ik sinϕ0

e
i kr0�π

4ð Þ
4π

ffiffiffiffiffiffi

kr0

p G� k cosϕ0

� �

α� k cosϕ0

þ
X

∞

n¼1

Gþ αnð Þ nπ
a

� �2

aαn αn þ αð Þ Φþ αn; að Þ
" #

(43)

8. Magnetic line source diffraction by PEMC step in lossy medium

When we study magnetic line source diffraction by PEMC step in lossy medium, we just

replace free-space wave number k by γ, then the solution obtained from the PEMC step for

the lossy medium can be expressed such that (Figure 2)

E ¼ 1

Mη0
� �2 þ 1

Mη0
� �2 � 1

� �

E
s � 2Mη0E

s

h i

(44)

and

E
s ¼ e

�iπ=4γ sinϕΦþ �γ cosϕ; a
� � eiγr

ffiffiffiffiffi

γr
p (45)

where

Φþ α; að Þ ¼ Gþ αð Þ iγ sinϕ0

e
i γr0�π

4ð Þ
4π

ffiffiffiffiffiffiffi

γr0
p

G� γ cosϕ0

� �

α� γ cosϕ0

þ
X

∞

n¼1

Gþ αnð Þ nπ
a

� �2

aαn αn þ αð Þ Φþ αn; að Þ
" #

(46)

where γ ¼ β� α, here α is attenuation factor and β is propagation constant defined as in [57].
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β ¼ ω
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where ε0 and μ0 are the permittivity and the permeability of free space. For the hosted medium,

we use three type of soil models [58] namely: (i) gravel sand having its conductivity σ ¼ 0:001

mho/m and its relative permittivity εr ¼ 10:5ε0; (ii) sand: σ ¼ 0:0001 mho/m and εr ¼ 8ε0 and

(iii) clay: σ ¼ 0:01 mho/m and εr ¼ 7ε0, respectively.

9. Results and discussion

In this section we discuss some graphical results which have been presented in [3] to predict the

effects of the admittance parameters M and step height a and line source parameter r0 on the

diffraction phenomenon. It can be observed from [3] that the amplitude of the diffracted field

increases with increase in step height. The graphs show that the amplitude of the diffracted field

decreases as the source is taken away from the origin, which is a natural phenomenon and

verifying the results. Through Mathematica software we have reproduced the results given by

Lindell and Sihvola [21] and the results have retrieved. Here, an attempt is made to develop the

theoretical results for lossy medium using the analytical solution for magnetic line source dif-

fraction by PEMC step. As the step is assumed to be surrounded by different soils (i) gravel sand

Figure 2. Geometry of the diffraction problem: a line source located at (x0, y0) making an angle θ0 with the horizontal, is

incident upon PEMC step surrounded by lossy medium, as illustrated in this figure. Here, (x, y) is the observation point at

an angle θ with the horizontal.
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(ii) sand and (iii) clay. By using the permittivity, permeability and conductivity of these lossy

mediums we predict the loss effect on the diffracted field. The computed fields are obtained

analytically for more general solution. The said problem is first reduced to a modified Wiener-

Hopf equation of second kind whose solution contains an infinite set of constants satisfying an

infinite system of linear algebraic equations. A numerical solution of this system is obtained for

various values of admittance parameterM and the height of the step a versus observation angle.

Further, the effect of these parameters on the diffraction phenomenon is studied. It is observed

that if the source is shifted to a large distance these results differ from those of by a multiplicative

factor to the part of the scattered field containing the effects of incident and reflected waves. The

diffraction analysis of magnetic line source by a PEMC step provides explicit formulas for electric

and magnetic field amplitude and the polarization. Here, it is interesting to note that the co-

polarized and the cross-polarized fields depend on the parameterM.

10. Conclusion

It is concluded that the both coupled electric and magnetic fields excitation can be observed

analytically for PEMC theory that leads to a most general case for the magnetic line source

diffraction by step embedded in lossy medium. The lossy medium is assumed to be made of

three different soils (i) gravel sand, (ii) sand and (iii) clay. We see from their respective electric

parameters namely permittivity, permeability and conductivity, as the loss increases the ampli-

tude of the diffracted field decreases. By applying this technique to detect the subsurface

targets, we can use various soil models. Further, in this chapter at a time we studied diffraction

by step using PEMC theory and loss effect on the field patterns. Here, we can predict the

behavior of the fields diffracted by magnetic line source. This is the most general solution and

is more useful rather a plane wave solution. In far zone, we can obtain a solution for the

diffraction of a plane wave by PEMC step placed in lossy medium under the condition

kr ! ∞. It is also concluded that the parameter M plays a significant role in PEMC theory to

interlink the PEC and PMC media. The cross-polarized scattered fields vanish in the presence

of PEC and PMC cases and they are maximal for Mη0 ¼ �1. If M ¼ �∞, correspond to PEC

case and M ¼ 0, correspond to a PMC case. The impulse response of the soil is important in

investigating the best operating frequency and bandwidth for a subsurface-imaging SAR. Due

to dispersion and loss in the soil, the impulse response deviated from the free-space impulse

response. The following conclusions can be drawn from examination of the soil’s impulse

response: (i) an optimum bandwidth exists; (ii) loss increases as bandwidth increases; (iii) very

large bandwidths are not useful for imaging objects at large depths; (iv) vertical polarization is

best for large angles of incidence and (v) lower frequencies seem best.
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